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ABSTRACT
Effective robotic teammates should be able to interact with humans
in natural language about all task aspects, keep track of task and
team states to coordinate their actions, and handle unexpected
events autonomously. In this paper, we introduce a multi-robot
architectural framework for effective robot teammates that allows
robots to learn new tasks on the fly and monitor task execution to
be able to detect unexpected faults and events. It enables robots to
generate recovery plans, assess their effectiveness, and engage with
human teammates in problem solving dialogues. We demonstrate
the capabilities and operation of the framework in a complex mixed-
initiative human-robot medical assembly and delivery task.

CCS CONCEPTS
• Computing methodologies→ Discourse, dialogue and prag-
matics; Robotic planning.
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1 INTRODUCTION
Mixed-initiative human-robot teams are envisioned to be deployed
in many application domains on the ground, in the air, under water,
on Earth and in Space, in a wide variety of teaming tasks ranging
from collaborative manufacturing, to search and rescue missions,
to exploratory expeditions on remote planets, and many others.
Common to all applications is the hope that robots will reach a level
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of task understanding, problem solving, proactivity and natural
interactions that makes them genuine teammates, not just tools.

Despite exciting progress in robot perceptions, navigation and
manipulation, when it comes to teaming contexts, current au-
tonomous systems fundamentally lack almost everything required
from a genuine teammate: they are unaware of team capabilities,
tasks, and goals, they fail to cope with execution failures that need
to be addressed on the fly to proceed with the task performance,
and they lack the ability to interact with humans and adapt their
behaviors based on team dynamics. As a result, mixed-initiative
human-robot teams are still limited by the robots’ lack of team
awareness and lack of autonomous problem solving. Genuine arti-
ficial teammates, instead, would understand dynamically shifting
team and teammate goals, anticipate problems and plan around
them, cope with errors when they occur, and proactively intervene
in order to ensure successful task performance.

What is needed is an AI architectural framework that allows for
the integration of the cutting-edge robotic algorithms for percep-
tion, navigation, and manipulation, while providing high-level AI
capabilities for planning and reasoning as well as natural language
dialogue interaction for operating effectively in human teams. This
paper introduces such an architecture and details in a concrete
multi-human multi-robot mixed-initiative team task how the vari-
ous architectural features come together to support human-machine
teaming in light of unexpected events during task performance.

We describe a novel integrated multi-robot architectural frame-
work that can operate any number of heterogeneous autonomous
robots with different hardware, operating systems, and APIs, that
has the following capabilities:

• interactive task learning from human instructions with im-
mediate task performance and execution monitoring

• detection of plan execution failures and natural language
failure explanations

• introspection into system-wide resources to develop recov-
ery plans and provide automatic performance assessments

• problem solving dialogues with human teammates to deter-
mine the best possible plan alternative

After motivating key architectural capabilities, and showing
that no current architecture provides all of them, we describe the
proposed framework in detail and demonstrate its operation and
features in a mixed-initiative multi-human multi-robot medical
supply assembly and delivery task.
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2 MOTIVATION AND RELATEDWORK
In some sense, a robotic teammate would ideally be like many of
the fictional robots featured in sci-fi movies: while possibly dif-
ferent from humans in appearance, they would be human-like in
their cognitive capabilities, their understanding of the mission, and
their ability to cope with impediments to task performance. While
human-like cognition is too high a bar to reach in the foreseeable
future, it is very feasible to develop some key capabilities that will
make human-robot interactions in mixed-initiative human-robot
teams more natural for humans and more effective for the team.

First and foremost, robots should allow for task-based natu-
ral language interactions because natural language is the most
comprehensive, preferred way of human communication (although
there are also other ways including facial expressions such frown-
ing to signal disapproval, gestures to point to locations in the en-
vironment where actions need to be performed, and others). This
includes dialogues about mission goals and task assignments, exe-
cution status and progress, and potential performance impediments
and alternatives (e.g., [22]).

Second, robots should build and maintain shared mental mod-
els (SMMs) (e.g., [19]) that allow them to track the state of the team,
the environment, and ongoing activities in order to adapt their
behaviors to the team’s needs. This includes the ability to proac-
tively develop new plans, adapt existing plans when changes occur,
and to monitor plan execution to detect such deviations and faults.
This also includes using their SMM to update human teammates on
information they might require for their activities but which they
are not aware of or do not have (e.g., [15]).

Finally, robots should exhibit a certain level of autonomy, not
only in terms of their navigation and manipulation behaviors, but
more importantly at the level of their cognitive abilities to propose
hypothetical and alternative plans when execution of the current
one is no longer possible, and provide assessments of their effec-
tiveness through problem solving dialogues with humans. This also
includes being able to handle any hardware or software adapta-
tions necessary for the pursuit of those plans so as to not bother
human teammates with the minutia of robot configurations and
potentially overburden them with additional robot troubleshooting
tasks unless absolutely necessary (e.g., [9]).

What kind of architecture provides the above capabilities? A first
place to look might be classical cognitive architectures enabled to
operate on robots, like SOAR (e.g., [13]) and ACT-RE (e.g., [21]) as
they provide higher-level capabilities such as task learning through
natural language dialogues (SOAR) or the development of mental
models (ACT-RE). But the autonomy they provide to robots is lim-
ited as they cannot deal well with real-time action or different types
of execution failures, and they cannot operate multiple robots.

Robotic architectures, on the other hand, have traditionally been
distributed (due to real-time requirements), using middleware to
support the distribution (such as ROS [18], JAUS [20], YARP [14],
etc.). They integrate various algorithms for real-time perceptual,
planning and action processing, from 3D object recognition, to
simultaneous localization and mapping, to navigation, task, and
manipulation planning, to action sequencing. But they typically
lack components for high-level cognition such as common sense
reasoning, problem solving, and any form of team cognition.

