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Abstract DIARC has been under development for over 15 years. Different from
other cognitive architectures like SOAR or ACT-R, DIARC is an intrinsically
component-based distributed architecture scheme that can be instantiated in many
different ways. Moreover, DIARC has several distinguishing features, such as affect
processing and deep natural language integration, is open-world and multi-agent en-
abled, and allows for “one-shot instruction-based learning” of new percepts, actions,
concepts, rules, and norms.

In this chapter, we will present an overview of the DIARC architecture and com-
pare it to classical cognitive architectures. After laying out the theoretical founda-
tions, we specifically focus on the action, vision, and natural language subsystems.
We then give two examples of DIARC configurations for “one-shot learning” and
“component-sharing”. We also briefly mention different use cases of DIARC, in
particular, for autonomous robots in human-robot interaction experiments and for
building cognitive models.

1 Introduction

Classical cognitive architectures (CCAs) have evolved significantly since their in-
ception in the late 1970s, with more and more features added on top of their core
production systems. The ACT-R architecture (currently at version 7), for example,
started from a model of associative memory and has morphed into a system allow-
ing multiple inheritance among chunks, together with any number of new buffers
connected to the central production system that can be added to the architecture to
hold memory chunks (e.g., to allow for interactions with sensory and effector mod-
ules, see the ACT-RE models by Trafton et al. [76]). Similarly, the SOAR architec-
ture (currently at version 9.6) started with a production system that only featured
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“chunking” as the single architectural learning mechanism and has morphed into
a system that integrates reinforcement learning, as well as semantic and episodic
memories (in addition to the original working memory). While some of the exten-
sions were driven by the need for more complex mechanisms to be able to develop
adequate cognitive models, others were driven by the need to provide more capa-
bilities for applications (e.g., in virtual and robotic agents). In addition to classi-
cal cognitive architectures, newer cognitive architectures such as Icarus, Clarion,
and others were developed to address specific research questions (e.g., the implicit-
explicit dichotomy in cognitive systems or the questions of how to learn and execute
hierarchical skills, respectively).

Different from CCAs, the “Distributed Integrated Affect Reflection and Cogni-
tion” DIARC architecture [66, 63] was originally neither designed as nor intended to
be a model of human cognition. Rather, it was conceptualized from the beginning as
an architecture scheme (similar to the CogAff architecture scheme [71]) that could
subsume a large set of possible architectures, and thus be used to realize a diverse set
of cognitive systems of varying complexity, especially situated embodied systems
such as robots. Architecture schemes are templates that, when filled in with details
(i.e., specific components and their connections), specify individual architectures. In
DIARC, this means that once components and their interactions are fixed, a partic-
ular DIARC architecture (a DIARC instance) is obtained. Note that the distinction
between an architecture scheme and an architecture instance is different from the
distinction between the algorithms and knowledge in cognitive architectures [41],
in which “algorithms” are said to define the architecture per se (components and
links) and knowledge is viewed as being encoded in representations contained in
those components (either preloaded or acquired during operation). However, the
design-as-architecture scheme does not preclude using different DIARC instances
as cognitive models. And, in fact, different instances of DIARC have been used to
model different cognitive aspects (e.g., the interaction of affect and goal processing
[55], or a language-guided conjunctive visual search [65]).

In the following, we will first lay out the theoretical commitments made by
DIARC as an architecture scheme and then discuss in greater detail the notable
features that distinguish DIARC from other cognitive architectures. We then briefly
give examples of two instances of DIARC for “one-shot learning” and “component-
sharing”, respectively, as well as applications of DIARC in cognitive modeling, au-
tonomous robotics, and human-robot interaction.

2 Theoretical Commitments

Every cognitive architecture is based on basic theoretical assumptions about the
structure and nature of its components, the data representations used inside and
across components, as well as the information and control flow, and possibly the
timing of component updates and information exchanges. To show the commonali-
ties and differences in theoretical commitments of DIARC compared to CCAs, we
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start with the four-part framework for discussing CCAs proposed in [40]: (1) struc-
ture and processing, (2) memory and content, (3) learning, and (4) perception and
motor. Following this comparison, we discuss additional theoretical commitments
DIARC makes concerning its components, as well as the principles underwriting
the overall polylithic design and implementation of DIARC in a multi-agent system
middleware.

2.1 Structure and Processing

In line with typical assumptions in CCAs, DIARC is composed of a set of compo-
nents that operate in parallel and can communicate with each other by exchanging
messages using logical representations. Different from most CCAs, DIARC compo-
nents operate asynchronously in real parallelism and do not assume any synchro-
nization mechanism (e.g., as imposed by a “perceive-think-act” cycles). Moreover,
in addition to there not being any prescription of a particular system-wide cogni-
tive cycle across components, there is also no prescription of the update timing of a
component (e.g., compared to 50 ms or 100 ms for cognitive cycles in some CCAs).
Rather, each component can update at the rate appropriate for the information it
processes (and may run multiple threads of control within itself).

2.2 Memory and Content

While the details of the interaction among different components depend on the par-
ticular architecture (e.g., ACT-R provides a buffer mechanism that serves as the in-
terface between the core production system and other modules), CCAs typically im-
pose a communication bottleneck when they require that different modules interact
via a special (short-term) working memory component and two long-term memory
components for procedural and declarative knowledge. In contrast, DIARC does not
impose such structural or communication constraints based on memories and mem-
ory access, but rather allows components to locally implement their own short-term
and long-term memories. Consequently, there is no mandated component-based dis-
tinction between declarative vs. procedural knowledge – both kinds could coexist in
the same memory component – although typically, procedural knowledge is stored
in the action execution component while declarative knowledge is stored in a special
memory and inference component that can be instantiated multiple times as needed
and used for short-term and long-term information storage. Different memories can
be cross-indexed and accessed via consultants that establish those links (see Sec-
tion 3.3.3). Moreover, there is no prescribed knowledge representation format in
DIARC for knowledge stored within components (e.g., the way in which declarative
knowledge has to be represented as “chunks” in ACT-R or procedural knowledge
has to be represented in terms of production rules). Rather, knowledge representa-
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tions can take different forms within components, depending on the nature of the
process (e.g., saliency maps inside the vision processing component, dependency
graphs in the parser, clauses in the reasoner, etc.). However, there is a requirement
that messages exchanged conform to the same format across architecture instances
(i.e., logical expressions are used as a common currency and data representation
format across components).

