
4th IFSA Winter Conference on Automation, Robotics & Communications for Industry 4.0 / 5.0 (ARCI’ 2024),
7-9 February 2024, Innsbruck, Austria

Oral / Poster / The same Topic: Human-Robot Interaction, Industrial
Robots, Cognitive Approach for Robots

Dialogue-Based Task Instructions and Modifications for Industrial Robots

M. Scheutz1,2, B. Oosterveld2, J. Peterson2 , and E. Wyss2

1 Tufts University, 177 College Ave, Medford, MA 02155, USA
2 Thinking Robots Inc., 12 Channel St., STE 202, Boston, MA 02210, USA

Email: matthias.scheutz@tufts.edu

Summary: Programming robots effectively remains a challenge for small businesses due to the high ongoing costs of robot
programming experts. What is missing is a user-friendly software system such as a natural language-enabled cognitive assistant
for developing robot programs that (1) does not require any particular training before it can be used, and (2) allows for natural
instruction dialogues that let human operators develop programs interactively. In this paper, we introduce such as system,
specifically the cognitive robotic TRACS architecture which enables industrial robots to learn from human teachers through
natural language dialogues novel tasks that can be executed immediately. We briefly describe the core elements of the
architecture and present a sorting task example to showcase how a task can be first instructed and later modified during task
execution, all in multiple different spoken natural languages.

Keywords: natural language dialogue tasking, cognitive robotics, human-robot interaction, industrial applications

1. Introduction

A major challenge for a wide-ranging uptake of
robotics technology, especially in small businesses, is
the high entry cost of robots, not so much due to the
robot hardware itself (which has become more
affordable over the recent past), but due to the cost of
software integration and, most importantly, the ongoing
costs of programming robots for various tasks. A recent
report emphasizes those challenges:

“SMEs, with production processes that run at a
smaller scale, often find integration costs to be
prohibitive or unjustifiable due to their smaller
production lot sizes. This is because robots in the
manufacturing context are currently primarily
programmed to do specific tasks, and any change in the
assembly process often requires reprogramming the
robots or even an overhaul of the integrated
manufacturing line.” [1] In fact, hiring robot
programmers is often not an option for SMEs due to the
additional high costs of these experts.

What is still missing is user-friendly software such
as natural language-enabled cognitive assistants for
developing robot programs that (1) do not require any
particular training before they can be used, and (2)
allow for natural instruction dialogues that let human
operators develop programs interactively, guided by the
intelligent assistant. Such interactive task learning has
been an important research direction for cognitive
systems for a while (e.g., see the various articles in [2])
and is increasingly integrated into robotic systems, in
particular, with the advent of large language models
(e.g., see the recent attempts by Google and Microsoft,
https://www.youtube.com/watch?v=NYd0QcZcS6Q).

In this paper, we introduce such a cognitive assistant
that can remove the main hurdle of robot programming
and system integration for end users, allowing skilled
workers without any robot experience to instruct robots
in natural language to perform any number of industrial
manufacturing and assembly tasks that they can,
furthermore, modify them later quickly if needed.

We will first briefly motivate the design of the
system and then provide a brief overview of the system
architecture, followed by a description of its operation.
We will then demonstrate its utility for factory
automation, especially for SMEs, using a simple sorting
task that is fully instructed in English and later modified
during task execution without. We conclude with a
summary of potential applications and future
developments of the system.

2. Motivation and Background

Classical cognitive architectures like Soar, ACT-R,
and various others have been traditionally used for
implementing general ways for artificial agents to learn
new tasks for a variety of domains in an ideally domain-
general manner (e.g., [3]). While classical cognitive
architectures were originally intended to model human
cognition and run only on computers without being
connected to physical systems, various projects have
over the years connected robotic sensors and actuators
to inputs and outputs of cognitive architectures like Soar
and ACT-R to demonstrate the utility of the
hypothesized general cognitive capabilities such as
reasoning, problem solving, planning, and
communications. Most recently, with the advent of
transformer models, in particular large language models
(LLMs), new attempts are being made to replace the

https://www.youtube.com/watch?v=NYd0QcZcS6Q

4th IFSA Winter Conference on Automation, Robotics & Communications for Industry 4.0 / 5.0 (ARCI’ 2024),
7-9 February 2024, Innsbruck, Austria