Most recently, proposals have been advanced to combine large
language models (LLMs) with robotic architecture to make robots
instructible (e.g., see the attempts by Google, Microsoft [23],and
others [2]). Yet, there are two main challenges to be addressed
with such systems: (1) There is no currently no proposal for a
sufficient integration of perceptual streams coming from robots
into LLMs in away that would allow them to detect and react to task-
relevant changes in the environment without overwhelming them
(e.g., changes that should trigger re-planning, informing the human,
etc.). The same goes for integrating control processes (the current
model seems to be to just issue high-level commands to the platform,
but that limits the utility of LLMs and the reason why one would
want to use them in the first place, e.g., for their knowledge about
“how to do something”). And (2), natural language interactions are
far too slow for spoken human dialogues, especially in potentially
time-sensitive situations (a response time upwards of 6 seconds
when humans usually only tolerate at most one second because of
the processing time it takes for the LLM to generate outputs and
verbal feedback). In general, there is an intrinsic lack of real-time
appreciation (shared with classical cognitive architectures) that is
essential in many robotic domains as the world does not unfold
according to LLM update cycles. This is all in addition to their
lack of predictability (e.g., LLMs generate their outputs based on
distributional information and might “hallucinate” results) which
can obviously be dangerous in robotic domains.

In contrast to the above, we propose a polylithic architecture
framework that combines the strengths of high-level cognition such
as reasoning, planning, introspection, and natural language with a
real-time-aware distributed robotic architecture that can operate
multiple heterogeneous robots in parallel and coordinate their ac-
tions through a shared mental model that also keeps track of task
and environmental states as well as human task-based beliefs. The
architecture is based on “deep introspection” into its operation that
allows human teammates to have dialogues about its operational
status, the capabilities of the robots it controls, and the possible
problem solving strategies it can pursue with the robots. Like SOAR,
the architecture allows for interactive task learning through natural
language dialogues, but unlike SOAR it can coordinate the actions
of multiple robots through online reasoning about their capabilities
and report success likelihoods and time estimates about possible
plans. Moreover, the architecture monitors its task execution in
order to detect potential faults, and different from cognitive ar-
chitectures, has elaborate failure recovery mechanisms to get past
unexpected events during task execution.

3 ARCHITECTURE FUNCTIONALITY FOR
EFFECTIVE TEAMING

After a brief overview of the architecture which enable the three
essential features of effective robotic teammates, i.e., task-based
natural language interactions, sharedmental models, and autonomy,
we focus on interactive task specifications, multi-robot planning,
plan execution monitoring and fault recovery.

3.1 The Multi-Robot Architecture Framework
Fig. 1 shows the proposed multi-robot shared-mental model ar-
chitecture framework for effective robot teammates with white



Figure 1: The architecture framework for effective robot
teammates. Labels on white boxes indicate component func-
tionality, the labels on arrows indicate the types of data sent
across components. Stacked components indicate that mul-
tiple instances of the component type can be present in the
architecture (see text for details).

boxes representing components that operate in parallel in a dis-
tributed fashion (i.e., potentially on different computers) with la-
bels indicating component functionality (e.g., ASR/GUI=automatic
speech recognizer/graphical user interface, NLU=natural language
understanding, STM/LTM=short-term memory/long-term mem-
ory, KB=knowledge base, NLG=natural language generation, TTS=
text to speech). Stacked components (e.g., everything but the Dia-
logue Manager, STM/LTM, the Goal and Skill Manager, and the
Mission/Task planner in this particular configuration) can have
multiple instances of the same component type present in an ar-
chitecture instance which enables multi-human multi-robot in-
teractions in a systematic way.1 For each human teammate, the
architecture instantiates separate ASR, NLU, NLG, and TTS compo-
nents which can run on a separate device (e.g., a cell phone carried
by the human or a desktop PC) to distribute computational load
and parallelize natural language processing, which is essential to
keep the response time as short as possible as the number of human
teammates grows (as mentioned, this is a major problem for cur-
rent LLMs). Similarly, for each robot, the architecture instantiates
separate Sensory Inference/Perception components and Motion
Planning/Robot Controller components, which usually run directly
on their target platform with direct access to devices, enabling a
critical level of load distribution required for system scalability as
the number of robot teammates increases.

The four single-instance components then form the nexus be-
tween the natural language and the perception-action subsystems,

1In general, any component can be present multiple times in the system based on
teaming needs, e.g., with multiple goal and dialogue managers, reasoners and planners
for groups of robots that do not always need information from other groups and can
plan independently, allowing for parallel planning, reasoning, and interactions with
humans–in the limit case, all robots would have their own components/architectures
without any shared components. But having the above four shared components allows
for effective information sharing as required for SMMs without the need for explicit
communication and synchronization among robots. It is, however, sometimes useful
to have for each shared component a “backup” component that can step in should the
host on which the shared component resides become unreachable.

enabling shared mental models and team coordination. The Dia-
logue Manager (“DM”) is in charge of managing all dialogue inter-
actions with human teammates and can track those interactions,
i.e., what each person said at what time and what their utterance
means for the team.2 Such state updates can then be committed to
the STM/LTM/Inference/KB (“SLIK”) which implements a shared
knowledge repository and inference system used by all robots that
directly implements shared mental models by keeping track of task
and team states, but also beliefs and goals of human teammates.3

The Goal and Skill Manager (“GSM”) contains a database of
“Skills” which are semantically annotated sequences of calls to ef-
fector components (TTS/GUI, Robot Controllers) that result in in-
teraction with the relevant environment, as well as a collection of
“Observations” which are semantically annotated calls to perceptual
components that can verify if the execution of a Skill resulted in
the intended change to the world state (e.g. did the execution of
the “putOn(object,table)” skill result in the object being visible on
the table?). GSM also keeps track of all system goals and plans and
coordinates their execution on the connected robotic hardware.