2.3 Learning

In CCAs, all long-term memory entries are learnable online and incrementally dur-
ing task performance using “architectural” (i.e., built-in) learning mechanisms, of-
ten through inverting the information flow. Different types of learning are employed,
depending on the types of long-term memory (e.g., reinforcement learning to gener-
ate weights for action selection and procedural composition such as “chunking” for
procedural learning, or the learning of facts together with their meta-data for declar-
ative learning). In contrast, DIARC does not prescribe any particular architectural
learning mechanism, but allows components to implement their own learning strate-
gies, depending on the information they process. For example, the vision and audi-
tory subsystem can employ unsupervised learning to improve the accuracy of their
classifiers (e.g., adjust object recognizers to build better recognition templates in
the vision system or adjusting word prototypes to be able to better recognize differ-
ent word instances in the speech recognizer). Policy-based action execution systems
might use reinforcement learning to improve their policies, or they could use action
sequences from plan traces to learn the appropriate action sequences (very much
like what “problem solving” allows in architectures like Soar). In addition to online
learning, some DIARC components can also be trained offline (e.g., the vision and
speech components, the parser, policy-based planers, etc.). Most importantly, how-
ever, DIARC directly supports instruction-based “zero-shot” and “one-shot” learn-
ing across most knowledge representations in the architecture, both through its in-
tegration of natural language processing and component capabilities for one-shot
learning (e.g., in the vision and speech recognition components) [64, 38]. As a re-
sult, new words, percepts, actions, skills, rules, plan operators, norms, and other
forms of knowledge can be learned quickly through natural language instruction
during performance and used in “open-world” tasks for which not all required task-
based knowledge is available ahead of time, but rather must be acquired online dur-
ing task execution (e.g., [75]).

2.4 Perception and Motor

CCAs assume that perception modules generate symbolic structures representing
the perceived object, relation, event, etc. while motor modules convert such sym-
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bol structures into motor actions. Both perception and motor modules may allow
for learning (e.g., to acquire new perceptual and action patterns), although such
learning is typically outside of the architectural specification (as lower-level percep-
tual and motor control processes are typically not included in CCAs). In contrast,
DIARC was specifically aimed at real-world, real-time interactions and thus takes
both perceptual and motor processes very seriously, providing detailed models for
both (e.g., an extensive vision system that can process information from various
types of sensors in real-time and various robot body modules that can process motor
behavior for different robot body types). Similar to CCAs, learning in these compo-
nents is not prescribed, but rather different learning methods are allowed. Different
from CCAs, DIARC permits zero-shot perception and motor learning from instruc-
tion (e.g., direct learning of new percepts or new primitive actions from natural
language descriptions without exposure to the percepts or the actions). Moreover,
perceptual processing and action sequencing are closely tied to the real world (e.g.,
update frequencies of the vision system are related to the frame rates of sensors,
and action commands at the lowest motor levels are tied to the command speed of
effectors and the durative nature of embodied activities).

2.5 Additional Component Commitments

In addition to the types of commitments found in CCAs, DIARC makes additional
theoretical commitments about its components that are not found in CCAs:

• Affect integration. Affect is, surprisingly, not part of CCAs, even though it is a
central component of human cognition and CCAs are often intended to be “mod-
els” of human cognition. All DIARC components must represent both positive
and negative affect (in the simplest case, as measures of how well a component
performs, in more complex cases, as richer representations of desired component
states). Some components like the Goal Manager collect affective evaluations
from other components to compute composite evaluations of how well the agent
(controlled by the DIARC instance) is doing, which can then be used to prioritize
goals and modulate expected utility [56].

• Open-world processing. All DIARC components must be open-world enabled,
i.e., allow for partial and incomplete representations of the information they pro-
cess, as happens in open-world scenarios for which not all of the information is
available initially, but rather has to be acquired through discovery and learning
processes (e.g., unknown words in goal instructions referring to unknown entities
in unknown locations, e.g., [75]).

• Multi-level introspection. All DIARC components must allow for the introspec-
tion of their states through middleware-enabled introspection processes, which
can be used to optimize component and architecture performance, but also to
detect and recover from faults (e.g., [36]). In addition, introspection methods
can be used by components to detect available functionality in DIARC instances
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(e.g., the Goal Manager component can determine the kinds of perception and ac-
tion primitives that are available in other components and can be used in action
scripts, see Section 3.1). Explicit logical annotations of pre- operating, and post-
conditions of services made available by components to other components can
be used to enable introspective access and run-time reflection on system features
and capabilities.

• Component-sharing. All DIARC components must allow for component shar-
ing across multiple agents, i.e., two or more agents realized as DIARC in-
stances might share a single DIARC component (e.g., a common natural language
processing subsystem consisting of speech recognizer, semantic and pragmatic
parser, and dialogue manager components). Component-sharing allows for effi-
cient implicit realization of agent-to-agent communication in which instead of
explicit communication, agents have direct access to required knowledge struc-
tures [45].

2.6 Polylithic Design and Implementation

A result of being an architecture scheme, and thus allowing for different configura-
tions among possible components and links, DIARC is intrinsically polylithic, com-
pared to the monolithic nature of classical cognitive architectures. The polylithic
nature is guaranteed by the implementation of DIARC in the “Agent Development
Environment” ADE [54, 35, 34, 36, 59, 3, 32, 33, 31, 1, 2], which was specifically
developed to address the various challenges posed by sustained long-term opera-
tion of autonomous robots. Analogous to current robotic infrastructures (such as
ROS [46], JAUS [30], Yarp [42], and several others), ADE provides a basic com-
munication and computational infrastructure for parallel distributed processes that
implements various functional components of an agent architecture (e.g., the in-
terfaces to a robot’s sensors and actuators, the basic navigation and manipulation
behaviors, path and task planning, perceptual processing, natural language parsing,
reasoning and problem solving, etc.).1 Different from other robotic infrastructures,
ADE was from the very beginning, designed to be as secure and fault-tolerant as
possible (e.g., [54, 1, 3]). These features have been evaluated in HRI experiments
[34, 32]. Moreover, due to ADE’s extendability, DIARC is easily and systematically
extendable by just adding more DIARC components (that may simply “wrap” exist-
ing libraries and algorithms) implemented in ADE to an architecture instance (this
is different from CCAs such as ACT-R or Soar, in which extensions can only be
accomplished through specialized mechanisms such as buffers or special I/O links).

