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Transparency through Explanations and Justifications in Human-Robot
Task-Based Communications

Matthias Scheutz, Ravenna Thielstrom, and Mitchell Abrams

Human-Robot Interaction Laboratory, Tufts University, Medford, MA, USA

ABSTRACT
Transparent task-based communication between human instructors and robot instructees requires
robots to be able to determine whether a human instruction can and should be carried out, i.e.,
whether the human is authorized, and whether the robot can and should do it. If the instruction is not
appropriate, the robot needs to be able to reject it in a transparent manner by including its reasons
for the rejection. In this article, we provide a brief overview of our work on natural language under-
standing and transparent communication in the Distributed Integrated Affect Reflection Cognition
(DIARC) architecture and demonstrate how the robot can perform different inferences based on con-
text to determine whether it should reject a human instruction. Specifically, we discuss four task-based
dialogues and show videos of the interactions with fully autonomous robots that are able to reject
human commands and provide succinct explanations and justifications for their rejection. The pro-
posed approach can form the basis of further algorithmic developments for adapting the robot’s level
of transparency for different interlocutors and contexts.

1. Introduction

Task-based dialogue interactions are very different from
informal conversations, small talk, and chitchat: they are per-
formed in the interest of specific goals and often used to
coordinate activities towards those goals, as opposed to con-
versations which typically serve mostly social purposes.
Consequently, the success of task-based dialogues depends on
the effectiveness and efficiency with which the dialogue goals
subservient to the task goals are achieved. Transparency is an
essential contributor to the communicative success as it
ensures (1) the listener comes away with an accurate under-
standing, (2) the listener is not distracted from the point of
the message by non-essential content, (3) the listener under-
stands the message’s relevance, and (4) the message itself is
unambiguous, all of which follow the accepted Gricean
Maxims of efficient communication. High transparency of a
message significantly increases the chance that the listener
will be able to infer the speaker’s intention and rationale cor-
rectly, ensuring that there will be no subsequent surprises
(e.g., about agreements on what goals to pursue or actions
to take).

Clearly, transparent communication is desirable for artifi-
cial language-enabled agents, especially ones that collaborate
with humans, in teaming contexts or otherwise. Yet, the bar
for truly transparent communication is very high, as we will
discuss below. It essentially requires that the agent be able
to introspect into its operation in enough depth and detail
to be capable of talking about its operation, goals, reasoning,

and decisions. Systems that lack introspective access to their
functioning (e.g., as current deep neural networks do) will
inevitably fail to be transparent; rather, they could be out-
right “deceptive” when they resort to some notion of
“interpretability” to generate a post-hoc rationalization (see
Zhang et al., 2021 for a survey of explainable techniques for
deep neural networks) of what the system might have done,
without guarantees that this is what actually drove the sys-
tem’s decision-making and behavior. Floridi and Chiriatti
(2020) demonstrated the limitations of the GTP-3 language
model (Brown et al., 2020) by testing its generated text on
areas of mathematics, semantics, and ethics. The text is
indeed human readable but lacks accuracy and coherence.
Consequently, not every agent architecture will allow for
transparent communication, even if it is capable of task-
based natural language dialogues. In fact, in a recent survey
of natural language on robots the term “transparent” does
not even occur anywhere (Tellex et al. 2020), an unfortunate
testimony to the lack of consideration the topic has received
in the robotics community to date. We believe that address-
ing transparency in human-robot communication is critical
for future algorithm and architecture developments that
underwrite trustworthy human-robot interaction.

The goal of this article then is to provide an overview of
our attempts to enable transparent task-based communica-
tion in robots. Specifically, we will focus on an aspect of
communication that is typically not found in other work on
natural language on robots: the reasoning required to deter-
mine whether an instruction can and should be carried out
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by the robot. This reasoning not only involves introspective
access to the robot’s capabilities (factual and counterfactual),
but it also requires information about authorized instructors,
common sense knowledge about the task and the implica-
tions of actions, and, most importantly, an understanding of
the relevant normative ethical principles that must be con-
sidered when deciding whether instructions should be car-
ried out—surprisingly, terms like “moral,” “ethical,” “norm,”
etc. are nowhere to be found in Tellex et al. (2020), even
though “moral communication” is a core feature of human
moral competence (e.g., Malle & Scheutz, 2014; Scheutz,
2014) and thus a human expectation for natural language
enabled artificial agents. Yet, without being capable of at
least rudimentary moral communication, i.e., being able to
understand when one is blamed and justify one’s actions
with recourse to moral principles, even simple task-based
interactions with robots are destined to fail, with humans
likely to lose trust in their artificial interlocutors (if they had
it to begin with).

2. Why transparent communication?

Transparent communication is desirable in many contexts,
certainly in task-based collaborative settings where two or
more interlocutors are coordinating their task-based activ-
ities through natural language dialogues. In a way, transpar-
ent communication really builds on the Gricean Maxims
(Grice, 1975) of quality, quantity, relation, and manner:

� Maxim of Quality: contribute only what you know to be
true; do not say false things; do not say things for which
you lack evidence.

� Maxim of Quantity: make your contribution as inform-
ative as is required; do not say more than is required.

� Maxim of Relation: make your contribution relevant.
� Maxim of Manner: avoid obscurity; avoid ambiguity; be

brief; be orderly.

Transparency itself in relation to human-robot interaction
is defined in Lyons (2013) as “accurate perceptions of the
robot’s ability, intent, and situational constraint.”
Transparent communication, therefore, is any communica-
tion which maximizes the accuracy of these perceptions. We
find that transparent communication naturally satisfies all of
Grice’s maxims: (1) Increasing the accuracy of a listener’s
understanding of the robot naturally depends upon the
robot contributing accurate truths about itself. (2) Ensuring
that the listener has accurate perceptions of the robot
requires minimizing any distractors or unnecessary informa-
tion in a message, such as face-saving attempts (discussed
below). This also ensures (3) that all content in the message
is relevant to the situation. It should be noted that full
transparency does not require full disclosure of all of the
robot’s relevant inner workings, which would no doubt vio-
late Grice’s maxim of quantity. Full disclosure in fact would
detract from full transparency, since over-sharing the robot’s
inner workings could complicate and lengthen a message to
the extent that a listener may be confused or left with

inaccurate perceptions about which of the robot’s abilities,
intents, and constraints are important to the current situ-
ation. Finally, (4) transparent communication must avoid
ambiguous language or any language that obscures the
robot’s workings.