The Mission and Task Planner (“MTP”) generates plans for goals
and constraints sent by the GSM. MTP handles the conversion of
state and goal information represented in architecture semantics
into the relevant representation required for the task planner being
used by the architecture instance. The resulting plans are then
translated back from the planner specific representation by MTP,
and added to GSM as new Skills. In addition to introspecting on the
individual steps which make up the execution of a Skill, GSM also
introspects on the overall execution of the Skills required to achieve
a given goal. It generates and updates performance assessments of
plans, based on current execution and monitors their execution to
detect any potential faults via Observations. If a fault is detected,
the GSM attempts to mitigate it (e.g., through re-planning).

All four components—DM, SLIK, GSM, andMTP—interact closely
during problem solving dialogues, when human teammates, for
example, ask for hypothetical plans that address changes in goals
or in environmental settings.

New architectural components can be instantiated and exist-
ing ones removed at run-time allowing, for example, for a set of
natural language processing components to be instantiated when
a new team human member joins with their communication de-
vice. Similarly, a new set of robot components will be instantiated
when a new robot joins the running architecture instance in which
case the GSM will discover the capabilities of the robot platform
through introspection on the functionality of the robot’s percep-
tion and actuation components. In this sense, different robots are
treated as different “bodies” of the “meta-agent” implemented by
the multi-robot architecture framework.

3.2 Knowledge Representation
To utilize the functionality of a task planner, introspect on its own
performance, and accommodate the dynamic addition and removal
2Note that since interactions can occur in parallel, conflicts can occur and must be
resolved by the centralized SLIK components where assertions and retractions of facts
and rules are forced to be sequential and can thus be deconflicted. With multiple SLIKs,
a distributed truth maintenance would be needed to ensure consistent information,
which is beyond the scope of this paper.
3SLIK in our case uses Prolog or ASP, but any KB/reasoning system can be used as
long as its representations can be translated into formats used by other components.



of components, the architecture must adhere to a consistent knowl-
edge representation which can accommodate both symbolic and
non-symbolic knowledge. And the architecture must provide mech-
anisms for this information to be accessed in a distributed fashion
as the architecture itself is distributed.

SLIK is the locus of symbolic knowledge, storing not only infor-
mation about the world, but also the format it uses to represent that
symbolic information (which is based on an augmented first-order
logical language). The architecture provides mechanisms which al-
low individual components to map component-specific information
about the world into this shared symbolic representation.

This core symbolic knowledge is composed of the Skills the ar-
chitecture can perform, the “Conditions” of those skills (the world
state that needs to be true in order for the Skill to be executed),
the “Effects” of executing a given Skill (changes to the world state),
the collection of Observations about world states that the architec-
ture can make, as well as the real world “Entities” on which Skills,
Conditions, Effects, and Observations operate, and the perceivable
“Properties” of those entities. Additionally, SLIK contains purely
symbolic knowledge that defines the semantic type system used by
the Skills, Conditions, Effects, Observations and Entities, as well
as any additional purely symbolic knowledge that is relevant to
the task domain (e.g., Alex is a trusted human interactant, and the
architecture should carry out their commands).

Since the above symbolic information can represent non-
symbolic component type information that is specific to the opera-
tion of a component, the architecture provides generic mechanisms
that individual components can use to appropriately ground their
relevant internal, possibly non-symbolic information.

In the case of Skills, the architecture provides a generic mech-
anism whereby component method calls that result in a given
behavior on the associated robot can be denoted, via semantic an-
notations, as executable Skills by the GSM. The GSM can associate
Conditions and Effects, represented as logical predicates that are
valid within the given instance’s knowledge representation defined
in SLIK, with these atomic “Primitive Skills”. The GSM tracks which
Skills are associated with which components and the associations
between those components and individual hardware instances.

Where Skills are denoted by semantic annotations on effector
components, Entities and their Properties are denoted by semantic
annotations on perceptual components. The architecture provides
an interface to perceptual components, whose implementation guar-
antees that their resulting precepts can be used within the architec-
ture instance’s knowledge representation. This interface includes
methods for getting a collection of all of the Properties a component
can perceive, getting a collection of all known entities with a given
Property or set of Properties, and checking whether a given entity
has a, heretofore unknown, Property. The types of Entities that a
given component can ground, and their relevant Properties may
vary significantly depending on the component. One component
may use a vision sensor to detect objects and their grasp points for
manipulation tasks. In this case, Properties would include the type
of object (e.g., box, bottle, basket, etc.) as well as features of the
object (e.g., color, shape). Another component may handle Entities
which represent coordinates on the map within a robot’s naviga-
tion system. Their properties might include names for waypoints
or other semantic mapping information like the room that it is in.