1 A detailed conceptual and empirical comparison of robotic infrastructures up to 2006 can be
found in [35].
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3 An Overview of Select DIARC Components and Processes

After our brief overview of DIARC and its theoretical commitments, we now present
a few central DIARC components and processes in more detail. By “central”, we in-
tend that these components will typically be part of a DIARC instance, even though
they do not necessarily have to be included for all applications: (1) The Goal Man-
ager, (2) the Vision System, and (3) the Natural Language subsystems.2

3.1 Goals, Actions, and Action Execution

Goals represent terminal states of the internal or external environment that an agent
may need to satisfy. In DIARC, the Goal Manager (GM) receives goals from other
components in the architecture, including itself. It evaluates the incoming goals,
determines what behavior or action the agent should perform, how the agent should
proceed, and handles the priority of each action. The priority of the actions are
computed based on the urgency, expected utilities, and overall affective state. When
the GM receives a goal, it determines the validity of the goal, initializes an Action
Interpreter to select a sequence of actions, which, when executed, will accomplish
the goal state, and then manages the execution of that action.

3.1.1 Action Representation

Actions in DIARC are stored within the Action Database, a long-term procedural
memory, and are represented by a name, arguments, as well as pre-, operating-, and
post-conditions. An action is either a primitive action or an action script. Primitive
actions describe the specific functionality of their advertising components. For ex-
ample, a vision component would advertise a findObject action that allows the GM
to direct the vision component to look for an object, while a manipulation compo-
nent would advertise the graspObject and moveObject actions in order for the GM
to direct a manipulation component to act on an object. Action scripts are complex
tasks containing a sequences of primitive actions, action scripts, action operators
(e.g., arithmetic, comparison, etc.), and control statements (e.g., conditional state-
ments and loops).

2 The description of additional relevant components, such as the Belief and Inference subsystem,
the (Motion and Task) Planning subsystem, and the interfaces with other middleware, will have to
await a different publication outlet.
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3.1.2 Action Execution

When the GM receives a goal submission, it creates a new Action Interpreter. The
Action Interpreter first initializes the process for selecting an action. Then, if an ac-
tion is found, it manages the execution of that action. Within the action Interpreter,
an observation mechanism, described below, allows the agent to make observations
about the world state by checking the state of events, objects, and agents. This mech-
anism enables the agent to track the progress of action execution.

Once the Action Interpreter selects an action to perform, in order to follow so-
cial norms and core rules, it verifies that the action is neither forbidden nor that it
executing it would make the system enter a forbidden state. Then, it confirms that
all of the action’s pre-conditions are satisfied. For each pre-condition, the Action
Interpreter spawns an observer (if available) to check the state of the environment.
However, if there is no observer available, it checks the State Machine, which holds
the agent’s knowledge of the current state of the world. If any of the pre-conditions
are not satisfied, then the Action Interpreter will cancel the execution and will report
the failure conditions. During the course of execution of the action, there are condi-
tions that need to be satisfied throughout (“operating conditions”). Thus, the Action
Interpreter starts observation monitors for each operating condition. If at any point
one of the conditions is no longer met, then it will cancel the action and report the
failure conditions.

After the Action Interpreter completes the initial preparations, it can continue the
execution process by checking to see if the action is a primitive action or a complex
action represented by an action script. If the selected action is a script, then a simi-
lar process as described below for the primitive actions occurs for each sub-action.
Each sub-action specifies the assigned agent responsible for carrying it out. How-
ever, if it is a primitive action, then the Action Interpreter checks the agent specified
to perform the action. Because each action has a specified agent involved, actions
can contain multiple agents interacting with each other. If the agent delegated to per-
form the action is a DIARC agent, then it will proceed normally with the execution.
Otherwise, the Action Interpreter observes the other agent performing the action
and the post-conditions of the action. Finally, the Action Interpreter confirms that
the post-conditions of the action have been satisfied. For each condition, the Action
Interpreter spawns an observer, if available. Otherwise, it will check the State Ma-
chine. The observers can confirm that other agents have performed their appointed
tasks. If all of the post-conditions are met, then the action returns successfully, oth-
erwise the action fails and the failure conditions are reported.

3.1.3 Observers

An agent must be able to track the progress of an action by observing the world and
checking the conditions of the action. For instance, if an agent picks up an object off
a table, it must observe that the object is in its hand and that the object has been lifted
off of the table. While the agent can execute this action blindly and simply assume it
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to have been completed successfully (e.g., if the action can be performed with a very
low error rate), it will not truly know whether the action was successfully executed
unless it observes the action outcomes. This mechanism is particularly critical for
multi-agent interactions in which one agent must wait for another agent to perform
an action.

Observers are implemented as special primitive actions that adhere to a particu-
lar method signature and explicitly advertise the types of observations they enable
(e.g., touching(X,Y)). To make use of the observations, the Action Interpreter
looks for available observers in the Action Database when verifying conditions for
an action. If an observer is found for a particular condition, then a new observer
sub-goal is spawned. During verification of pre- and post-conditions, the Action In-
terpreter blocks execution until the observer process either returns successfully or
has timed out. On the other hand, observers for operating conditions are spawned
concurrently with the action to be executed and the capability to interrupt action
execution in cases of failures.

3.2 Perception and Cognitive Affordances

The Vision component (VIS) is responsible for almost all of the visual perception ca-
pabilities in DIARC. This component consists of a highly parallel, modular, and flex-
ible framework composed of various general purpose Image Processors, Saliency
Operators, Object Detectors, Object Validators, and Object Trackers and is respon-
sible for the detection, identification, and tracking of target objects and relations
among them. VIS is capable of operating on a variety of input sensor types (e.g.,
RGB, RGB-D, depth-only), and automatically configures its available capabilities
based on this information. Additionally, VIS supports multiple asynchronous “visual
searches” that can optionally share parts of their processing pipelines so as to reduce
redundant computations and save computational resources.

Image Processors are generally used to implement common low-level image pro-
cessing tasks such as feature extraction (e.g., SIFT) and edge detection, and provide
a mechanism for commonly consumed image processing results to be simultane-
ously shared across several vision processors and visual searches.

Saliency Operators are attentional mechanisms that can be used to guide a vi-
sual search to the most salient parts of a scene. These can be driven by top-down
language-guided constraints (e.g., red, tall) and/or bottom-up models such as those
by Itti and Koch [29].

Object Detectors are responsible for segmenting object candidates from the
scene. Detectors can take the form of either generic object detectors that attempt
to break the scene into constituent parts, or specialized detectors that search the
entire scene for objects of a particular class or category (e.g., face, mug).

Object Validators consume segmented object candidates from Detectors and
attempt to classify them as having particular properties (e.g., color, shape, cate-



10 Authors Suppressed Due to Excessive Length

gory/class). Successfully validated objects are passed through to the next stage of
the vision pipeline.