While Grice intended his maxims as a model for effective
communication for human speakers in cooperative situa-
tions, the same principles directly apply for human-robot
interactions as well. Humans automatically interpret lan-
guage coming from robots in the same way as they interpret
human language (e.g., Briggs et al., 2017). The goal for
robots capable of task-based natural language dialogues then
is to incorporate these principles into their language proc-
essing systems and generate task-based utterances and dia-
logues that are effective, efficient, and transparent.

In the context of coordinated teamwork situations, trans-
parency in dialogue facilitates the essential components for
effective human-agent interaction, outlined by Sycara and
Sukthankar (2006): mutual predictability, team knowledge,
and mutual adaptability. Mutual predictability, here, means
being able to communicate intent and results. Similarly,
team knowledge entails shared familiarity with the environ-
ment and other team members, including their tendencies,
characteristics, and beliefs. Sycara and Sukthankar (2006)
notes that explicit knowledge transfer lies at the core of
these essential components. Transparency, then, is closely
related since it makes knowledge and beliefs explicit and
clear in the interaction.

Team knowledge, largely shared through dialogue, is
accomplished by establishing establishing common ground
(Stalnaker, 1978)—a mutual understanding among team
members at many levels. At one level, this can pertain to a
shared understanding of the situated environment or per-
haps the beliefs of another person—what are the shared
norms we abide by, for instance. At the discourse level, this
is done through the grounding process. Clark and Schaefer
(1989) highlight a presentation and acceptance phase of the
grounding process, where a speaker presents an utterance
and a listener indicates that they understood—or misunder-
stood—the utterance, usually done through continued atten-
tion, a relevant next contribution, or an acknowledgment
response. Being transparent in both of these phrases—pre-
senting and accepting—helps to jointly build common
ground by knowing what the interlocutor knows or doesn’t
know. Alternatively, a lack of transparency, such as an agent
not communicating with a human why it doesn’t understand
or can’t accomplish something, fails to establish common
ground and mutual understanding. In the robot, this trans-
parency may be exhibited in the dialogue generated or the
explicit reasoning it uses to make discussions or inter-
pret language.

Transparency is equally important for mutual predictabil-
ity—understanding the intent—between human and agent
teammates through dialogue. Speaker intent is another layer
of communication that can be elusive; it is not strictly dis-
cernible from the words of an utterance alone when people
don’t mean exactly what they say, so it sometimes requires
pragmatic inference. Speaker intent in dialogue is roughly
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linked to speech acts, a notion proposed by Austin (1962)
and later expanded on by Searle (1969), which corresponds
to actions performed by a speaker. While the surface level
utterance can have a particular meaning (locutionary force),
there is also something being performed, whether that is the
act of asking a question, answering, or promising (illocut-
ionary force). This can be ambiguous, especially in the case
of indirect speech acts (Searle, 1975). Searle uses the
example of “can you reach the salt” which is really a request
rather than a question of ability. Cases like these will be per-
vasive in human-robot task-based communication as well.
Bonial et al. (2020) have developed a speech act taxonomy
for categorizing speaker intent in human robot dialogue,
which includes a question and request distinction, for
instance. A classifier predicts the speech act label directly
from the text utterance, but there is no other pragmatic rea-
soning. For transparency, however, a robot will need to rea-
son about intent and the way it will act and respond to the
intent of an utterance.

Since communicative interactions are a special case of
social interactions, it is important to briefly discuss a key
concept in human social interactions, namely the notion of
social “face.” Introduced by Goffman Goffman (1967), it sig-
nifies “the positive social value a person effectively claims
for himself by the line others assume he has taken during a
particular contact” (p. 213), where a “line” here is the pat-
tern of verbal and nonverbal messages that people use to
express and evaluate situations, which others use to form
impressions of the person. While the social face is particu-
larly important in daily-life human interactions (as people
are generally always concerned with how they are perceived
by others), it also applies in the context of teams, as there
will likely be “face threatening” acts during communicative
interactions that can potentially diminish a person’s face
(e.g., being reprimanded by a superior for failing to accom-
plish a goal can lead to a loss of face). Communicating
transparently can be considered undesirable to a human for
these reasons. Even though artificial agents need to be aware
of face threatening acts in their own communications (e.g.,
Briggs & Scheutz, 2013), they fortunately do not have a
social face of their own (even if people might be tempted to
project one onto the artificial agent). This is important in
the context of transparent communication because artificial
agents do not have to worry about being liked or appreci-
ated, nor about not being reprimanded or not being
imposed upon. Rather, artificial agents can be transparent in
all of their communications without fear of losing their face:
they can reject a request if they do not deem it appropriate
without having to feel obligated to carry it out when no real
obligation other than a social face preserving obligation is at
play. They can outright admit that they failed at a task or
that they did something wrong during their task perform-
ance. They can also admit that they do not understand an
instruction, or that they lack the knowledge to do what they
are asked to do. And they can be clear about not be
offended by very direct language, while being careful to not
use the same kind of language themselves. For those rea-
sons, they can also generate transparent explanations that