Some Conditions and Effects are purely symbolic, and their truth
values can be assesed by directly querying SLIK, however others
represent changes to the state of the world resulting from robot
behavior. In these cases they cannot be assumed to hold, and instead
their truth value must be observed from the environment. Similar to
Skills, the architecture provides mechanisms by which component
method calls can be given semantic annotations allowing them
to act as Observations of specified world states. Depending on its
component and associated methods, the form of an Observation
may vary drastically. A robot component may observe the state
predicate 𝑎𝑡 (𝑟𝑜𝑏𝑜𝑡, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) which may be the Effect of executing
a navigation Skill. In this predicate 𝑟𝑜𝑏𝑜𝑡 represents the identifier
of the robotic hardware of the component, and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is an Entity
representing a waypoint in the robot’s navigation system.When the
Observation is performed, the component checks that the robot’s
current position on the map is within a threshold distance of the
coordinates of the waypoint. If the difference in positions is beneath
the threshold, the Effect holds, and is asserted to SLIK, if not the
execution of the navigation action has not had the intended effect,
and the architecture deems it a failure. Other Observations may take
different forms like ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝑟𝑜𝑏𝑜𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡) or 𝑜𝑛(𝑡𝑎𝑏𝑙𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡), but
their role in the system is the same.

3.3 Interactive Task Specification
We have previously developedmechanisms that enable autonomous
agents to learn how to recognize new Entities using one-shot object
learning and how to use one-shot learning to acquire new Skills
through natural language dialogues, and how this new knowledge
could later be easily modified and updated.[5, 6, 12, 16] However,
the past work was limited to the instruction of individual Skills and
teaching interactions were completely driven by human instructors,
requiring them to have a good understanding of the architecture’s
capabilities and knowledge representation to be able to specify
Conditions and Effects for each Skill.

To alleviate this burden on human instructors, we have extended
the architecture’s task learning capabilities through the use of “In-
teraction Templates”, which allow the architecture to take a more
active role in the learning process. Additionally, these Interaction
Templates allow for task representations to be structured as goal
world states to be achieved by MTP. Re-framing a Task as a de-
sired world state instead of a step by step process decreases the
amount of knowledge the human teacher needs to impart, and as
such decreases the amount of knowledge required of the human.

Interaction Templates are themselves implemented as Skills
which provides them access to knowledge distributed throughout
the architecture. Interaction Templates can be tailored to specific
task domains to improve task performance through a set of task-
relevant assumptions. The remainder of this section describes the
general form of Interaction Templates. A task specific interaction
template can be found in the Demonstration section.

As with prior methods for human-prompted teaching, execution
is triggered with an initial utterance from the human instructor.
This prompt should contain information about which template
to use and a unique label for the new goal state that will be pro-
duced. The architecture then takes over and leverages GSM and
NLG to ask for relevant semantic information to verify that that



resulting goal state is valid and usable. The first piece of relevant
information is a definition of the goal state, a proposition or con-
junction of propositions that define the desired world state the
teacher wants the system to achieve. In order for this new goal
state to be meaningful for the system, each predicate that occurs in
goal descriptions must be groundable onto a piece of knowledge
with in the architecture’s knowledge representation, which in this
case means it must be the Effect of a Skill because the execution of
Skills is the manner in which the architecture instance can update
its information about the world. As such, the architecture instances
checks if every conjunct in the new goal state is present in SLIK. If
not, it requests that information from the human.

Like an Interaction Template, the process of requesting informa-
tion from a human is also implemented as a Skill. This Skill takes
in a target to request the information from, semantics it can use
to represent the request in Natural Language, and the form of the
resulting response semantics.

Once all of the predicates in the goal state have been validated,
the interaction template may then use coarse heuristics to validate
that goal is potentially achievable by the system. Specific heuristics
may vary based on the task domain, but typically when Entities or
Properties are involved in the goal state the Interaction Template
will check if instances of those Entities or Properties are currently
present in SLIK. If not, it will request additional information from
the human about the steps required for it to perceive those entities,
and assert the resulting goal representation to SLIK. The Interaction
Template also provides information to NLU and GSM about how
the new goal state can be instructed by the human.

Algorithm 1 Generic Interaction Template
1: given 𝑙𝑎𝑏𝑒𝑙 from ℎ𝑢𝑚𝑎𝑛

2: 𝑔 = askQuestion(ℎ𝑢𝑚𝑎𝑛,𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒 ,𝑔𝑜𝑎𝑙𝐹𝑜𝑟𝑚) ⊲ ask human for goal state
3: for predicate 𝑝 in 𝑔 do
4: if notValid(𝑝) then
5: askQuestion(ℎ𝑢𝑚𝑎𝑛,𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒 ,𝑝𝐹𝑜𝑟𝑚) ⊲ ask for clarification on

unknown component of goal state
6: end if
7: for predicate 𝑎 in 𝑝.𝑔𝑒𝑡𝐴𝑟𝑔𝑠 ( )) do
8: if notKnown(𝑎) then
9: askQuestion(ℎ𝑢𝑚𝑎𝑛,𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒 ,𝑎𝐹𝑜𝑟𝑚) ⊲ ask how currently

unknown Entity can be found
10: end if
11: end for
12: end for
13: assertDefintion(𝑙𝑎𝑏𝑒𝑙 ) ⊲ Adds knowledge to SLIK
14: updateVocuabulary(𝑙𝑎𝑏𝑒𝑙 ) ⊲ Updates GSM and NLU

3.4 Multi-Robot Task Planning
Planning problems are represented using the Planning Domain Def-
inition Language (PDDL) [3] by a planning domain and a problem
instance. A PDDL domain ⟨𝑇, 𝑃,𝐴⟩ describes the structure of a class
of problems where𝑇 is a set of types, 𝑃 is a set of predicates, and 𝐴
is a set of actions. A predicate 𝑝 (𝑡1, . . . , 𝑡𝑛) for types 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇
defines a relation that may hold between grounded objects of the
corresponding types. A PDDL action 𝑎 ∈ 𝐴 similarly has a signa-
ture with typed arguments 𝑎(𝑡1, . . . , 𝑡𝑘 ), along with preconditions
pre(𝑎), positive effects add(𝑎) and negative effects del(𝑎).

