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Summary: Programming robots effectively remains a challenge for small businesses due to the high ongoing costs of robot 
programming experts.  What is missing is a user-friendly software system such as a natural language-enabled cognitive assistant 
for developing robot programs that (1) does not require any particular training before it can be used, and (2) allows for natural  
instruction dialogues that  let  human operators develop programs interactively.   In this  paper,  we introduce such as system,  
specifically the cognitive robotic TRACS architecture which enables industrial robots to learn from human teachers through  
natural  language  dialogues  novel  tasks  that  can  be  executed  immediately.   We  briefly  describe  the  core  elements  of  the  
architecture and present a sorting task example to showcase how a task can be first instructed and later modified during task 
execution, all in multiple different spoken natural languages.
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1. Introduction

A  major  challenge  for  a  wide-ranging  uptake  of 
robotics technology, especially in small  businesses,  is 
the high entry cost of robots, not so much due to the 
robot  hardware  itself  (which  has  become  more 
affordable over the recent past), but due to the cost of 
software integration and, most importantly, the ongoing 
costs of programming robots for various tasks.  A recent 
report emphasizes those challenges:

“SMEs,  with  production  processes  that  run  at  a 
smaller  scale,  often  find  integration  costs  to  be 
prohibitive  or  unjustifiable  due  to  their  smaller 
production  lot  sizes.  This  is  because  robots  in  the 
manufacturing  context  are  currently  primarily 
programmed to do specific tasks, and any change in the 
assembly  process  often  requires  reprogramming  the 
robots  or  even  an  overhaul  of  the  integrated 
manufacturing  line.”  [1]  In  fact,  hiring  robot 
programmers is often not an option for SMEs due to the 
additional high costs of these experts.

What is still missing is user-friendly software such 
as  natural  language-enabled  cognitive  assistants  for 
developing robot programs that (1) do not require any 
particular  training  before  they  can  be  used,  and  (2) 
allow for natural  instruction dialogues that  let  human 
operators develop programs interactively, guided by the 
intelligent assistant.  Such interactive task learning has 
been  an  important  research  direction  for  cognitive 
systems for a while (e.g., see the various articles in [2]) 
and is increasingly integrated into robotic systems, in 
particular,  with  the  advent  of  large  language  models 
(e.g., see the recent attempts by Google and Microsoft, 
https://www.youtube.com/watch?v=NYd0QcZcS6Q).

In this paper, we introduce such a cognitive assistant 
that can remove the main hurdle of robot programming 
and system integration for end users, allowing skilled 
workers without any robot experience to instruct robots 
in natural language to perform any number of industrial 
manufacturing  and  assembly  tasks  that  they  can, 
furthermore, modify them later quickly if needed.

We  will  first  briefly  motivate  the  design  of  the 
system and then provide a brief overview of the system 
architecture, followed by a description of its operation. 
We  will  then  demonstrate  its  utility  for  factory 
automation, especially for SMEs, using a simple sorting 
task that is fully instructed in English and later modified 
during  task  execution  without.   We  conclude  with  a 
summary  of  potential  applications  and  future 
developments of the system.

2. Motivation and Background

Classical cognitive architectures like Soar, ACT-R, 
and  various  others  have  been  traditionally  used  for 
implementing general ways for artificial agents to learn 
new tasks for a variety of domains in an ideally domain-
general  manner  (e.g.,  [3]).   While  classical  cognitive 
architectures were originally intended to model human 
cognition  and  run  only  on  computers  without  being 
connected  to  physical  systems,  various  projects  have 
over the years connected robotic sensors and actuators 
to inputs and outputs of cognitive architectures like Soar 
and  ACT-R  to  demonstrate  the  utility  of  the 
hypothesized  general  cognitive  capabilities  such  as 
reasoning,  problem  solving,  planning,  and 
communications.   Most  recently,  with  the  advent  of 
transformer models, in particular large language models 
(LLMs),  new attempts  are  being made to  replace the 
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“cognitive  parts”  of  cognitive  architectures  with 
transformer models that can take over communication 
and interaction with human interlocutors, and possibly 
other cognitive aspects such as reasoning and planning. 
In  addition,  deep  neural  networks  are  also  used  for 
perceptual  processing  as  well  as  learning  appropriate 
actions  (e.g.,  in  the  context  of  deep  reinforcement 
learning  with  DQNs).   The  challenge,  however,  with 
using  such  networks  is  that  they  often  need  massive 
amounts  of  data  (and  computational  resources)  for 
training, and even when they have learned to perform 
their intended tasks very well, they are still subject to 
their internal stochasticity that might produce unwanted 
outputs  and  behaviors,  given  that  their  operations  is 
intrinsically  one  of  sampling  from  probability 
distributions and not  that  of  running clearly specified 
algorithms.  As a result, any type of robot system that 
relies on transformers for its operation (be it for natural 
language understanding, planning, or action execution) 
runs  the  risk  of  exhibiting  faulty  behaviors  and 
performing the wrong actions.  We believe that while 
there could clearly be some utility for using LLMs in 
robotic systems (e.g., as a common sense repository to 
provide  heuristics),  they  should  not  be  used  for 
controlling  robots  per  se,  e.g.,  for  generating  robot 
decisions  and  actions,  certainly  not  in  critical 
applications  such  as  autonomous  aircraft,  surgery 
robots,  or  industrial  robots  where  faults  can  cause 
irreparable harm to equipment and humans.