Object Trackers are the last stage of a vision pipeline. Trackers consume object
candidates that have been fully validated (i.e., meet all visual search criteria), and
are responsible for tracking objects from frame to frame.

One critical aspect of the vision component is exposing and advertising its ca-
pabilites to the rest of the system. This is done through simple quantifier-free first-
order predicate representations, in whih each vision processor described above (with
the exception of Trackers and Image Processors) advertises what it is capable of
processing (e.g., red(X), mug(X), on(X,Y)). In order for a component in the
system to make use of VIS capabilities, it simply has to make a request to VIS in the
form a quantifier-free first-order predicate representation. VIS will take this request
and attempt to find a collection of vision processes capable of satisfying each part of
the predicate request. If all parts are satisfied, the relevant visual processors are as-
sembled into a vision pipeline and a visual search is started. Requesting components
are then able to retrieve any available search results.

VIS also has the ability to dynamically learn new object representations. These
representations can take the form of either definitions (e.g., “a medkit is a white box
with a red cross on it”) or instances (e.g., “this object is a medkit”). For learned
definitions, VIS must be able to map all parts of a definition to existing vision capa-
bilities. Then, when a request for a visual search for a learned definition is made, ex-
isting vision processors representing each part of the definition can be dynamically
assembled into a vision pipeline capable of locating the target object(s). Learning
new object instances, however, relies on at least one detector or validator capable of
learning new object models on the fly. VIS does not impose restrictions on the un-
derlying modeling approach, but methods to date have relied on global point cloud
features (e.g., ViewpointFeatureHistogram as implemented in PCL [47]).

3.2.1 Cognitive Affordances

Affordance perception refers to the ability of an agent to extract meaning and useful-
ness from objects in its environment, often performed through perceptual (e.g., vi-
sual and haptic) analysis of object features [27, 98]. Cognitive affordance is a richer
notion that extends traditional aspects of object functionality and action possibilities
by incorporating the influence of non-perceptual aspects: changing context, social
norms, historical precedence, and uncertainty. This allows for an increased flexi-
bility with which to reason about affordances in a situated manner. For example,
consider a knife, which offers grasp affordances across the entirety of its body, in-
cluding the handle and blade (note: although one has to be careful when grasping
a blade, it is nevertheless still possible, and therefore an affordance). However, the
cognitive affordances of grasping offered by the same knife can vary depending on
the context of the task (grasping by the handle when using it versus grasping by the
blade when handing it over).
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DIARC implements the current state-of-the-art formalism of cognitive affor-
dances that uses a probabilistic logic-based approach [50, 49, 98], in which af-
fordances are represented as condition-action rules (R), very much like produc-
tion rules, in which the left-hand sides (LHS) represent perceptual invariants (F) in
the environment, together with contextual information (C), and the right-hand sides
(RHS) represent affordances (A) actualizable by the agent in the situation (e.g., the
rule that one should grab a knife by the handle when using it would be translated
by specifying the grasping parameters as F , the task context of “using a knife” as C
and the constrained grasping location, together with other action parameters, as A).
Affordance rules (R) take the overall form

r def
= f ∧ c =⇒

[α,β ]
a,

where f ∈ F , c ∈ C, a ∈ A, r ∈ R, and [α,β ] ⊆ [0,1]. [α,β ] is a confidence inter-
val intended to capture the uncertainty associated with the truth of the affordance
rule r such that if α = β = 1, the rule is logically true, while α = 0 and β = 1
assign maximum uncertainty to the rule. Similarly, each of the variables f and c
also have confidence intervals associated with them, and are used for inferring af-
fordances, as described in more detail below. Thus, rules can then be applied for a
given feature percept f in a given context c to obtain the implied affordance a under
uncertainty about f , c, and the extent to which they imply the presence of a. Cur-
rently, a Dempster-Shafer theoretic uncertainty-processing framework is used for
reasoning with these probabilistic rules and inferring the confidence intervals [70].

The DIARC implementation is in the form of a separate affordance component
(AFF) in combination with several other components. Given a set of affordance rules,
AFF determines the subset of applicable rules by matching their left-hand sides given
the current context and perceivable objects in the environment, together with their
confidence intervals, and then determines the confidences on the fused right-hand
sides (in case there are multiple rules with the same RHS) based on the inference
and fusion algorithm in [49]. It uses the “confidence measure” λ defined in [44]
to determine whether an inferred affordance should be realized and acted upon.
For example, we could check the confidence of each affordance on its uncertainty
interval [αi,βi]: if λ (αi,βi)≤Λ(c) (where Λ(c) is an confidence threshold, possibly
depending on context c), we do not have enough information to confidently accept
the set of inferred affordances, and can thus not confidently use the affordances to
guide action. However, even in this case, it might be possible to pass on the most
likely candidates to other parts of the integrated system. Conversely, if λ (αi,βi) >
Λ(c), then we take the inferred affordance to be certain enough to use it for further
processing.

From a systems standpoint, in order to process cognitive affordances, two pri-
mary sub-components have been implemented [49]: (1) an Affordance Reason-
ing Sub-component (ARC), and (2) a Perceptual Semantics and Attention Control
Sub-component (PAC). In addition, two supporting component-specific memories –
Long-term Memory (LTM) and Working Memory (WM) – are needed for storing and
updating logical affordance rules and related uncertainties. During inference, ARC
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searches through all available affordance rules of the form specified above in the
agent’s LTM and populates WM with the relevant rules. Once the rules are in WM,
both PAC and ARC can use these rules as the basis for perception and inference. as
well as AFF works closely with sensory and perceptual systems (e.g., VIS) and other
components in DIARC to coordinate perceptual and action processing. AFF is con-
nected to the Goal Manager (GM/AM), and during the execution of actions, GM/AM
sends affordance requests to AFF. These requests provide information about the cur-
rent action to be performed and the context. AFF returns the specific perceptual
features that need to be searched in the environment. This allows GM/AM to direct
the attention of low-level perceptual systems like the vision component (VIS) and
perform searches in a focused manner, only looking for perceptual features in the
environment that are relevant to the applicable rules in AFF. The presence or absence
of the searched perceptual features (along with perceptual uncertainty information)
is passed back to AFF, which subsequently performs uncertain logical inferences
(logical AND and modus ponens) on the rules. GM/AM is at the heart of DIARC and
helps coordinate most goal-directed action. In dialogue-driven tasks, GM/AM is typ-
ically the recipient of processed language-based knowledge obtained via the natural
language pipeline; instructions, questions, commands, and other utterances can flow
through this NL pipeline to and from the GM/AM. Another recipient of language-
based knowledge in DIARC is the belief component BEL. BEL maintains a history
of all declarative knowledge passing through DIARC and is capable of perform-
ing various logically-driven knowledge-representation and inference tasks. Thus, it
serves as a convenient holding-area for cognitive affordance information partially
processed through the NL pipeline, which can then be retrieved and processed by
AFF.