A PDDL problem instance ⟨Ω, 𝐼 ,𝐺⟩ provides a set of typed ob-
jects Ω, initial state 𝐼 and goal condition 𝐺 specified as grounded

predicates. Along with its domain, a problem instance fully specifies
a grounded planning problem. PDDL problems are solved using
planners, which find valid grounded plans to achieve the goal condi-
tion. The architecture can dynamically generate planning domains
and problem instances, and subsequently execute grounded plans,
by introspectively accessing its internal knowledge representations
and mapping it onto planning problems. Specifically, when a goal
state 𝑔 is submitted to GSM, the current world state as represented
in SLIK as well as the knowledge about available skills (that are
mapped onto planning domain actions in GSM) at submission time
are used to generate a PDDL planning domain 𝐷goal = ⟨𝑇, 𝑃,𝐴⟩
and problem instance Θgoal = ⟨Ω, 𝐼 ,𝐺⟩ where𝐺 corresponds to the
submitted goal.4

The first step in this process involves introspecting on GSM in
order to define𝐴, the set of actions in the domain by mapping Skills
to PDDL actions. A skill in the GSM can be denoted ⟨𝑠, 𝑐, 𝑒 ⟨𝜎, 𝑓 ⟩, 𝑏⟩,
where 𝑠 represents the Skill’s signature including its arguments and
their types, 𝑐 represents the conditions that need to be true in order
for the skill to be executed, 𝑒 defines the effects of executing the
Skill successfully (𝜎) or failing to execute it (𝑓 ), and 𝑏 represents
the body of the skill. Each Skill in GSM is used to generate a new
PDDL action 𝑎 where 𝑠 maps on to the signature of 𝑎, 𝑐 onto pre(𝑎),
and 𝑒 onto add(𝑎) and del(𝑎).

In the case where multiple robot components exist in the archi-
tecture instance, all of their Skills are available in GSM. Typically,
the representation of the correspondence between skills and their
associated robot agent is accomplished through the standardized
use of an actor role in the signature of a skill. If the system has
heterogeneous hardware platforms connected, a semantic type can
be provided for the actor role to define which Skills will be executed
on which hardware.

While 𝐴 is being generated, the system creates a record of all
of the predicate forms present in the conditions and effects used
to populate 𝐴. This set of predicates 𝐾 represents the symbolic
knowledge and corresponding world state information that could
potentially be modified and observed through the execution of a
plan to accomplish the specified goal. As such, the elements of 𝐾
contribute to the definition of 𝑃 and 𝐼 for the domain and problem
instance.

Entities and their Properties are incorporated into the PDDL
problem and instance via the standard interface provided by the ar-
chitecture for representing non-symbolic information symbolically.
We can denote the set of components in an architecture instance
that provide grounding information Φ, where for 𝜙 ∈ Φ, 𝜙 = ⟨Γ, 𝐸⟩,
where Γ represents the set of Properties for which the component
can produce symbolic/non-symbolic bindings, given as descriptive
logical predicates whose arguments are semantically-typed free
variables, and where 𝐸 represents the component’s set of currently
known Entities. For each 𝜙 , the subset of 𝐸 whose properties appear
in 𝐾 are added to Ω, their associated semantic types to 𝑇 , and their
properties which hold to 𝐼 .

For information that is purely symbolic and cannot be grounded
onto the external world, the system adds to 𝐼 and 𝑃 again using the

4Note that while the SMMenables centralized planning and thus simplifies the planning
problem, nothing hinges on it and decentralized multi-agent planning methods could
be employed instead.



information in 𝐾 . The architecture queries SLIK for information in
𝐾 that was not provided via grounding components. SLIK stores
facts and rules used for inference in various locations within the
system. SLIK additionally stores the semantic type hierarchy used
by the predicates in 𝐾 , and𝑇 and 𝑃 are populated with the relevant
type information based on the contents of 𝐾 .

A particular planning problem generated for a state-based goal
submitted either by a human, or as part of a larger learned behavior,
captures a deterministic planning problem with a joint action set
across the multiple embodied robots contributing to the human-
robot team. A problem solution takes the form of a deterministic
joint plan, where robot agents are coordinated within the problem
solution to take advantage of skills available to all robots, and
optimizing for which robots can be most efficiently used to satisfy
different requirements within a planning goal.

While plan solutions to these problems necessarily assume deter-
ministic state transitions and a closed-world, they are effective as a
tool for problem solving, communication, and autonomy for robotic
agents when working as a teammate with a human. Deterministic
joint plans can be easily communicated to the human as a linear
sequence of actions that will be taken, and each action taken as
part of the joint plan is associated with the embodied robotic agent
which will execute the corresponding skill. The compactness and
communicability of these plans enable direct communication with
human teammates, allowing the system to incorporate behaviors
such as informing the human about plans before execution, and ask-
ing permission to execute plans if authorization is needed, including
by estimating the execution time of a plan based on historical data.

3.5 Execution Monitoring and Fault Recovery
When executing generated plans, the architecture accounts for ex-
ogenous changes in state and external sensing through the use
of Observations of the conditions and effects of the Skills corre-
sponding to actions in the plan. These Observations work to ensure
that when closed-world assumptions made in plans are violated,
discrepancies can be caught early, and with specific knowledge
about which facts failed to hold based on perceptions.