Instead, we believe that a robotic system should be 
able to provide guarantees about its behavior which is 
clearly  the  case  for  systems  based  on  executing 
programs,  i.e.,  algorithms  with  a  clearly  specified 
semantics.  The challenge then is how to combine the 
predictability and repeatability of robot algorithms (as 
they traditionally run on robots when programmed by 
humans) with the flexibility of human natural language 
task instructions which might contain ambiguities and 
lack important details?  We believe that it is possible to 
define a small subset of natural language (different from 
the  very  comprehensive  language  LLMs  can  handle) 
that is sufficient for instructing common tasks such as 
those typical for industrial manufacturing and assembly, 
and  thus  letting  robots  learn  new  tasks  through 
interactive  dialogues  with  their  human  instructors. 
Specifically,  we  believe  that  learned  representations 
should  be  explicit  and  transparent  symbol  structures 
with clearly defined compositional meanings that can be 
used  to  verify  any  step  in  the  learned  task  (either 
through  a  graphical  interface  that  represents  the 
instruction  or  through  a  verbal  rendition  in  natural 
language).  Then, once the details of a task have been 
verified  by  the  human  instructor,  the  robot’s  task 
representation can be approved by the human instructor 
and the robot is ready to execute the task at any time. 
Moreover,  any  such  task  can  then  immediately  be 
shared with other, possibly heterogeneous robots (either 
through local networks or through the cloud) which can 
then  also  perform  the  task  without  any  additional 
training.  The critical part here is the explicit symbolic 
task  representation  that  the  robot  will  learn  which 

makes  its  knowledge  easily  explainable  to  humans, 
different from the kinds of distributed numeric neural 
representations where it is impossible to say precisely 
what  a  particular  numeric activation or weight  vector 
represents,  and  where  all  explanations  are  essentially 
posthoc “interpretations”  of  the  data  (without  any 
assurance  that  the  hypothesized  interpretation  is 
correct).

In  the  following,  we  will  introduce  our  proposed 
architecture  framework  that  meets  the  above 
expectations  for  explicit  explainable  task 
representations  and  allows  for  execution  guarantees 
about all learned behaviors in ways that current LLM-
based models will never be able to provide.

3. The TRACS Architecture Framework

The  Thinking  Robots  Autonomous  Cognitive 
System (TRACS) architecture is the latest extension of 
our successful Distributed Integrated Affect Reflection 
Cognition  (DIARC)  cognitive  architecture  [4]  which 
has  been  successfully  demonstrated  on  a  variety  of 
autonomous mobile and stationary robots.

TRACS is an open, modular, distributed, cognitive 
robotic  architecture  that  can  operate  mixed 
heterogeneous multi-robot and IoT systems and learn to 
symbolic  task  representations  from  natural  language 
instructions.   Learned  tasks  can  be  narrated  or 
graphically  displayed,  used  to  provide  assessments 
about expected performance, executed at any time, and 
modified on the fly.  Different from LLMs and other 
neural  architectures,  task  performance  is  formally 
guaranteed, i.e., the outcome of a program is provable 
and if failure probabilities are known for each action, 
the overall failure probability can be guaranteed (e.g., 
see [5] for an example of how the system can assess its 
own performance and determine the overall success and 
failure probabilities).