With the capability to perceive and learn cognitive affordances, the agent can
learn normative behavior from instruction and immediately apply this newly ac-
quired knowledge to the task at hand.

3.3 Natural Language Dialogues

Different from most CCAs, natural language understanding and generation for di-
alogue interactions is at the core of DIARC, and thus deeply integrated with other
components not related to language. In the following sections, we briefly discuss the
core language components and their interactions within and outside the language
subsystem. The design of these architectural components is justified and inspired by
a long tradition of empirical work at our laboratory, evaluating aspects of communi-
cation in both human-human teams (e.g., [26, 25, 23, 43]) and human-robot teams
(e.g., [4, 14, 72, 81, 81, 82, 95]).
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3.3.1 Speech Recognition

Speech is the most common way for natural language to be conveyed in interac-
tions between humans and autonomous systems, especially when those systems are
embodied in robots. The first step in understanding natural language in these inter-
actions is understanding speech: what was said, and by whom. A speech recognizer
that is part of a larger cognitive architecture has access to more and different types
of information than a speech recognizer in isolation.

In DIARC, the ASR (Automatic Speech Recognition) component is responsi-
ble for recognizing speech input to the system. Its main role is to convert acoustic
speech signals into a text representation. This text representation is the first step in
understanding spoken natural language, and is the basis for the rest of the proces-
sioning done by language components. As technologies for performing automatic
speech recognition improve, the techniques that the ASR component uses to per-
form speech recognition can be updated to reflect the state of the art. While the in-
ternal mechanisms of the ASR component may change, these changes do not affect
the role that the component plays, or its interface with the rest of the architecture.
Depending on the application of an instance of DIARC, the ASR component can be
configured to operate in a variety of ways. This configuration is not limited to only
the speech recognition process alone, but also includes the components to which
ASR is connected, and the information it sends to them.

In “closed-world” task-driven dialogues, in which the lexicon of the interaction
is known to all interactors before the interaction occurs, the ASR component can
be configured to recognize only utterances that can be generated from this lexicon,
given some grammar. Such configurations can be achieved by adding a specific user-
defined grammar, e.g., a graph on top of the existing language model of a large vo-
cabulary speech recognizer (LVCSR), to constrain its output to that grammar alone,
and thus improve recognition rates.

In contrast, the ASR component can also be configured for “open-world” sce-
narios, in which the robot may hear new words that are not in its lexicon and must
respond to their use in a timely fashion. For this purpose, an LVCSR that is able to
not only recognize a large number of words, but also recognize when it has heard a
word that is outside of its known vocabulary, can be employed to allow the system
to identify when it has heard a word that it does not understand, and respond accord-
ingly. For example, it may be desirable not only to identify words that the system
has not heard before, but also to start learning about them. The ASR component can
be configured to store words that it has not previously heard before, and recognize
when it hears them again. This is achieved by adding a one-shot speech recognizer
(OSSR) to the LVCSR already present in the ASR component. [64]. Forming a rep-
resentation at this level is the first step in the process of learning a new word and
its meaning. Being able to consistently recognize the word allows the rest of the
language understanding components to begin to create a model of its meaning. This
representation can also be used by the Speech Production component when the robot
must speak about the new word to a human. The ASR component can be configured
to connect to the Speech Production component and use its stored acoustic repre-
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sentations of novel words to update the models in the production system, similarly
to the way in which it updates the models in the recognition system [64].

The performance of the speech recognition mechanism in the ASR component
can also be improved through connections with other components in the architecture
and the information they can provide. This integration into an embodied system
provides the ASR component with types of information that a speech recognizer
in isolation could not have. One such integration is a configuration of DIARC in
which the social context of the dialogue is used to bias the results of the speech
recognizer [77]. Through a connection with the Dialogue Management component,
the ASR component receives biasing signals for parts of its lexicon based on the
position in the dialogue and the roles of the agents that are speaking. This integration
improves the performance of the speech recognition mechanism used in ASR, and
results in a system as a whole that models biological mechanisms.

3.3.2 Parsing

, The Parsing component, referred to as the Natural Language Processing (NLP) or
Natural Language Understanding component (NLU), grounds the text of an utter-
ance in a form that the rest of the components of DIARC can understand. To do
this, the component must interpret the syntactic structure of the utterance, as well as
its semantics. The semantic representation that is used throughout DIARC is logical
predicates, so for a given utterance, the parser must produce a predicate expressions
that represents its semantics.

The parsing component uses a parser that is throughly integrated with the rest
of the architecture. This integration allows the parser to produce semantics of the
correct form, as well as enhancing the capabilities of other components. The parser
uses a dictionary of rules to interpret the utterances it receives. Each rule in the
dictionary is composed of (1) the word in the lexicon to which it corresponds, (2)
a syntactic definition of the word in Combinatory Categorial Grammar (CCG), and
(3) a semantic definition of the word in lambda calculus. The lambda function in
an entry generates all or part of a predicate whose meaning is grounded in formal
expressions the rest of the system can understand. The syntactic rules determine
how the lambda functions corresponding to the words in the utterance are applied in
relation to each other [22].

The predicate expression created by the parser is the first notion of understanding
of an utterance that is generated in DIARC. The predicates produced here are, after
potential transformations by the Pragmatics and Reference Resolution components,
the input to reasoning components like Dialogue, Action, Affordance and Vision.
Accordingly, the representations generated by the parser must be interpretable by
these other components. The Parser component can be configured with different
sets of rules for different applications. The semantics it produces can be tailored
to meet the representational requirements of any of the other components present
in a given configuration of DIARC. This allows the system to have a universally
understandable internal representation of knowledge, whose implementation can be
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varied for the task at hand. Configurations of the system that are used in different
tasks may require different semantics for the same utterance. The parser is able to
be configured with different sets of rules so that the semantics of an utterance are
always understood, regardless of the configuration of the architecture.