The architecture is able to introspectively determine the suc-
cess or failure of every Skill it executes, including cases where
an Observation triggers a failure. In cases where a Skill fails, the
“Recovery Manager”, a sub component of GSM, may execute one
of a set of recovery polices which dictates how the architecture
instance might proceed to resolve the failure. GSM is able to detect
failure during several stages of execution: (1) during planning, and
during plan execution as (2) skill pre-condition checks, (3) primitive
skill execution failures, and (4) skill effect verification. When a plan
fails for any of these reasons, the Recovery Manager is consulted
to determine if recovery should be attempted.

The Recovery Manager keeps a history of failures and attempted
recoveries, as well as termination criteria based on how many times
the agent has attempted recovery from a particular failure. This
is necessary to avoid endless recovery attempts when the system
fails to make progress towards a goal. If the agent has not reached
the termination criteria, the Recovery Manager uses the Recovery
Policy Database (RPDB) to select an applicable Recovery Policy
based on each policy’s usage constraints and the available failure

information. The constraints defining when a particular Recovery
Policy is applicable can include (1) the failed goal, (2) the failed
skill during execution, (3) the semantic failure reason(s), and (4) the
failure status (i.e., PLAN, PRECONDITON, EFFECT, EXECUTION).
The policy constraints allow for a policy to be widely applicable
(e.g., do this for all precondition failures), or highly customized (e.g.,
only do this if skill S fails for reason B during execution of goal G).

If a valid Recovery Policy cannot be found, goal execution termi-
nates and the goal is marked as a failure. If, however, a Recovery
Policy is found, the policy is executed in the same way as a top-
level goal. Recovery policies are specified in the same scripting
language used to define non-recovery skills, which critically allows
for policies to execute skills and submit sub-goals that make use of
planning and recursive failure recovery. Note that since recovery
policies are represented as scripts, they can be learned through
interactions the same way as tasks.

Once a policy is successfully executed, control is returned to the
failed parent goal, where GSM generates a new plan for the goal
before resuming execution. Replanning is necessary to account for
any changes that the Recovery Policy might have caused, either
in the world (e.g., by executing skills), or internal state (e.g., by
modifying planning operators). If a policy fails during execution
(and no recovery policy can handle the failure), an attempt is still
made to replan for the failed goal as a last effort to achieve the goal
state before giving up.5 If no progress was made during the failed
recovery policy, it is likely that the goal will continue to fail in the
same way, but the Recovery Manager’s termination criteria will
prevent endless recovery attempts.

At any time during plan execution and failure recovery, the
system will generate performance assessments of plans that it can
communicate to human teammates, e.g., about the likelihood of plan
success and the expected duration. This is particularly important for
problem solving dialogues about how to address execution failures
to support human teammates in finding acceptable solutions (e.g.,
when a previous plan failed or is no longer applicable because of
changes in goals).

4 DEMONSTRATION
For the multi-robot architecture demonstration, we selected an
indoor medical assembly and delivery task (common in care
settings) that involves three human teammembers—a task teacher,
a task instructor requiring a medical kit, and a medical supplies
worker—and three heterogeneous robots—the Fetch assuming
the role of pharmacy kitting robot, the Temi assuming the role of
medical delivery robot, and the Spot being available as a helper.

The task performance shows (1) the initial learning of the assem-
bly task through interactive teaching dialogues, (2) the immediate
instruction to perform the task and the detection of a missing item
for assembly, (3) the notification of the human instructor of the prob-
lem and the proactive generation of an alternative plan together
with an automatic plan assessment, and finally (4) the execution
of the alternative plan involving a helper robot. We will discuss all

5Note that there are cases where even replanning does not help, e.g., if an object is too
slippery for the gripper to pick up, repeated pick-up attempts are not helpful, or if the
robot needs to go to a location but cannot access it. In those cases, asking humans for
help might be another recovery policy.



Figure 2: A scene from the demonstration.

four phases below in detail, showing how the four central architec-
tural components—the DM, GSM, SLIK, and MTP—work together
to enable the problem solving dialogue interactions. A video of the
demonstration can be found at: https://youtu.be/_PJIkCyULjQ. The
source code used to execute this demonstration can be found at:
https://github.com/mscheutz/diarc.

4.1 Task Setting
We used a previous architecture framework for all implementa-
tions [17] which supports and integrates the three robots with
their specific software and operating systems through architectural
perceptual and motor control components.

This instance of the architecture is deployed on a collection of
devices all connected to a local network and uses a middleware
[11] to communicate over the network. The core architecture (DM,
SLIK, GSM, MTP) and NLU & NLG, run on desktop PC running
Ubuntu 18; the Fetch robot runs ROS Melodic on Ubuntu 18 [24]
and utilizes MoveIt [1] for motion planing; the Spot Robot uses ROS
Noetic on Ubuntu 20 and the Boston Dynamics Spot API 6; and the
Temi uses the RoboTemi SDK 7 running on Android 11. The human
team members are using Android phones running Android version
11 or greater which contain ASR, TTS, and GUI components.

We utilize the Metric-FF planner [10], a forward-chaining heuris-
tic state space planner as the architecture requires much of the
functionality supported by Metric-FF, including the use of numeric
fluents: extensions to the planning domain representation that al-
low for numeric operations including counting and (in)equality
operations in state specification and operator effects. We also uti-
lize the methods described in [7] for the assessment of expected
plan success and duration for hypothetical plans generated during
fault recovery which, given a plan, will generate the likelihood
of the plan execution succeeding by sampling from success and
failure distributions of stored plan actions, using similar sampling
techniques to determine the expected plan execution duration.

The task environment consists of several indoor rooms con-
nected through doorways. The medical kit assembly station in the
“pharmacy” is part of a large room based on the 2019 ICRA FetchIt!
task [4, 8].