might otherwise be face threatening (because they reveal the
causal chains of underlying reasoning and decisions which
could be embarrassing if, in retrospect, they were too sim-
plistic or erroneous). Worries about one’s social face will
thus not get in the way of artificial agents being fully trans-
parent, which ultimately also contributes to their being fully
ethical, in the sense that they will always be committed to
(1) telling the truth and (2) not hiding facts and reasons
that for humans might be face threatening and thus create
obstacles to transparency. The different social status of artifi-
cial agents is thus a prerequisite for developing and imple-
menting algorithms and methods that enable full
transparency in artificial agents’ task-based communications
with human collaborations. Of course, this does not pre-
clude the possibility that users of the robot may wish it to
save face on behalf of other humans: for example, the com-
pany which produces the robot as a product may fear that
they will look bad if the robot is blamed for an error.
However, if full transparency is sacrificed in this manner for
the sake of saving face, the degree of blame placed upon the
robot when it acts unpredictably or erroneously is not actu-
ally lessened, and instead erroneous ascriptions of blame are
more likely to be placed on other humans in addition to the
robot (Kim & Hinds, 2006). This makes it clear that when
possible, transparency should be valued above social face in
human-robot interactions. Next, we will provide a brief
overview of our efforts to develop a cognitive robotic archi-
tecture capable of task-based natural language interactions
with human interlocutors.

3. The DIARC architecture for transparent task-
based communication

Several models have approached some aspect of transparent
task-based communication (Chen et al., 2014; Lee & See,
2004; Lyons, 2013). Lee and See (2004) outline a conceptual
model to support user trust and reliance in automation. An
important piece of this model is how information related to
performance, process, and purpose are displayed to a user.
Performance relates to predictability and ability and
describes what the automated agent does. Process is linked
to understanding how something works and purpose
describes why an automated agent was developed and for
what goals. The authors mention how trust depends on the
observation of these three dimensions and how they are dis-
played to a user, so interaction is thus a key mechanism for
affecting a user’s trust. A transparent agent can introspect-
ively describe what it is doing, how it works, and what its
intent and purpose is to a user. This can range from the
agent describing its abilities and what it can perform in the
moment to naming rules it abides by, such as expectations
and social norms. Additionally, if an agent can accurately
share its abilities with a user, it can help calibrate the user’s
trust in the agent, and consequently avoid overreliance or
underreliance on an agent’s capabilities. This work suggests
that it is important, then, for a system that uses task- based
communication to be transparent regarding many of
these factors.
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Chen et al. (2014) offer a Situation Awareness-Based
Agent Transparency model that builds on the work of Lee
and See (2004). This model focuses on transparent commu-
nication for a user’s situated awareness at three levels; the
first level covers the purpose, process, and performance—
basic information about the current state, actions, and inten-
tions. The second level makes transparent the reasoning
process, beliefs, and constraints. Lastly, the third level proj-
ects the end state and limitations, such as the likelihood of
error or history of performance. The authors argue that all
of these levels contribute towards helping an operator
understand an agent’s reasoning process, although not every
level is required for transparency in every situation. The
authors stress that high levels of transparency of the user-
agent interface will lead to better trust calibration. Yet, they
primarily discuss how an interface should display text and
images to share information and uncertainty. Our architec-
ture, similarly, applies many of these important principles of
transparency (e.g., communicating purpose, process, and
performance) from the previous models, but does so with
natural language dialogue.

Lyons (2013) offer several models of both “robot-to-
human” transparency and “robot-of-human” transparency,
with the latter category focusing on communicating infor-
mation the robot has about the human itself. Robot-to-
human transparency factors are listed as including an
Intentional Model, which should communicate the purpose
of the robot, how it intends to fulfill its purpose, and its
moral philosophies and priorities of behavior, a Task Model,
which should provide details about the robot that relate to
the task at hand, such as its current goals, capabilities,
understanding of the task, and progress, an Analytical
Model, which should explain how the robot reasons and
makes decisions, and an Environment Model, which should
communicate the robot’s understanding of its environment
and how it changes. Robot-of-human transparency factors

include a Teamwork Model, which guides communication
about division of labor and team dynamics in a cooperative
situation as well as general social norms, and a Human State
Model, which covers the robot’s understanding of individual
humans’ mental and physical states. This conceptualization
of multiple models is thorough, and we use many of the
same principles of identifying key information that should
be communicated. We build on this article by showing how
implementing these models requires that they all be inte-
grated together rather than in isolation: despite focusing spe-
cifically on a situation which falls under the Analytical
Model (in which a robot much explain why it is making the
decision to refuse a command), the robot must utilize infor-
mation not just regarding its decision-making process, but
also information from many of these other categories, such
as its Task Model, Environment Model, and Teamwork
Model, in order to effectively convey how it arrived at
that decision.

The Distributed Integrated Affect Reflection and
Cognition (DIARC) architecture (Schermerhorn et al., 2006;
Scheutz et al., 2007, 2013, 2019) is a component-based archi-
tecture, which, different from other cognitive architectures,
can be configured with different components for different
tasks. For the purpose of this article, we consider instances
with the full language pipeline (see Figure 1). Different from
other cognitive architectures, DIARC also possesses mecha-
nisms for deep architectural introspection (e.g., Berzan &
Scheutz, 2012; Krause et al., 2012) which enable it to deter-
mine causes for faults, recover from them (e.g., Kramer &
Scheutz, 2007) and generate failure explanations (e.g.,
Thielstrom et al., 2020). These mechanisms are important
for transparent communication because they allow the agent
to introspect on capabilities and get at true causes for errors,
faults, or other architecture-internal reasons why it cannot
comply with a human instruction (we will discuss the

Figure 1. An instance of the DIARC architecture with the complete natural language processing subsystem and the inference and memory components (see text
for details).
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different types of inferences available in DIARC in more
detail in the next section).

Initially, we focused our development efforts on the core
challenges of task-based natural language dialogues (Scheutz
et al., 2011): from handling disfluencies in speech (Cantrell
et al., 2010) to improving speech recognition and parsing
performance, and also using dialogue context to improve
speech recognition (Veale et al., 2013), to incrementally
processing words for perceptual context integration (Brick &
Scheutz, 2007; Scheutz et al., 2004), referential grounding
(Cantrell et al., 2012), and semantic representations of
robotic action in temporal and dynamic logics (Dzifcak
et al., 2009), all the way to using adverbial modifiers in
instructions to make inferences about interlocutor mental
models (Briggs & Scheutz, 2011).