Like with the ASR component, in task-driven dialogue scenarios in which the
lexicon of an interaction and its meaning are mutually understood by all of the par-
ticipants, the parser can be configured with rules that guarantee understanding of any
of the possible utterances the system might receive. In an open world, it is, again,
not possible to have rules for every scenario the system may encounter. The Parsing
component is equipped with mechanisms to generate representations of novel words
as it encounters them. When a word is received from the ASR component that is not
in the parser’s set of rules, a new rule is generated for it. The syntax of the new
word is inferred from its current usage, and is updated based on subsequent usages.
The semantic representation of the word is also generated in conjunction with the
syntax. The first time the word is heard, the portion of the semantic predicate for
the utterance that it corresponds to does not have any meaning for the other compo-
nents in the system. However, its meaning can be learned through the semantics of
subsequent utterances, grounding the new semantic representation in the parser in
the rest of the system [64, 17].

The parser performs syntactic and semantic parsing at the same time, which al-
lows utterances to be understood incrementally as they unfold. This incremental
understanding allows for the semantics of part of the utterance to begin to be un-
derstood before the utterance has been completely received by the system. This in-
cremental parsing and understanding is especially useful in embodied human-robot
interaction scenarios in which time is critical for interactions to appear natural. The
incremental understanding of the parser component can be utilized by other com-
ponents to improve their performance. For example, it can be used with the vision
component to improve visual search speed [37] or a planner to update plans as new
information is received [18]. Additionally, in many open-world settings, a robotic
agent may not be able to completely parse an utterance, due to disfluencies in the
interlocutors’ speech, information loss, or an excess of novel terms that do not al-
low for successful inference of their meaning. In these cases, the ability to provide
a partial parse, on the portion of the utterance that has been understood, and to not
have the requirement of a complete utterance, allows the system to at least partially
understand the utterance, which may be sufficient in some interactions [39].

The semantic representations that the parser generates are those that are required
by the other components within DIARC, as they allow other components to perform
further inference and understanding on what the system has heard. Some of the first
interpretation of the predicate form of an utterance occurs in the Reference Reso-
lution (RR) component. In order to properly understand referring expressions in an
utterance, RR must be able to identify them. The semantic representation generated
by the Parser component demarcates the portions of an utterance that contain refer-
ring expressions, and provides additional semantic information about the nature of
the referring expression based on the syntax of the utterance [79].
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3.3.3 Open-World Reference Resolution and Referring Expression
Generation

DIARC’s Reference Resolution (RR) and Referring Expression Generation (REG)
components facilitate, respectively, the understanding and generation of referring
expressions in uncertain and open worlds. To enable these capabilities, both compo-
nents rely on a distributed, cognitively inspired memory model [78]. The base of this
model is a set of Consultants, each of which provides access to a different architec-
tural component that is viewed as a distributed, heterogeneous knowledge base [88]
that can (1) provide access to a list of candidate referents; (2) advertise a list of
logical predicates it can assess; (3) assess how probable it is that any of the listed
candidate referents satisfy any of the advertised properties, and (4) hypothesize and
assert knowledge regarding new candidate referents. This architecture is designed
to provide access to knowledge of candidate referents regardless of their location
and form of representation, facilitating a domain independent approach (cf. [83]).

In addition to this distributed model of Long Term Memory, the RR compo-
nent has access to a set of hierarchically nested caches, inspired by the Givenness
Hierarchy’s conception of the Focus of Attention, Set of Activated Entities, and
Set of Familiar Entities [28]. These caches provide fast access to likely referents
during the resolution of anaphoric, deictic, and definite noun phrases [93]. When
this GH-theoretic reference resolution process [94, 79] is unable to identify suffi-
ciently likely candidate referents, a Long Term Memory query is performed using
the DIST-POWER algorithm [88]. DIST-POWER is an adaptation of the POWER al-
gorithm [87] and cognitive model [86], which uses the aforementioned Consultant
framework to perform reference resolution (i.e., identify the targets of referring ex-
pressions used by the robot’s interlocutors) when information is distributed across
multiple architectural components. POWER performs reference resolution under un-
certainty by effecting a search through the space of possible variable-entity assign-
ments, incrementally computing the probability of assignments as they are built up,
and pruning branches of the tree of assignments when their probability falls below
a given threshold.

POWER improves on previous reference resolution approaches through its ability
to handle open-worlds. If POWER is unable to find an acceptable set of candidate
referents for a query involving n variables, it recurses, trying again using a relaxed
query involving n−1 variables, with the removed variable selected on the basis of
linguistic factors such as prepositional attachment and recency. This process repeats
until a sufficiently probable set of candidate referents is found, or until all variables
have been removed. Once this process terminates, new entities are hypothesized for
all variables removed in this way, using the capabilities provided by the Consultant
responsible for each new entity (according to its inferred type).

Just as these consultant capabilities are used to facilitate Reference Resolution,
so too are they used to facilitate Referring Expression Generation, in which prop-
erties are selected to describe referents to which the robot wishes to refer. This is
performed by the REG component using the DIST-PIA algorithm [91]. DIST-PIA is
a version of the classic Incremental Algorithm [21], which uses the aforementioned
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Consultant framework to perform Referring Expression Generation when informa-
tion is uncertain and distributed across multiple architectural components [90].

3.3.4 Pragmatics

DIARC provides several alternate mechanisms for pragmatic understanding, in
which the intentions underlying utterances made to the robot are inferred (e.g., the
goals that the robot’s interlocutor desires it to uptake [5]), and pragmatic generation,
in which an utterance for communicating the robot’s own intentions is abduced.
These capabilities are crucial in order to understand and generate indirect speech
acts [69], which we have shown in laboratory experiments to be commonly used
in human-robot dialogue [14], especially in contexts with highly conventionalized
social norms [95].

These capabilities are facilitated by a set of Speech Act theoretic [68] pragmatic
rules, each of which maps a different utterance, under a different environmental or
dialogue context, to a different candidate intention. One option is to use these rules
directly, without accounting for uncertainty. In this case, during understanding, the
first matching rule is used to determine the correct interpretation [11], while during
generation, the utterances produced by all matching rules may be ranked and then
voted upon [24].

Alternatively, Dempster-Shafer (DS) theoretic [70] rules, which are augmented
with DS-theoretic uncertainty intervals [85], may be used to perform these tasks un-
der uncertainty, in which case the results of all applicable rules are combined, yield-
ing a set of candidate intentions or utterance forms, each of which is augmented with
its own DS-theoretic uncertainty interval [80]. If, during the understanding process,
the uncertainty intervals associated with the produced candidate intentions reflect
a sufficiently high degree of uncertainty, a clarification request can immediately be
constructed and issued [89]. We have shown in previous work how this process is
able to produce clarification requests that resolve both referential and pragmatic
uncertainty, and that align with human preferences [92].