6https://github.com/heuristicus/spot_ros
7https://github.com/robotemi/sdk

4.2 Interactive Task Teaching
The teaching starts with the human teacher telling the robot “Define
new kit ‘medkit’” which prompts the retrieval of a “kit teaching”
Interaction Template. This is a domain specific Interaction Template
that was designed to reduce the burden of knowledge on the human
teacher when teaching a new type of kit. Below is the algorithm
used by the “kit teaching” Interaction Template.

Algorithm 2 Kit Teaching Interaction Template
1: given 𝑙𝑎𝑏𝑒𝑙 from ℎ𝑢𝑚𝑎𝑛

2: Predicate 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 = askQuestion(ℎ𝑢𝑚𝑎𝑛, “what container does it use?” ,
𝑜𝑏 𝑗𝑒𝑐𝑡 (𝑋 ))

3: if notValid(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ) then
4: askQuestion(ℎ𝑢𝑚𝑎𝑛, “could you show me what 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 looks like?” ,

𝑜𝑏𝑒𝑐𝑡𝐷𝑒𝑓 𝑖𝑛𝑡𝑖𝑜𝑛 (𝑋 ))
5: end if
6: if notKnown(𝑎) then
7: askQuestion(ℎ𝑢𝑚𝑎𝑛, “where is there a 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟?” , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑂𝑓 (𝑋,𝑌 ))
8: end if
9: List<Predicate> contents
10: Predicate 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = askQuestion(ℎ𝑢𝑚𝑎𝑛,“what does a 𝑙𝑎𝑏𝑒𝑙 contain?” ,

𝑜𝑏 𝑗𝑒𝑐𝑡 (𝑋 ))
11: while 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ≠ 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 do
12: if notValid(𝑝) then
13: askQuestion(ℎ𝑢𝑚𝑎𝑛, “could you show me what 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 looks like?” ,

𝑜𝑏𝑒𝑐𝑡𝐷𝑒𝑓 𝑖𝑛𝑡𝑖𝑜𝑛 (𝑋 ))
14: end if
15: if notKnown(𝑎) then
16: askQuestion(ℎ𝑢𝑚𝑎𝑛, “where is there a 𝑐𝑜𝑛𝑡𝑒𝑛𝑡?” , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑂𝑓 (𝑋,𝑌 ))
17: end if𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = = askQuestion(ℎ𝑢𝑚𝑎𝑛, “does a Medkit contain anything

else?” , 𝑜𝑏 𝑗𝑒𝑐𝑡 (𝑋 ))
18: end while
19: assertKitDefintion(𝑙𝑎𝑏𝑒𝑙 ,𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ) ⊲ specialized method to update

SLIK, GSM, and NLU for new kit based goal state

After executing the above Interaction Template and the asso-
ciated dialogue, the newly learned knowledge is stored in SLIK
and is ready for execution. When a task instructor asks the robot
to “deliver a medkit to alpha”, the Fetch robot can get to work
immediately.

4.3 Task Instruction
The task instruction prompts the DM to pass the goal semantics for
the medkit assembly goal to the GSM:
(and (fluent-equals(amount(physobj0area:area,painkiller:property),2),

(fluent-equals(amount(physobj0area:area,bandagebox:physobj),1))))

which, in turn, calls the MTP to generate a plan for the Fetch to
assembly a medkit as previously taught:
1: (goto fetch mblocation6 mblocation4 room1 room1)
2: (perceiveobject fetch physobj3 mblocation4 tablee bandagebox)
3: (goto fetch mblocation4 mblocation1 room1 room1)
4: (perceiveobject fetch physobj1 mblocation1 tableb painkiller)
5: (perceiveobject fetch physobj2 mblocation1 tableb painkiller)
6: (pickup fetch physobj2 painkiller tableb mblocation1)
7: (goto fetch mblocation1 mblocation0 room1 room1)
8: (perceiveobject fetch physobj0 mblocation0 tablea medicalcaddy physobj0area)
9: (putin fetch physobj2 painkiller physobj0 physobj0area mblocation0)
10: (goto fetch mblocation0 mblocation4 room1 room1)
11: (pickup fetch physobj3 bandagebox tablee mblocation4)
12: (goto fetch mblocation4 mblocation0 room1 room1)
13: (putin fetch physobj3 bandagebox physobj0 physobj0area mblocation0)
14: (goto fetch mblocation0 mblocation1 room1 room1)
15: (pickup fetch physobj1 painkiller tableb mblocation1)
16: (goto fetch mblocation1 mblocation0 room1 room1)
17: (putin fetch physobj1 painkiller physobj0 physobj0area mblocation0)

https://youtu.be/_PJIkCyULjQ
https://github.com/mscheutz/diarc
https://github.com/heuristicus/spot_ros
https://github.com/robotemi/sdk


However, the plan fails at step 2 of the execution when attempt-
ing to perceive a bandage box at table E (as there are no bandage
boxes on table E). Since the robot cannot detect any object at this
location, the action fails, and a failure justification of
not(objectAt(physobj3:physobj,tableE:area))

is generated. The DM uses the failure justification to inform the
human task instructor right away: “I failed execution because the
bandage box object is not at Table E” (this utterance also uses the
fact that the human task instructor did not know that there was no
bandage box on Table E). The action failure then also triggers the
failure recovery mechanism which, based on the recovery policies,
inspects the failure justification to attempt to create a new plan to
fix the failure, generating the new state-based goal
objectAt(physobj3:physobj,tableE:area)

that is then submitted to the GSM which gets the recovery plan for
it from the MTP:
1: (goto spot spotlocation0 spotlocation5 room1 room3)
2: (receiveitem spot physobj3 bandagebox pharmacy spotlocation5)
3: (goto spot spotlocation5 spotlocation1 room3 room1)
4: (putdownspot spot physobj3 bandagebox tableg spotlocation1)
5: (goto fetch mblocation4 mblocation6 room1 room1)
6: (pickup fetch physobj3 bandagebox tableg mblocation6)
7: (goto fetch mblocation6 mblocation4 room1 room1)
8: (putdown fetch physobj3 bandagebox tablee mblocation4)