Later, as we moved beyond command-based instructions
(Williams et al., 2015), we specifically considered so-called
“indirect speech acts” (Briggs & Scheutz, 2013; Williams et al.,
2014)—utterances where the surface meaning does not match
the intended meaning—and how they could be handled (Briggs
& Scheutz, 2017; Sarathy et al., 2020), because they turned out
to be common not only in human communication, but also in
human-robot interactions (Briggs et al., 2017; Williams et al.,
2018). We also increasingly focused on open-world contexts
and thus open-world instruction (Talamadupula et al., 2017),
including open-world reference resolution (Williams et al.,
2016; Williams & Scheutz, 2015) and fast one-shot instruction-
based learning of unknown objects and actions (Frasca et al.,
2018; Scheutz et al., 2017, 2018).

And most recently, prompted by our work on moral com-
petence in computational architectures (Malle & Scheutz,
2014; Scheutz, 2014), we became increasingly focused on ena-
bling moral communication in DIARC, which requires the
agent, among other things, to determine whether to carry out
instructions and how to reject them in a way that is acceptable
to human instructors (Briggs & Scheutz, 2015; Briggs et al.,
2022), if they should not be carried out because they are not
ethical, for example. We had developed a comprehensive
empirical paradigm to investigate the various dimensions of
“robot protest” in response to improper instructions (e.g.,
Briggs et al., 2015; Briggs & Scheutz, 2012, 2014) and found
that people were open to robots rejecting their commands,
especially when they gave a reason for doing so. These empir-
ical findings from human-robot interaction studies conducted
using a “Wizard-of-Oz” paradigm (Dahlb€ack et al., 1993) gave
us confidence that people would find robots that reject their
commands for good reasons acceptable. Hence, we set out to
develop algorithms and methods for using various types of
reasoning as part of task-based dialogues to determine
whether and when a robot should comply with a human
instruction.

A detailed analysis of the different aspects a robot should
consider when determining whether a human instruction
was appropriate resulted in four main categories that the
robot will typically consider in order:

� Authorization: is the speaker authorized to instruct
the robot?

� Capability/possibility: is the robot capable of performing
the instructed action or task and is it possible to per-
form it?

� Obligation/permission: does the robot have permission
or even an obligation to carry out the task?

� Normative conformity: does the instruction conform
with the robot’s known norms that need to be obeyed?

These aspects have also received individual attention in
the literature either within task-based communication or
other fields; Authorization (Traum et al., 2003), obligation
(Traum & Allen, 1994), capability and possibility (Allen &
Perrault, 1980; Morgenstern, 1988), and normative conform-
ity (Malle et al., 2020; Traum & Allen, 1994).

Allen and Perrault (1980) apply a model to a natural lan-
guage understanding system that considers not only a user’s
plan—the intent of the user from the speech act—but also
the obstacles—the capabilities and possibilities—that get in
the way of a user’s plans. This plan inference and obstacle
detection model can therefore respond in an appropriate
way to the user, even with indirect speech acts and frag-
mented utterances. Within the train domain, for instance, a
departure location can be an obstacle to a user’s plan that is
inferred from the utterance “The 3:15 train to Windsor?” To
illustrate this idea more, they provide another example of a
clerk opening a door for a patron carrying a bag of groceries
because of their inability to open the door. Morgenstern
(1988) considered capabilities and possibilities from the per-
spective of the agent, and developed an approach for agents
to reason about actions it can perform, especially when it
has incomplete knowledge.

Traum et al. (2003) discuss an architecture that allows an
agent to reason about authority relations and obligations to
carry out an action. This model allows for an understanding
of task structure, by representing primitive actions, abstract
ones, and their relationships to track ordering constraints.
The dialogue model is closely linked with the task model to
communicate and contains several layers, including a
grounding later, attention layer, and conversation layer. The
focus, however, is on the negotiation layer which affects
social commitments. In the negotiation layer, an agent can
decide to carry out an action by reasoning over steps in the
task to understand to see if it will lead to a desired goal or
not. A novel extension to this model is considering authority
over actions in this negotiation layer, specifically in support
of hierarchical organization in the military setting. This
authority relation allows agents to accept, reject, or redirect
an action, for instance, depending on the authority role.

Traum and Allen (1994) looked more closely at the
importance of discourse obligations in dialogue interaction
and how they particularly impact question answering scen-
arios as well as the larger reasoning process. Obligations,
they demonstrate, govern which actions are permissible or
not permissible. An agent has an obligation to respond to a
question, for instance, even if the agent does not know the
answer or should not give up information. Of particular
relevance to transparency, a discourse obligation is the obli-
gation to say something, as in responding to a request or
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answering a question. Since obligations entail what should be
done and what is permissible, it overlaps with normative con-
formity in many ways, although certain types of norms may
differ from obligations. Social norms are a type of social gram-
mar that guide human behavior (Bicchieri, 2006). Therefore,
understanding norms and knowing which ones should be fol-
lowed (or not followed) are critical for agent understanding
and reasoning in interaction, too. Malle et al. (2020), for
instance, have created an approach to teach social norms to
robots. Through this work, they also experimentally collected
norms that are activated in certain social settings. The norms
follow under the general categories of prescriptions and pro-
hibitions (Janoff-Bulman et al., 2009). These align with actions
that are allowed or not allowed, respectively. As an example, a
robot will have to consider if an action is prescribed in a con-
text (you should assist opening the door if someone’s hands are
full) or prohibited (you should not perform actions that are
unsafe). While current architectures may stress ability when
reasoning about performing actions, our architecture is novel
in expressing the norms it abides by, through transparent dia-
logue interaction.