“cognitive parts” of cognitive architectures with
transformer models that can take over communication
and interaction with human interlocutors, and possibly
other cognitive aspects such as reasoning and planning.
In addition, deep neural networks are also used for
perceptual processing as well as learning appropriate
actions (e.g., in the context of deep reinforcement
learning with DQNs). The challenge, however, with
using such networks is that they often need massive
amounts of data (and computational resources) for
training, and even when they have learned to perform
their intended tasks very well, they are still subject to
their internal stochasticity that might produce unwanted
outputs and behaviors, given that their operations is
intrinsically one of sampling from probability
distributions and not that of running clearly specified
algorithms. As a result, any type of robot system that
relies on transformers for its operation (be it for natural
language understanding, planning, or action execution)
runs the risk of exhibiting faulty behaviors and
performing the wrong actions. We believe that while
there could clearly be some utility for using LLMs in
robotic systems (e.g., as a common sense repository to
provide heuristics), they should not be used for
controlling robots per se, e.g., for generating robot
decisions and actions, certainly not in critical
applications such as autonomous aircraft, surgery
robots, or industrial robots where faults can cause
irreparable harm to equipment and humans.

Instead, we believe that a robotic system should be
able to provide guarantees about its behavior which is
clearly the case for systems based on executing
programs, i.e., algorithms with a clearly specified
semantics. The challenge then is how to combine the
predictability and repeatability of robot algorithms (as
they traditionally run on robots when programmed by
humans) with the flexibility of human natural language
task instructions which might contain ambiguities and
lack important details? We believe that it is possible to
define a small subset of natural language (different from
the very comprehensive language LLMs can handle)
that is sufficient for instructing common tasks such as
those typical for industrial manufacturing and assembly,
and thus letting robots learn new tasks through
interactive dialogues with their human instructors.
Specifically, we believe that learned representations
should be explicit and transparent symbol structures
with clearly defined compositional meanings that can be
used to verify any step in the learned task (either
through a graphical interface that represents the
instruction or through a verbal rendition in natural
language). Then, once the details of a task have been
verified by the human instructor, the robot’s task
representation can be approved by the human instructor
and the robot is ready to execute the task at any time.
Moreover, any such task can then immediately be
shared with other, possibly heterogeneous robots (either
through local networks or through the cloud) which can
then also perform the task without any additional
training. The critical part here is the explicit symbolic
task representation that the robot will learn which

makes its knowledge easily explainable to humans,
different from the kinds of distributed numeric neural
representations where it is impossible to say precisely
what a particular numeric activation or weight vector
represents, and where all explanations are essentially
posthoc “interpretations” of the data (without any
assurance that the hypothesized interpretation is
correct).

In the following, we will introduce our proposed
architecture framework that meets the above
expectations for explicit explainable task
representations and allows for execution guarantees
about all learned behaviors in ways that current LLM-
based models will never be able to provide.

3. The TRACS Architecture Framework

The Thinking Robots Autonomous Cognitive
System (TRACS) architecture is the latest extension of
our successful Distributed Integrated Affect Reflection
Cognition (DIARC) cognitive architecture [4] which
has been successfully demonstrated on a variety of
autonomous mobile and stationary robots.

TRACS is an open, modular, distributed, cognitive
robotic architecture that can operate mixed
heterogeneous multi-robot and IoT systems and learn to
symbolic task representations from natural language
instructions. Learned tasks can be narrated or
graphically displayed, used to provide assessments
about expected performance, executed at any time, and
modified on the fly. Different from LLMs and other
neural architectures, task performance is formally
guaranteed, i.e., the outcome of a program is provable
and if failure probabilities are known for each action,
the overall failure probability can be guaranteed (e.g.,
see [5] for an example of how the system can assess its
own performance and determine the overall success and
failure probabilities).

TRACS combines a set of unique capabilities that
make it the perfect integration platform for many
industrial robot applications (such as factory
automarion), but also different types of service and
social robots:

• deeply integrated natural language capabilities
allowing for complex task instructions, including
dialogues about expected task performance

• multi-modal interactions through speech, text, and
GUIs based on context allowing for multiple physical
and virtual representations of the system in different
locations (e.g., on the factory floor or in a remote
office)

• one-shot learning from natural language
instructions, demonstrations, and observations enabling
rapid task learning (e.g., based on [6]), but also rapid
correction of learned knowledge and adaptation (e.g.,
[7]), either through human instruction (e.g., “if X is
true, do Y, otherwise do Z” to clarify when to do Y and
when to do Z) or through automated reasoning (e.g.,
analogical generalization)

• assured performance with guarantees through
explicit pre-, operating, and post-conditions on all
actions (e.g., constraints in linear temporal logic are