3.3.5 Task-Based Dialogues

Utterances typically do not exist in isolation. Previously spoken utterances in a di-
alogue, and also an agent’s mental model of the world, can permit the agent to
deduce meaning from a given utterance beyond its semantics, even when consid-
ered in isolation. The Dialogue component and Belief component provide the agent
with mechanisms to model the world. They allow the agent to understand/predict
how other agents will act based on its own actions, as well as allowing it to better
decide how it should act in a given context. The previously described natural lan-
guage understating components (ASR, Parsing, Reference Resolution, Pragmatics)
allow the agent to determine the semantics of an utterance, while the Dialogue and
Belief components, allow it to deduce new information given those semantics.
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To engage in a dialogue, an agent must be able to model its interlocutor(s), so that
it fully understands the utterances it hears, and thus knows how to respond. To do
this, the Dialogue and Belief components use explicit rules that represent relation-
ships between groups of utterances, as well as relationships between utterances and
the past, present, and future beliefs of agents. For task-based dialogue interactions
in which information about the task can be known by the agent before engaging in
the dialogue, two types of rules are used: rules about the effects of perceptions, ac-
tions and past beliefs on new or updated beliefs, and rules about the effects of types
of utterances on beliefs. The Dialogue component uses these rules, in combination
with the utterance semantics that it receives, to determine how the agent should re-
spond. The rules relevant to the dialogue are part of the agent’s set of beliefs about
the world. They are stored in the Belief component, as are the rest of the agent’s be-
liefs. These beliefs may originate from perceptions of the world, like understanding
an utterance or performing a visual search, or may follow from the application of
rules to perceptual semantics [10].

The Dialogue component determines how it should respond by monitoring the
agent’s beliefs in the Belief component. When it receives an utterance, it uses the
information about the utterance’s type (statement, questions, command, etc.), which
has been determined by the other natural language understating components, to con-
vert the utterance semantics into expressions that represent the agent’s beliefs about
the world. The new beliefs are asserted into the Belief component, which updates its
state and performs inference based on the new information. Once the agent’s beliefs
have been updated, the Dialogue component considers its new belief state, which
has resulted from the utterance, and determines the agent’s response. The response
manifests itself as the submission of a goal or goals to the Goal Manger which may,
in turn, result in the submission of further goals [54, 62, 80].

4 Two Example Configurations of DIARC

In this section, we briefly describe two different configurations of DIARC: a single-
agent configuration for one-shot learning of objects through natural language [64],
and a multi-agent configuration that uses shared components to enable shared infor-
mation and cognition between the agents. [45].

4.1 Learning Object Parts in One-Shot

The first example shows the DIARC configuration for a robot that can learn to rec-
ognize a new part of an object and use that knowledge to pick up the object by
the newly learned part. Here, we assume that the robot already knows the object
(“knife”) and how to recognize it. A video of the interaction can be viewed here:
http://bit.ly/2cfx3gL.

http://bit.ly/2cfx3gL
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Fig. 1 The DIARC configuration for one-shot learning of objects and actions.

Human: Pick up the knife by the handle.
Robot: OK.
Robot: But what is a handle?

Human: The orange part of the knife is the handle.
Robot: OK.

Human: Pick up the knife by the handle.
Robot: OK.

When the ASR component recognizes the unknown word “handle” in the utter-
ance “Pick up the knife by the handle”, it recreates a unique identifier “UT1” for
it, which it then passes on to the NLU component. The NLU component infers the
proper tag of speech from the lexical context and the semantic requirements for
generating a grammatically correct command “pickUp(self,partOf(UT1,knife))”,
which it forwards to the Dialogue Manager component. The Dialogue Manager
component checks the command for indirect interpretations [11], and once it de-
termines that it is a literal command, it acknowledges it by generating “OK” via
the NLG and Speech Synthesis components. At the same time, it forwards the
request to both the Belief component, which can generate relevant implications
from the command that might, in turn, impact the execution, and then to the Goal
Manager component as a new goal “pickUp(self,partOf(UT1,knife),leftArm)”. The
Goal Manager component then begins to execute the “pickup” action, which re-
quires it to convert the condensed description “partOf(UT1,knife))” to an expres-
sion “on(graspPoint,partOf(UT1,knife))” that it can send to the Vision component
for processing. The Vision component, however, does not have any knowledge of
“UT1”, hence the visual search for the appropriate grasp points fails, which, in turn,



20 Authors Suppressed Due to Excessive Length

causes a failure of the pickup action communicated to the Dialogue Manager com-
ponent, which instructs the NLG and Speech Synthesis components to generate the
question “But what is a handle?”. Upon hearing the definition “The orange part
of the knife is the handle.”, the ASR component recognizes the word “handle”,
which it had previously associated with “UT1”, and thus passes on “The orange
part of the knife is the UT1.” to the NLU component, which, in turn, generates the
semantics “is(UT1,partOf(orange,knife))”, and sends it again to the Dialogue Man-
ager component. There, the utterance is recognized as a factual statement about a
perceivable object and modified according to pragmatic rules to generate the form
“looksLike(UT1,partOf(orange,knife))”, which is then passed on to the Belief com-
ponent, and also acknowledged through the NLG and Speech Synthesis components
(“OK”). The Belief component asserts the new fact to its knowledge base, thereby
triggering a notification to the Vision component, which has requested to be notified
of all facts of the form “looksLike(X,Y)”. When the robot is then instructed again
to pick up the knife by the handle, the Vision component is now able to resolve
the reference “UT1” (i.e., “handle”), as it has learned the grounding of “UT1” as
“partOf(orange,knife))”. It finds a set of grasp points on the handle that it passes
on to the Goal Manager component, which forwards the grasp constraints to the
Manipulation component. The Manipulation component then selects the best grasp
point to plan a trajectory for the robot’s arm to those points (a subsequent lift action
then completes the “pickUp”).

Fig. 2 The DIARC configuration for component-sharing among two Nao robots.
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4.2 Sharing Components among Multiple Agents

The second example demonstrates the sharing of various architectural components
so as to enable shared cognition, in this case, between two Nao robots called “Demp-
ster” and “Shafer”, although it works for any number of heterogeneous agents. A
video of the interaction can be viewed here: https://www.youtube.com/
watch?v=JPufmIPHX9Y.

Human: Hello Shafer.
Robot: Hello.

Human: Hello Dempster.
Robot: Hello.
Robot: Dempster, tell Shafer to stand.

Human: Certainly, I will do that right away.