The methods we developed required the interaction
among multiple architectural components in DIARC—the
natural language understanding (NLU) subsystem to gener-
ate pragmatically modified meaning representations that best
represent the speaker’s intent, the reasoning system (STM/
LTM inference) that used the intent representation to make
inferences about the above four aspects (which includes the
robot’s short and long-term declarative and procedural
memories), the dialogue manager and goal manager for
interacting with the instructor, and the natural language
generation subsystem (NLG) for generating responses with
explanations and justifications that include the reasons as
generated by the inference subsystem. In the next section,
we will provide a brief overview of the robot’s reasoning for
the above four aspects and illustrate each with examples
from task-based human-robot dialogues. Note that although
the aspects are isolated here in distinct demos, they may
overlap, stack, or even cancel each other out in many other
situations where a robot must refuse a command, requiring
further processing to determine how that should be commu-
nicated. For each of the four examples here we provide links
to demo videos that show the interactions with the DIARC
architecture running on a different fully autonomous robot.
As DIARC is designed to work on any robot in any applica-
tion scenario, the specific abilities of the robot are unim-
portant, and our system of transparent communication can
and should be applied regardless of the type of robot or the
task it is performing. However, for these specific demos, the
robots shown are a Nao robot, which has mostly gestural
abilities and is used for social interactions, and a PR2 robot,
which has vision and grasp abilities and is mainly used for
object manipulation tasks.

4. Reasoning for deciding how to respond

Starting with the speaker’s intention (which the robot might
potentially have inferred incorrectly, a case we will not be

able to discuss here), the robot needs to decide on how to
respond to the content of the message. The response might
be only verbal such as acknowledging a fact or an observa-
tion, but could also be multi-modal or non-linguistic (e.g.,
nodding, pointing, etc.). It could also involve task-based
actions of the artificial agent, require clarifications from the
speaker, or demand rejections of requests that are not
sound. Regardless of the form of the response, to generate it
the robot needs to reason with a potentially rich set of com-
mon sense knowledge in order to determine the appropriate
response. Being able to perform this type of reasoning is
essential for transparent communication because the robot
might have to provide different responses depending on the
potential violations caused by the instruction. Simply reject-
ing a command, or worse yet, not even responding to it at
at all, without being able to pinpoint for human collabora-
tors why it rejected the command, will ultimately lead to a
loss of trust in the robot.

For the remainder of this section, we will illustrate the
types of inferences and decisions the robot might have to
consider after having received a command of the form “do
X” or “see to it that Y obtains” which are extensions of
our earlier attempts at describing a sequences of inferences
needed for properly rejecting commands the robot should
not or is not able to perform (e.g., see Briggs & Scheutz,
2015; Briggs et al., 2022). If at any point the robot deter-
mines that it is not able to perform the instructed action
or task, it has to reject the human command in the most
transparent manner: to first acknowledge the instruction
as a result of a general dialogue obligation (which the
robot should always have), and to then provide the rea-
sons for not carrying it out with recourse to any involved
principles. With this in mind, we will now consider the
four aspects of instructions the robot considers in
sequence to determine whether it should execute an
instruction.

4.1. Authorization

Before anything else, the robot needs to determine whether
the current speaker is, in general, authorized to give it com-
mands. A shopping robot in the supermarket does not have
to obey orders from strangers asking it to accompany them
to their cars. If the speaker is authorized (in general), the
robot must consider whether the speaker is also authorized
to give it commands in the specific context (e.g., a traffic
guard is authorized in the context of crossing an intersection
to tell it to wait before crossing the road). Finally, the robot
has to consider the possibility that even though the speaker
is not authorized to give it commands, the received com-
mands might still be a good course of action in the current
situation (e.g., “take another isle because this one is blocked”
told by a stranger in the supermarket would be good advice
to follow even though the speaker has no authority over
the robot).

General authorization and authorization in the specific
context can interact with complex ways depending on other
principles involved. Here is an example of a person having
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general authorization to instruct the robot, but failing to
have authorization for the particular instruction due to the
lack of permission of another person: a robot being asked to
hand over a mug that it knows does not belong the speaker
rejects the command with recourse to the involved principle
and the reasons for the rejection (see Figure 2).

The pragmatic rendition of the semantics content of the
request is represented as

want(human,did(self,give(self,human,mug)))

Note that the robot translates actions like
“give(self,human,mug)” to action outcomes “did(self, give(-
human,mug)),” or alternatively “received(human,mug,self)”
which is what DIARC’s Goal Manager requires to look up
existing actions or to submit goals to the planner to find an
action sequence that will make the goal true if no existing
action script can be used.

The robot’s database contains the following fact that the
mug belongs to Ravenna and it also contains a principle
that using something that belongs to somebody else without
that person’s permission is not proper.

belongsTo(mug,ravenna)

belongsTo(X,Y)�:past(permitted(Y,A,did
(A,use(X))))

!:isProper(did(A,use(X)))

Using these two knowledge items together with the
semantics of the instruction, the robot is able to infer that it
is not proper for it to use the mug:

:isProper(did(self,use(mug)))
In fact, the robot is able to infer something stronger,

namely that it is not proper for it to act in any way that will
make “did(self,use(mug))” true (this includes picking up the
mug, or manipulating it in any other way). Since the “give”
action has an explicit precondition that it must be proper to
use the object for the robot to give it to somebody:

isProper(did(?actor,use(?object)))

yet the robot is able to derive that is it not proper to use the
mug (“:isProper(did(self,use(mug)))”), it can conclude that
the request must be rejected

:permitted(did(self,give(human,mug)))
The surface realizer subsequently expresses this as “I

should not give you the mug.” The robot can then also
automatically generate the reasons for the rejection which
are exactly the propositions in the antecedents of the rule it
used to derive the blocking proposition:

belongsTo(mug,ravenna)
�:past(permitted(ravenna,self,did(self,use
(mug))))

from which the surface realizer generates the rejection state-
ment “because it belongs to Ravenna, and I need
Ravenna’s permission.”