4th IFSA Winter Conference on Automation, Robotics & Communications for Industry 4.0 / 5.0 (ARCI’ 2024),
7-9 February 2024, Innsbruck, Austria

incorporated into stochastic policies that minimize
constraint violation, conditional assurance that “if the
system detects X, it will react to it”, etc.) and
explanations

TRACS is implemented in the TRADE middleware
which provides unprecedented introspection features,
dynamic mixed cloud-based edge-based distributed
configurations, and hybrid symbolic-subsymbolic
machine learning methods with provable guarantees,
providing the basis for software assurance. TRADE is
based on the successful agent development environment
(ADE) middleware (e.g., [8]) which to this day has
several unique features compared to other open-source
middleware like ROS (e.g., dynamic system-wide
introspection and notification of components about
available services).

TRACS allows for easy integration with commercial
off-the-shelf components and third-partymodules,
components, and software libraries, through
“component-wrapping” (e.g., dynamically loading
libraries), “component participation” (e.g., third party
components utilizing the same TRADE middleware
connection mechanisms as other TRACS component),
or “socket connections” (e.g., to standalone systems that
are not available for wrapping or direct participation).
Any of these methods can be performed dynamically
during system operation.

TRACS systems are highly parallel and can be run
within a single computational processes in a highly
threaded fashion, or with components can be distributed
over multiple OS processes across different operating
systems and host computers to meet computational and

real-time needs. This also allows for running redundant
modules to address hardware and software failures.

TRACS has extensive integrated fault detection,
fault exploration, and recovery methods that use
system-wide as well component-based introspection,
including the ability to automatically restart components
on compute nodes on other available computers.

Fig. 1 shows an overview of TRACS where boxes
indicate components with particular functions with
connecting arrows indicating the information flow and
data types exchanged between components. The “Goal
and Skill Manager” manages the system goals,
involving knowledge stored in the “STM/LTM
Inference KB” component. It also includes an action
execution component that robustly executes high-level
plans produced by the planner/scheduler manager, on

schedule, by coordinated commanding of multiple
subsystems. The natural language subsystem in consists
of the “ASR/GUI” (automated speech recognizer/GUI
input), “NLU” (natural language understanding),
“Dialogue manager”, “NLG” (natural language
generation), “Speech Synthesis/GUI” (speech or GUI
output) corresponds to the “human-machine interactions
manager”.

4. Demonstration of TRACS in a Sorting Task

We demonstrate the operation of the architecture
and the types of instruction dialogues it enables on an
ABB GoFa robot in conjunction with a PLC controlled
conveyor belt (a demo video of the task instructions for
a GoFa robot in Robot studio can be found here:
https://www.youtube.com/watch?v=xZaEk5pbVZk).

Fig. 1: The TRACS architecture diagram showing the various functional components (white boxes) and the type of
data exchanged among them (labels on links), see text for details.

https://www.youtube.com/watch?v=xZaEk5pbVZk

4th IFSA Winter Conference on Automation, Robotics & Communications for Industry 4.0 / 5.0 (ARCI’ 2024),
7-9 February 2024, Innsbruck, Austria

The demo scenario (shown in Fig. 2) is a sorting
task in a conveyor belt setting where the GoFa robot has
to pick up parts from the conveyor belt and place them
on one of two tables depending on their length.

The teaching interacting for the sorting task then

starts with the human instructor teaching the robot the
various steps of the task:

Human instructor TRACS

I will teach you how to sort. OK

First, advance the conveyor belt. OK

Then go to pose conveyor. OK

Then verify that you can see a part. OK

If the part is longer than 75mm then get the
part on table A.

OK

Otherwise put the part on table B. OK

That is how you sort. OK

Start sorting. OK

Fig. 3 shows the state of the task environment, in
particular, the short red parts (less than 75mm in length)
with one of them on Table B, the much longer yellow
pars (over 100mm in length), and one blue part (80mm
in length). The latter two are supposed to be placed on
Table A.

While the robot is executing the sorting task, the
instructor now modifies the task, specifically changing
the sort criterion.

Human instructor TRACS

Modify action sort. OK, what will change?

Replace the part is longer
than 75mm with the part is
longer than 100mm.

OK, are there any other
changes?

That is all.

The change takes effect immediately and the robot
starts placing only items longer than 100mm on table A
as per the modified instruction.

At the end when the task is completed, the yellow
items longer than 100mm are placed on Table A, all
other items are placed on Table B.