The human starts by greeting both robots, and the analysis of the message con-
tent is used to invoke the subset of components in the joined architecture corre-
sponding to the respective robot. For example, the utterance “Hello Shafer”, once
transliterated by the ASR component, is analyzed in the NLU component as a
greeting addressed to the Shafer robot, and is passed on as such to the Dialogue
Manager component, which determines the correct dialogue move for Shafer to
say “Hello” as well. As a result, it routes the greeting message through the Goal
Manager component directly to the Shafer Nao component, which produces the
speech output in the Shafer robot (the robot components include both motion and
speech synthesis functionality). Similarly, greeting the Dempster robot will cause
it to respond with “Hello”. When the human instructor then addresses the Demp-
ster robot with the request for Shafer to stand, the ASR component again passes on
the text form of the utterance on to the NLU component, which generates the se-
mantics “want(human,Dempster,do(tell(Dempster,Shafer,do(Shafer,stand)))”. This
command is then sent to the Dialogue Manager component, which forwards the se-
mantics to the Belief component, where it is asserted while generating an acknowl-
edging dialogue move “Certainly, I will do that right away”, which gets forwarded
to the Dempster Nao component for speech synthesis (note that the Dialogue Man-
ager component can determine the appropriate robot component from the pragmatic
information about the addressee in the dialogue).

When new information is asserted in the Belief component, it may result in
new goals being submitted to the Goal Manager component, in which case the
Dialogue Manager is also informed of the new goal. In this case, there is a new
goal for the Dempster robot: “tell(Dempster,Shafer,do(Shafer,stand))”. When the
Goal Manager component executes the “tell(X,Y,Z)” action using the bindings of
X=Dempster, Y=Shafer, Z=do(Shafer,stand), its generates and submits the new sub-
goal “do(Shafer,stand)”, which has the Shafer robot as the actor and the “stand” as
the action. Execution then triggers the “stand” action in the Shafer Nao component,
causing the robot to stand up.

Analogous to issuing commands, it is also possible to inquire about an agent’s
perceptions or knowledge via another agent. Such mediated interactions are auto-
matically enabled by the sharing agent’s Belief and Goal Manager components.

https://www.youtube.com/watch?v=JPufmIPHX9Y
https://www.youtube.com/watch?v=JPufmIPHX9Y
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5 Applications

DIARC has been used on a variety of virtual and robotic agents in a great variety
of contexts (e.g., [84, 51, 53, 88, 96, 13, 87, 19, 80, 74, 38, 61, 83, 10, 8, 62]).
Like other cognitive architectures, it has also been integrated with other architecture
(e.g., ACT-R, Soar, and Icarus [75] and Vulcan [84]. Most importantly, it has been
employed in many human-robot interaction experiments, with both autonomous as
well as teleoperated robots (e.g., [79, 82, 7, 16, 15, 12, 73, 97, 9, 57, 20, 58, 6, 67]).
More relevant to this chapter, DIARC has also been used to model aspects of human
cognition (e.g., [2, 67, 6, 55, 62, 37, 65, 48]). Here, we will only be able to provide
a short summary of recent experimental and modeling work using DIARC.

5.1 HRI Experiments with DIARC

Recent empirical investigations of human-robot teams have largely focused on hu-
mans’ use of indirect language when interacting with robots. This work has demon-
strated (1) that humans will regularly use indirect language during the course of
human-robot interactions [14], (2) that humans use indirect language when inter-
acting with teleoperated and autonomous robots with a frequency similar to that
used when interacting with other humans [4], (3) and that indirect language use is
increased in contexts with highly conventionalized social norms [95]. Indirect lan-
guage is notably used by humans in order to adhere to social norms such as polite-
ness [73]. We have also investigated human perception of the use of polite language
by robots. This work has shown that politeness not only increases human ratings of
robot likability, but that this effect is significantly stronger for women than it is for
men [72].

Our empirical work has also demonstrated differences in how robots’ mor-
phology and communication style may have significant impact on team dynam-
ics; our investigation of autonomous vs. teleoperated robots suggested that humans
perceived teleoperated robots to be less intelligent than co-present human team-
mates [4]; our investigation of verbally vs. silently communicating robots suggested
that humans find silently communicating robots to be significantly creepier than
verbally communicating robots (at least for the communication of task-dependent,
human-understandable information among robots co-located with human team-
mates in a cooperative setting) [81, 82].

5.2 Cognitive Modeling with DIARC

Even though DIARC was never designed to be a model of the human mind, and
thus was never intended to be a modeling framework for human cognition, it affords
unique modeling capabilities due its real-time, embodied nature and integrated nat-
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ural language understanding capabilities, and has thus been used for various types
of (mostly qualitative) models over the years. Early models of incremental natural
language processing demonstrate the incremental integration of perceptual context
in the resolution and generation of references with ambiguities due to prepositional
attachment (e.g., [60, 6]), as well as models of incremental word substitution for
correcting phonetic errors (e.g., [6]). Later models of incremental natural language
processing focused on natural language-guided biasing of visual spatial attention
(e.g., [37]) and models of human-like task-based dialogues (e.g., [62]). Particularly
notable is a model of natural-language guided conjunctive visual search that was fit
to human data in a novel way and used to clarify possible explanations of observed
empirical data [65].

Additional modeling work investigated the interaction between affect and cogni-
tion, in particular, the effect of mood states on goal management and ways to bias
goals (e.g., [56]), as well as to modulate affect in the speech (e.g., [67]).

Most recently, DIARC has also been used to demonstrate human infant word
learning in a cross-situational embodied context (e.g., [48]), as well as human-like
norm-learning (e.g., [52]).

6 Conclusion

DIARC, as an architecture scheme, is neither a finished product nor does it aspire to
be one. Rather, its purpose is to provide researchers with an expanding framework
for exploring the functional and architectural design trade-offs of different types
of autonomous agents. By being flexible in its instantiations, it allows for custom
configurations of classes of systems targeted at particular physical platforms and
classes of tasks. By being flexible in its component algorithms, it allows for the
easy integration of novel algorithms, and thus provides researchers not interested in
the development of cognitive systems with an evaluation platform. Ongoing work on
DIARC is aimed at its unique contributions compared to classical cognitive architec-
tures: the open-world aspects, one-shot learning, component-sharing, introspection
mechanisms and integration with ADE middleware. The goal is not only to improve
existing functionality for the investigation of more sophisticated algorithms and in-
volved architectural features, but to also provide a robust implementation platform
for future autonomous robot applications that allow for human-like task-based in-
teractions in natural language dialogues.
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