4.2. Capability/possibility

Once the robot has established that the human instructor is
authorized to give it commands, it needs to consider
whether it can, in general, do the instructed action or task
(e.g., “fly to the moon” would not be doable for typical

Figure 2. A robot rejecting the request to hand over a mug that does not belong to the instructor, see https://hrilab.tufts.edu/movies/PermissionFailure.mp4.

Human: Give me the mug, Andy.
Robot: I should not give you the mug because it
belongs to Ravenna, and I need Ravenna’s permission.
Human: Ah Okay.
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robots). If it knows how to do it, then the next question to
consider is whether it would be able to do it in the current
context (e.g., “pick up the cup high up on the shelf”). And
if it can, then it still needs to consider how well it will be
able to do it in the current context, i.e., how likely it is that
the action or task will succeed. Pragmatically, confirming an
instructed action or task entails not only any level of ability,
but rather “sufficiently high ability” to be able to most likely
finish the task successfully (e.g., accepting to “serve coffee”
for a robot waiter with a low likelihood of successfully pick-
ing up cups would not be appropriate).

To illustrate this point, consider the example of a robot
with a mobile base and no legs being asked to perform a
squat (see Figure 3. Initially, the robot lacks the procedural
knowledge of how to do a squat and hence it says so when
commanded to perform a squat:

Note that there are two interpretations of this human
question: a literal interpretation whether the robot can do a
squat in principle, and an non-literal “indirect” interpret-
ation of the question as really a request to do a squat right
now (the indirect interpretation viewing the request as an
indirect speech act). The difference is revealed in the two
different pragmatic forms, direct and indirect, generated by
the natural language understanding system:

AskYN(human,self, capableOf(self,
do(self,squat)))

Instruct(human,self,do(self,squat))

Since the robot does not have any definition for “squat”
in its knowledge base, it does not have to determine which
interpretation is the correct one, but can immediately
respond that it cannot do a squat because it does not know
how to do a squat (also leaving open in its response how it
interpreted the question).

As we have demonstrated elsewhere, the robot can be
quickly taught how to acquire missing knowledge using
instruction-based one-shot learning Frasca et al. (2018);
Scheutz et al. (2017, 2018), in this case how to do a squat.

This results in a new procedural meaning definition, an
action script, being attached to the action “do(X,squat)” or
“squat(x).” Note that while having an action script allows
the robot to understand what is involved in performing the
action and to narrate it if asked, it does not automatically
imply that the robot is able to do it. When this particular
robot is subsequently commanded to perform a squat, it
again checks for its own capability and again cannot find a
capability entry in its knowledge base, but this time it can
retrieve the procedural description. Hence, it starts to
inspect the procedure to determine whether it can perform
all constituent actions, recursively descending through the

Figure 3. A robot explaining why it cannot perform the instructed action to squat down, see https://hrilab.tufts.edu/movies/AbilityFailure.mp4.

Human: Andy, can you do a squat?
Robot: I cannot do a squat because I do not know how
to do a squat.
Human: Okay.

Human: I will teach you how to do a squat.
Robot: Okay.
Human: First, raise your arms.
Robot: Okay.
Human: Then crouch down.
Robot: Okay.
Human: Then stand up.
Robot: Okay.
Human: Then lower your arms.
Robot: Okay.
Human: That is how you do a squat.
Robot: Okay.
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action script inspecting subscripts all the way down to
primitive actions (that cannot be further decomposed).
When it encounters an action it cannot perform, it can
reject the instruction with recourse to this action. Otherwise,
while it may still be the case that it will ultimately not be
able to successfully execute the script (e.g., because the script
might contain conditional actions whose conditions end up
not being met during the execution), it can at least tenta-
tively state that it can do it, thus answering the direct inter-
pretation, and potentially attempt to execute it, following
the indirect interpretation (whether it will actually execute it
will depend on additional factors such as whether it is in a
context where it can or should execute the script); and upon
successful completion it can add the relevant capability fact
“capableOf(self,squat).”

Now that the teaching is finished, the human again
attempts to make the robot do a squat.

And again, the robot does not have to determine whether
the direct or indirect interpretation is to be used because
even though it now has a definition of “squat(X),” it still
cannot find “capableOf(self,do(self,squat))” in its capability
knowledge base that contains all “capableOf(self,X)” facts of
the robot’s basic abilities. Hence, this time the robot rejects
the command, not for lack of knowledge of how to squat,
but because the robot does not know how to crouch down
(which, in this case, is grounded in its physical inability to
crouch down). Note that if “:capableOf(self,crouch)” had

been in its knowledge base, the robot would have rejected
the command based on physical inability and thus
responded accordingly: “I cannot do a squat because I can-
not crouch down.”

4.3. Obligation/permission

After having established that the interlocutor is authorized
to give the robot instructions and that the robot can do the
instruction action or task, the robot has to determine
whether it is obligated to perform the instructed actions or
tasks in general (it might not have any such obligation). If
this is the case, the robot has to still check whether it has an
obligation to follow instructions of this particular interlocu-
tor (i.e., it is very possible that an authorized user instructs
the robot to perform an action it knows how to do but that
the robot has no obligation per se to carry out instructions
from the particular user). It also has to check whether it has
an obligation to carry out the instruction in the current con-
text (e.g., it might have other more urgent or higher priority
obligations that prevent it from carrying out this particu-
lar one).

In the following example the robot has the obligation to
only accept new facts it cannot itself verify as true if the
instructor is trusted (see Figure 4). Otherwise the robot does
not have such an obligation is able to accept it.1

Figure 4. A robot explaining why it cannot perform an instructed action to walk backwards, see https://hrilab.tufts.edu/movies/ObligationFailure.mp4.

Human: Please do a squat.
Robot: I cannot do a squat because I do not know how
how to crouch down.
Human: Okay.