5. Discussion

The above demonstration example was chosen to be
simply on purpose in order to illustrate the core aspects
of teaching new tasks and modifying them on the fly.
More complex task can be instructed that involve
multiple robots, different types of objects and actions
that need to be performed on those objects with
outcomes that have to be observed or measured. For
example, filling a container with parts from another
container until a certain weight is reached might require
the use of an IoT scale to measure the weight and a
pouring action that allows the robot to pour items at a
certain rate (by tipping and maybe shaking the container
from which it is pouring). Assembly of a part might
require the robot to put various pieces in place and
screw in screws using an automated screwdriver
mounted on the robot. It might also require multiple
robots to operate on the same part at the same time (e.g.,
one robot holding the piece in place while the other
attaches a part). Inspection tasks might require the
robot to take precise measurements using additional
tools and devices. All of these tasks can be instructed in
TRACS as long as task instructions eventually ground
out in primitive actions and perceptions the system

Fig. 2: The demo scenario showing a conveyor belt
with various colored items of different length that need
to be sorted onto two tables.

Fig. 3: The task state execution state when the human
instructor modifies the task.

Fig. 4: The final state of the environment when task
execution completes.

4th IFSA Winter Conference on Automation, Robotics & Communications for Industry 4.0 / 5.0 (ARCI’ 2024),
7-9 February 2024, Innsbruck, Austria

understands (e.g., a “grasp” action where the robot can
detect appropriate grasp points on an object it can
perceive). Hence, before TRACS can be used for
verbal task instructions, end users need to ensure that
those required capabilities are in place (this includes
any interactions with IoT or other devices for which
special interface are needed).

6. Conclusions and Future Work

We provided a brief overview of the TRACS

architecture and showed how it can be used to teach
robots new tasks and quickly modify them on the fly.
The presented types of interactions work on any number
of robot arms (e.g., on Universal Robotics, Mitsubishi,
etc.), mobile platforms, PLCs and other IoT devices as
well as for any number of sorting, assembly, or other
manufacturing tasks as long as interfaces to those other
devices are in place and primitive actions using those
devices are implemented and accessible through natural
language.

In the future, we aim to provide additional learning
capabilities that will enable robots to furthermore learn
such primitive actions together with primitive
perceptions without expert intervention as well. The
idea is to integrate versions of reinforcement learning
that can utilize simulated environments to quickly learn
policies for primitive actions based on object
perceptions that are co-learned.

References

[1] L Sanneman, C. Fourie, and J. Shah. The State of
Industrial Robotics: Emerging Technologies,
Challenges, and Key Research Directions. MIT
Research Brief 15, November 2020.

[2] Kevin A. Gluck and John E. Laird (eds.) Interactive
Task Learning: Humans, Robots, and Agents Acquiring
New Tasks through Natural Interactions. MIT Press,
2019.

[3] P. Ye, T. Wang, and F-Y. Wan. A Survey of Cognitive
Architectures in the Past 20 Years. IEEE Transactions
on Cybernetics, Vol. 48, No. 12, December 2018.

[4] M. Scheutz, T. Williams, E. Krause, B. Oosterveld, V.
Sarathy, and T. Frasca. An Overview of the Distributed
Integrated Affect Reflection Cognition DIARC
Architecture. In: Aldinhas Ferreira, M., Silva Sequeira,
J., Ventura, R. (eds) Cognitive Architectures. Intelligent
Systems, Control and Automation: Science and
Engineering, vol 94. Springer, Cambridge, 2019.

[5] T. Frasca M. Scheutz. “Robot Self-Assessment of
Expected Task Performance”. IEEE Robotics
Automation Letters. 2022.

[6] T. Frasca, B. Oosterveld, E. Krause, and M. Scheutz.
One-Shot Interaction Learning from Natural Language
Instruction and Demonstration, Advances in Cognitive
Systems, 6, 159–176.

[7] T. Frasca, B. Oosterveld, M. Chita-Tegmark, and M.
Scheutz. Enabling Fast Instruction-Based Modification
of Learned Robot Skills. Proceedings of AAAI. 2021.

[8] M. Scheutz. ADE – Steps Towards a Distributed
Development and Runtime Environment for Complex
Robotic Agent Architectures. Applied Artificial
Intelligence, 20, 4-5, 275–304. 2006.

	Oral ☒ / Poster ☐ / The same ☐
	Topic: Human-Robot Interaction, Industrial Robots, Cognitive Approach for Robots
	Dialogue-Based Task Instructions and Modifications for Industrial Robots

	Widget: Yes
	_2: Off
	_3: Off