The human task instructor is then informed of the recovery plan:
“I have found a plan to recover”. The GSM also uses its performance
assessment projection to determine the expected run-time: “It will
take about two minutes and nine seconds. Do you want me to exe-
cute it?” At this point, the human task instructor wants to know the
details of the recovery plan: “Describe your plan”, which prompts
the robot to narrate the plan. Upon human approval—“execute your
plan”—the robot embarks on getting bandage boxes onto Table E, so
that it can subsequently resume its plan. Because it needs a mobile
platform with a gripper to pick up and transport a bandage box, it
tasks the Spot robot to travel to the pharmacist’s office where it
knows it can ask the pharmacist for a bandage box: “Could I please
have a bandage box?” Upon receiving the box, the Fetch robot can
finish its plan and the expected world state of a bandage box at table
E has been restored. The system can now re-plan for the original
goal, adjusted for the new state of the world:
(and (fluent-equals(amount(physobj0area:area,painkiller:property),2),

(fluent-equals(amount(physobj0area:area,bandagebox:property),1))))

which results in the following adjusted plan:
1: (goto fetch mblocation4 mblocation1 room1 room1)
2: (perceiveobject fetch physobj1 mblocation1 tableb painkiller)
3: (perceiveobject fetch physobj2 mblocation1 tableb painkiller)
4: (pickup fetch physobj2 painkiller tableb mblocation1)
5: (goto fetch mblocation1 mblocation0 room1 room1)
6: (perceiveobject fetch physobj0 mblocation0 tablea medicalcaddy physobj0area)
7: (putin fetch physobj2 painkiller physobj0 physobj0area mblocation0)
8: (goto fetch mblocation0 mblocation4 room1 room1)
9: (pickup fetch physobj3 bandagebox tablee mblocation4)
10: (goto fetch mblocation4 mblocation0 room1 room1)
11: (putin fetch physobj3 bandagebox physobj0 physobj0area mblocation0)
12: (goto fetch mblocation0 mblocation1 room1 room1)
13: (pickup fetch physobj1 painkiller tableb mblocation1)
14: (goto fetch mblocation1 mblocation0 room1 room1)
15: (putin fetch physobj1 painkiller physobj0 physobj0area mblocation0)

Once the caddy is packed with all required items, a new goal is
submitted for delivery of the caddy to its final delivery location,

and a plan is generated. This plan includes both the placement of
the caddy on the Temi robot by the Fetch robot, and also makes use
of the Spot robot to open the closed door to the delivery location
alpha as the system knows that the door is closed and that alpha
is not accessible to the Temi (through introspection on the robot’s
capabilities) with a closed door (as the Temi cannot open a door).
The final delivery goal thus is
delivered(physobj0:physobj,temilocation0)

and the corresponding plan is
1: (goto spot spotlocation0 spotlocation2 room1 room1)
2: (pickup fetch physobj0 medicalcaddy tablea mblocation0)
3: (goto fetch mblocation0 mblocation7 room1 room1)
4: (opendoor spot spotlocation2 spotlocation3 room1 room2)
5: (goto temi temilocation1 temilocation2 room1 room1)
6: (handover fetch temi mblocation7 temilocation2 physobj0)
7: (goto temi temilocation2 temilocation0 room1 room2)
8: (deliverkit temi physobj0 temilocation0)

The plan is executed and the medical caddy is successfully deliv-
ered to the task instructor in Alpha.

5 DISCUSSION AND CONCLUSION
The demonstration showed that the proposed multi-robot architec-
ture is effective in interacting with human teammates in task-based
natural language dialogues: learning new tasks on the fly, informing
them of unexpected events, and proposing proactively developed
alternative plans to mitigate their effects. The demonstration also
showed that it can coordinate multiple heterogeneous robots with
different hardware and software capabilities in a task that can serve
as a proxy for many similar tasks (e.g., shopping in stores, kitting
in factories, etc.). By treating the multi-robot system as a “super
agent” with different bodies, the multi-robot architecture provided
a “single agent perspective” that is not only helpful for humans as
they do not have to keep track of the individual robots in the team,
but also for naturally implementing a shared mental model and
for reducing a multi-robot planning and coordination problem to a
single agent planning and execution task. This is also very practical
for fault recovery, as demonstrated by the Spot robot getting the
missing bandage item, and for supporting other robot actions, as
demonstrated by the Spot opening the door for the Temi.

While the demonstration highlighted important features of the
architecture, it by no means touched on all of them. For example,
it did not show multi-robot task instructions, online task modifi-
cations, or tracking and synchronizing human teammates’ belief
states, all of which are important capabilities of the architecture
supporting mixed-initiative teams. Yet, we believe that it showed
the effectiveness of the proposed framework for the development of
future robotic teammates. For one, the framework can be easily ex-
tended by additional architectural components as it is intrinsically
parallel and distributed, and can be used on any number of hetero-
geneous robots that will immediately be able to work in concert on
the team task. Finally, being fully instructible, the framework can
be employed in many team settings as long as the involved robots
have the basic actions needed to perform their tasks.
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