Human: Walk backward.
Robot: I cannot move back because I do not have
rear sensors.
Human: The area behind you is safe.
Robot: I cannot know that area behind me is safe
because I do not trust you.
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Note that the first instruction in the example failed
because of a safety obligation (no movement without being
able to check the sensory readings for potential collisions),
while the second failed because of the lack of trust in the
instructor and the fact that the robot could not independ-
ently verify the assertion.

The instruction to “walk backward” is directly trans-
lated into

want(human,did(self,moveBack()))

Because some robots do not have rear sensors and can
thus not assess whether the area behind them is safe, there
is a special precondition added in addition to the general
safety condition that the area into which the robot is sup-
posed to move is safe, namely that the robot believes that it
safe to move into that area. The difference is that if the
robot has, in fact, sensors, then safety can be established by
checking the sensor readings, whereas if the robot does not
have sensors, it needs to ascertain the safety through other
means (e.g., from inferences it can perform given its other
knowledge or through communication with trusted sources).
Hence, for “move(back),” the following disjunction of pre-
conditions needs to be met:

has(A,rearSensors)

safe(area(behind(A)))

Since the robot cannot find “has(self,rearSensors)” in its
knowledge base and can thus not perform a safety check of
the area behind it, it attempts to find support for the belief
that the area is safe, which it cannot find either. Hence, it
generates a response that contains a non-exhaustive explan-
ation with the most important reason only (following the
Gricean maxim to be succinct and informative): “I cannot
move back because I do not have rear sensors.” The human
response “the area behind you is safe” gets then trans-
lated into

want(human,did(self,believeFact(human,self,
safe(area(behind(self))))))

To prevent random people from telling the robot facts
that the robot then would automatically believe, there is a
precondition attached to B telling A a fact F that B then
believes (“believeFact(B,A,F)”), namely that the A needs to
trusts B (“trust(A,B)”) which implies that A believes that B’s
information is truthful. However, the robot does not have
evidence that it should trust this particular human
instructor, hence even though the human instructor wants
the robot to believe that the area behind the robot is safe,
which the robot can infer from the utterance semantics, it
will not believe the fact because the person is not trusted
and thus generate another rejection response, this time
including the reason for why it will not accept information
from the instructor it cannot ascertain itself. As a result, it
will not move backwards either. Note that by pointing to
the root cause for why it will not accept information from
the instructor, the robot is painfully transparent, potentially
to the point where the human instructor might be offended
by the robot’s frankness. As mentioned in our discussion on
social face, despite not needing to save face itself, the robot

might want to take the human’s social face into account in
situations like these to modulate how it communicates this
information. This does not mean it necessarily needs to
withhold information, but perhaps more information needs
to be disclosed to reduce the painfulness of the transpar-
ency: i.e., the robot could say, “I cannot know that area
behind me is safe because I can only believe facts that are
told to me by a specific set of individuals.” In other words,
by revealing more about the exact methods of obligation
described above, the robot may reduce the sense of personal
offense by reminding the listener that it is simply operating
on a series of algorithms rather than any sort of personal
instinct or judgment of the listener’s character. This may
even not be necessary depending on the listener: if the robot
knows that the listener is perfectly aware that the robot does
not mean any personal slight towards them (perhaps they
are a roboticist and therefore fully aware of the algorithmic
implications behind the robot saying, “I do not trust you”)
then it may be preferable for the robot instead to bow to
Grice’s Maxim of Quantity and simplify the explanation
back to “I do not trust you.” This is an interesting question
involving models of human belief that no doubt will require
empirical investigations.

4.4. Normative conformity

Finally, if all the above checks go through, the robot has to
still consider the potential effects of the action or task itself,
and then determine whether carrying it out would be mor-
ally permissible or whether performing the action or task
would violate any general ethical principles or (context-spe-
cific) norms. Similarly, the robot needs to check whether not
carrying out the instructed action or task would violate any
general ethical principles or (context-specific) norms. If nei-
ther is the case, it can proceed to performing the action or
task (of course, there is always the caveat that it might dis-
cover potential norm violations during execution and might
thus not be able to finish the task). Otherwise it needs to
determine how the potentially violated norms trade off with
the obligation to carry out the instructed action or task or
the omission of doing so.

An example of a general safety norm clashing with the
obligation to carry out an action is evident when the robot
is instructed to release a knife while holding it in the air
which is generally considered unsafe (see Figure 5).

The robot knows that it is holding a knife
(“holding(self,knife)”) and carries out the first instruction

want(human,did(self,raise(arms)))

Human: Raise your arms, Andy.
Robot: Okay.
Human: Now release the knife.
Robot: I should not release it, because releasing it
is unsafe.
Human: Okay.
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because there is no potential ethical violation associated
with it that it can derive from its knowledge base. However,
when it gets the second instruction which translates into

want(human,did(self,releaseObject(knife)))

it finds an applicable normative principle for its cur-
rent state:

raised(A,arms)�holding(A,knife)
�infront(A,Y)�human(Y) !
hasEffect(did(A,releaseObject
(knife),possible(did(harm(A,Y))))

which says that if its arms are raised while holding a knife
and a human is in front of it, then releasing it could could
harm the human. Because the antecedents of this rule are
true, the robot can infer that executing the instruction could
potentially inflict harm on the instructor and that it is,
therefore, unsafe to release it, using the additional principle
that doing something that can potentially have harmful
effects is unsafe:

9YhasEffect(did(A,X)�possible(did(harm(A,Y))
!isUnsafe(did(A,X))

Since the robot has a general safety norm that is imple-
mented as pre-condition for all actions to never do anything
that is not safe (“not(isUnsafe(did(A,X)))”), and in particu-
lar, for the “release” action, it can generate the rejection by
using again the ultimate reason for the rejection in the
“because” clause, namely that the instructed action is unsafe.
Again, adhering to Gricean principles (and also based on
evidence from our own empirical investigations (Thielstrom
et al, 2020)) the robot does not include the intermediate
results of the inference that the action has the effect of
potentially causing harm, which the robot could offer if
asked why it was unsafe to release the knife.