TRACS combines a set of unique capabilities that 
make  it  the  perfect  integration  platform  for  many 
industrial  robot  applications  (such  as  factory 
automarion),  but  also  different  types  of  service  and 
social robots:

•  deeply  integrated  natural  language  capabilities 
allowing  for  complex  task  instructions,  including 
dialogues about expected task performance

• multi-modal interactions through speech, text, and 
GUIs based on context allowing for multiple physical 
and  virtual  representations  of  the  system in  different 
locations  (e.g.,  on  the  factory  floor  or  in  a  remote 
office)

•  one-shot  learning  from  natural  language 
instructions, demonstrations, and observations enabling 
rapid task learning (e.g., based on [6]), but also rapid 
correction of  learned knowledge and adaptation (e.g., 
[7]),  either  through  human  instruction  (e.g.,  “if  X  is 
true, do Y, otherwise do Z” to clarify when to do Y and 
when to  do Z)  or  through automated reasoning (e.g., 
analogical generalization)

•  assured  performance  with  guarantees  through 
explicit  pre-,  operating,  and  post-conditions  on  all 
actions  (e.g.,  constraints  in  linear  temporal  logic  are 
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incorporated  into  stochastic  policies  that  minimize 
constraint  violation,  conditional  assurance that  “if  the 
system  detects  X,  it  will  react  to  it”,  etc.)  and 
explanations

TRACS is implemented in the TRADE middleware 
which  provides  unprecedented  introspection  features, 
dynamic  mixed  cloud-based  edge-based  distributed 
configurations,  and  hybrid  symbolic-subsymbolic 
machine  learning  methods  with  provable  guarantees, 
providing the basis for software assurance.  TRADE is 
based on the successful agent development environment 
(ADE)  middleware  (e.g.,  [8])  which  to  this  day  has 
several unique features compared to other open-source 
middleware  like  ROS  (e.g.,  dynamic  system-wide 
introspection  and  notification  of  components  about 
available services).

TRACS allows for easy integration with commercial 
off-the-shelf  components  and  third-partymodules, 
components,  and  software  libraries,  through 
“component-wrapping”  (e.g.,  dynamically  loading 
libraries),  “component  participation”  (e.g.,  third  party 
components  utilizing  the  same  TRADE  middleware 
connection mechanisms as other TRACS component), 
or “socket connections” (e.g., to standalone systems that 
are not available for wrapping or direct participation). 
Any of  these methods can be performed dynamically 
during system operation. 

TRACS systems are highly parallel and can be run 
within  a  single  computational  processes  in  a  highly 
threaded fashion, or with components can be distributed 
over multiple OS processes across different  operating 
systems and host computers to meet computational and 

real-time needs. This also allows for running redundant 
modules to address hardware and software failures.

TRACS  has  extensive  integrated  fault  detection, 
fault  exploration,  and  recovery  methods  that  use 
system-wide  as  well  component-based  introspection, 
including the ability to automatically restart components 
on compute nodes on other available computers. 

Fig. 1 shows an overview of TRACS where  boxes 
indicate  components  with  particular  functions  with 
connecting arrows indicating the information flow and 
data types exchanged between components. The “Goal 
and  Skill  Manager”  manages  the  system  goals, 
involving  knowledge  stored  in  the  “STM/LTM 
Inference KB” component.  It  also includes an action 
execution component that robustly executes high-level 
plans  produced by the  planner/scheduler  manager,  on 

schedule,  by  coordinated  commanding  of  multiple 
subsystems. The natural language subsystem in consists 
of the “ASR/GUI” (automated speech recognizer/GUI 
input),  “NLU”  (natural  language  understanding), 
“Dialogue  manager”,  “NLG”  (natural  language 
generation),  “Speech  Synthesis/GUI”  (speech  or  GUI 
output) corresponds to the “human-machine interactions 
manager”.

4. Demonstration of TRACS in a Sorting Task

We  demonstrate  the  operation  of  the  architecture 
and the types of instruction dialogues it enables on an 
ABB GoFa robot in conjunction with a PLC controlled 
conveyor belt (a demo video of the task instructions for 
a  GoFa  robot  in  Robot  studio  can  be  found  here: 
https://www.youtube.com/watch?v=xZaEk5pbVZk).