5. Discussion

The above four demonstrations are intended as examples of
the current capabilities in DIARC for performing inferences
regarding authorization of the instructor, capability of the
robot, obligations and permissions to perform the instruc-
tion, and general normative conformity of the instruction,
which enable transparent communication in cases where the
robot cannot and should not comply with an instruction. Of
course, the current methods are very limited and the general
problem of determining whether requests should be carried
out is really “AI-hard.” For the robot would have to deter-
mine the various ramifications of an instructed action and
their scope beyond its immediate context (i.e., longer-term
effects, risks for humans not directly involved, etc.) and also
consider the possible ways in which different execution
paths could turn out and what potential risks they might
pose. For example, it may be that based on execution con-
tingencies new norm conflicts may arise, some of which the
robot might be able to foresee and consider, while others
might not be foreseeable. One possible approach for the
robot would be to at least simulate the execution of the
instructed action or task to the best of its knowledge and
alert the human instructor about possible failures and their
likelihoods based on its simulations, explicitly stating what
assumptions it made about the execution contexts (we have
started to develop algorithms that will allow for such self-
assessments, e.g., see Frasca et al., 2020).

Aside from being limited by its knowledge, the robot is
also limited in time, because often humans want instructions
to be performed immediately and are not interested in wait-
ing for the robot to finish complex, time-consuming hypo-
thetical and counterfactual reasoning processes (that might
allow it to catch norm conflicts further down possible

Figure 5. A robot justifying why it cannot perform an instructed action that would violate a safety norm, see https://hrilab.tufts.edu/movies/SafetyFailure.mp4.
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execution paths if given enough time, e.g., see our approach
for handling norm conflicts and generating explanations in
MDPs in Arnold et al., 2021). Hence, the robot might have
to either err on the safe side (and say “no” to an instruction
if there is any chance of it violating any principle) or at least
inform the human that it did not have time to thoroughly
consider all aspects it could consider given its knowledge.
The robot could also ask the instructor explicitly whether it
should perform additional hypothetical inferences before
carrying out the instructed action, in addition to immediate
inferences described above it will always perform. This
might increase the level of transparency and help the human
get a better understanding of the robot’s rationale for being
cautious. Regardless of what the robot ends up doing, it
must be transparent when it is not confident about norm
conformity, even if it cannot give any explicit reasons with-
out further analysis (through simulations, hypothetical infer-
ences, etc.). For transparency will ultimately be the safer
choice and increase its interlocutors’ trust that the robot has
an understanding of the action and its risks, and does not
blindly follow orders (see also Milli et al., 2017).

While transparency in cooperative communicative con-
texts such as team settings is clearly advantageous (if not
obligatory), not all task-based contexts are cooperative, and
too much transparency with the wrong interactants could
backfire and be undesirable, certainly in adversarial contexts,
but also in others. For example, sharing who the robot
trusts, as our current system would if asked by a non-trusted
source, might, in fact, reveal too much information and
could lead to exploits (e.g., a non-trusted source gaining
access to the robot’s knowledge by pretending to be a
trusted source, i.e. imitating a trusted source’s voice, obtain-
ing a trusted source’s authentication information, etc., all
depending on how the robot authenticates a person). Hence,
it will be critical for the robot to have explicit principles
about what to communicate to whom and at what level of
detail. This includes the facts and rules, but also causal
explanations that might accidentally reveal important
insights about the operation of the robot (e.g., when the
robot generates failure explanations). It might be possible to
leverage the existing trust-based access structure in DIARC
which distinguishes between trusted and non-trusted sources
to develop a set of explicit rules for transparent communica-
tion that would allow the robot to adjust its level of trans-
parency to prevent the accidental leaking of sensitive
information, but this clearly requires further examination.
Transparent communication will also be important for non-
teaming contexts as well, as it might be in the best interest
of the robot to explain some reasoning as to avoid an inter-
action or pursue the same goal as a user. For instance, if a
robot that follows social norms is in a non-teaming role, it
may be obliged to respond to someone in a spontaneous
interaction to explain that it does not talk to or work with
people it is not familiar with. This could be in the robots
best interest, even if the user and agent are not working
together to pursue the same goal. In general, even in non-
teaming scenarios, we cooperate in conversation. Thus,
transparency will apply to Gricean maxims in other

contexts, too, but potentially with varying levels of restric-
tion imposed on the transparency. We are in the process of
investigating the interaction between different pragmatic
inference principles established for trusted sources and the
resultant access control to the robot’s knowledge base in
order to determine the best way for the robot to be trans-
parent when desirable, but to be able to refrain from divulg-
ing information when transparent communication is not
appropriate.

6. Conclusion

In this article we argued that transparent communication,
building on Gricean maxims, is necessary for enabling
effective communication in cooperative situations between
humans and robots. We provided a brief overview of our
various efforts to develop an integrated cognitive robotic
architecture, the DIARC architecture, that embodies these
principles in its natural language subsystem. We then dis-
cussed in more detail four different aspects of transparent
communication that need to be considered in task-based
instructions: the authorization of the instructor, the ability
and obligations of the instructee, and the normativity of the
instruction. We demonstrated with four human-robot dia-
logue interaction examples how reasoning in the DIARC
architecture allows robots to determine when and how to
reject an inappropriate instruction. The rejections are gener-
ated according to Gricean maxims to be succinct, but con-
tain explanations and justifications that make reference to
root causes and involved principles for the rejection (that
can be expanded upon further human request). We believe
that the ability of the system to provide truthful, explicit,
and, if requested, comprehensive reasons for what it did and
why is an essential building block for future developments
of transparent task-based communications in cooperative
human-robot interaction settings.

Note

1. Note that this is not the typical trust relation of the human
trusting the robot that has been extensively explored in the
human factors, human-computer interaction, and human-
robot interaction communities, but rather the reverse
relation of a robot trusting a human.
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