Fig. 1: The TRACS architecture diagram showing the various functional components (white boxes) and the type of 
data exchanged among them (labels on links), see text for details.

https://www.youtube.com/watch?v=xZaEk5pbVZk
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The demo scenario (shown in Fig.  2)  is  a  sorting 
task in a conveyor belt setting where the GoFa robot has 
to pick up parts from the conveyor belt and place them 
on one of two tables depending on their length. 

 
The  teaching  interacting  for  the  sorting  task  then 

starts with the human instructor teaching the robot the 
various steps of the task:

Human instructor TRACS

I will teach you how to sort. OK

First, advance the conveyor belt. OK

Then go to pose conveyor. OK

Then verify that you can see a part. OK

If the part is longer than 75mm then get the 
part on table A.

OK

Otherwise put the part on table B. OK

That is how you sort. OK

Start sorting. OK

Fig. 3 shows the state of the task environment, in 
particular, the short red parts (less than 75mm in length) 
with one of them on Table B, the much longer yellow 
pars (over 100mm in length), and one blue part (80mm 
in length).  The latter two are supposed to be placed on 
Table A.

While  the  robot  is  executing  the  sorting  task,  the 
instructor now modifies the task, specifically changing 
the sort criterion.  

Human instructor TRACS

Modify action sort. OK, what will change?

Replace  the  part  is  longer 
than 75mm with the part is 
longer than 100mm.

OK, are there any other 
changes?

That is all.

The change takes effect immediately and the robot 
starts placing only items longer than 100mm on table A 
as per the modified instruction.

At the end when the task is completed, the yellow 
items longer  than 100mm are placed on Table  A,  all 
other items are placed on Table B.

5. Discussion

The above demonstration example was chosen to be 
simply on purpose in order to illustrate the core aspects 
of teaching new tasks and modifying them on the fly. 
More  complex  task  can  be  instructed  that  involve 
multiple robots,  different types of objects and actions 
that  need  to  be  performed  on  those  objects  with 
outcomes that have to be observed or measured.  For 
example,  filling  a  container  with  parts  from  another 
container until a certain weight is reached might require 
the use of  an IoT scale to measure the weight  and a 
pouring action that allows the robot to pour items at a 
certain rate (by tipping and maybe shaking the container 
from which it is pouring).  Assembly of a part might 
require  the  robot  to  put  various  pieces  in  place  and 
screw  in  screws  using  an  automated  screwdriver 
mounted on the robot.  It  might also require multiple 
robots to operate on the same part at the same time (e.g., 
one  robot  holding  the  piece  in  place  while  the  other 
attaches  a  part).   Inspection  tasks  might  require  the 
robot  to  take  precise  measurements  using  additional 
tools and devices. All of these tasks can be instructed in 
TRACS as long as task instructions eventually ground 
out  in  primitive  actions  and  perceptions  the  system 

Fig.  2: The  demo  scenario  showing  a  conveyor  belt 
with various colored items of different length that need 
to be sorted onto two tables.

Fig. 3: The task state execution state when the human 
instructor modifies the task.

Fig.  4: The final  state  of  the environment  when task 
execution completes.
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understands (e.g., a “grasp” action where the robot can 
detect  appropriate  grasp  points  on  an  object  it  can 
perceive).   Hence,  before  TRACS  can  be  used  for 
verbal task instructions, end users need to ensure that 
those  required  capabilities  are  in  place  (this  includes 
any  interactions  with  IoT or  other  devices  for  which 
special interface are needed).

6. Conclusions and Future Work
 
We  provided  a  brief  overview  of  the  TRACS 

architecture  and showed how it  can be used to  teach 
robots new tasks and quickly modify them on the fly. 
The presented types of interactions work on any number 
of robot arms (e.g., on Universal Robotics, Mitsubishi, 
etc.), mobile platforms, PLCs and other IoT devices as 
well as for any number of sorting, assembly, or other 
manufacturing tasks as long as interfaces to those other 
devices are in place and primitive actions using those 
devices are implemented and accessible through natural 
language.

In the future, we aim to provide additional learning 
capabilities that will enable robots to furthermore learn 
such  primitive  actions  together  with  primitive 
perceptions  without  expert  intervention as  well.   The 
idea is to integrate versions of reinforcement learning 
that can utilize simulated environments to quickly learn 
policies  for  primitive  actions  based  on  object 
perceptions that are co-learned.
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