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Abstract

In this paper, we investigate the functional differences
between word cues and arrow cues in a spatial cuing
task and provide a novel computational model fit to the
empirical data that provides (1) a conceptually parsi-
monious explanation of the observed differences and (2)
evidence for the existence of two forms of symbolic at-
tentional control. We briefly discuss the implications of
the model for theories of spatial reference frames and
attentional control.

Introduction1

Over the past thirty years, researchers have used a vari-
ety of directional symbols to elicit covert visual orienting
within the context of the spatial cuing paradigm (Pos-
ner, Snyder, & Davidson, 1980). However, this research
has generally proceeded without explicit regard for the
processing constraints that the comprehension of such
symbols might place on the orientation of attention. In
this paper, we further investigate functional differences
between word cues and arrow cues and provide a com-
putational model that implies a novel, conceptually par-
simonious explanation of the observed differences, while
also providing evidence for the existence of two forms of
symbolic attentional control.

Background
Recently, Gibson and Kingstone (in press) have proposed
a new taxonomy of spatial cues that is based on the lin-
guistic distinction between projective and deictic spatial
relations (see also Logan, 1995). In their study, displays
containing two green circles and two red circles were
presented in the four cardinal locations, and observers
were instructed to report the color of the cued circle (see
Fig. 1). The distinction between projective and deictic
spatial relations can be understood by considering how
a word cue such as “above” and the corresponding arrow
cue each refer to spatial locations. Although both cues
refer to the circle that appears in the uppermost loca-
tion in the display, these two cues refer to this location in
two semantically different ways. In the word cue condi-
tion, the information provided by the cue states that the
target is above the cue. In this situation, knowledge of
direction is necessary to find the target. This knowledge
is thought to derive from a relatively complex process
in which observers impose their frame of reference onto
the cue and then identify the appropriate pole (“above”)
of the appropriate axis (Carlson, 2003; Carlson, West,
Taylor, & Herndon, 2004; Logan, 1994, 1995; Logan &
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Sadler, 1996). In contrast, in the arrow cue condition,
the information provided by the cue states that the tar-
get is there. In this situation, knowledge of direction is
not necessary to find the target. One does not need to
know that the target is above the cue; rather, one only
needs to know that the target is “there” or in “that”
location.

Figure 1: Experimental setup (see text for explanation).
Note, solid lines = green; dotted lines = red.

About a decade ago, Logan (1995) proposed an im-
portant empirical diagnostic for distinguishing between
projective and deictic spatial relations (though he used
different terms). After consideration of the computa-
tional processes that underlie comprehension of projec-
tive terms, Logan proposed the “conceptual frame hy-
pothesis.” According to this hypothesis, directions such
as “above” and “below” might be easier to access than
directions such as “left” and “right.” In other words, ob-
servers may first need to define the “above” and “below”
directions before they can define the “left” and “right”
directions. If so, then observers may be able to shift their
attention more efficiently in response to above and be-
low cues than they can in response to left and right cues.
In contrast to the conceptual frame hypothesis, Logan
proposed the “equal accessibility hypothesis” for deictic
spatial relations. According to this hypothesis, all four
locations should be equally accessible. Consistent with
these predictions, Gibson and Kingstone (in press) found
that observers were able to shift their attention more ef-
ficiently to the “above” and “below” locations than to
the “left” and “right” locations when word cues preceded
the appearance of the target display by either 0 ms, 250
ms, or 500 ms; but, observers were able to shift their at-
tention to each of these locations equally efficiently when
arrow cues were shown. In addition, Gibson and King-



stone also found that color discrimination latencies were
overall much slower in the word cue condition than in
the arrow cue condition across the three SOAs.

In summary, these previous findings suggest that word
cues such as above, below, left, and right express projec-
tive spatial relations, whereas, arrow cues express deictic
spatial relations. We will in the following further inves-
tigate this theoretical claim by (1) conducting an ad-
ditional experiment aimed at elaborating the difference
between word cues and arrow cues, and (2) providing a
computational connectionist model that is fit to the ex-
perimental data. By keeping the proposed components
of the model minimal, the model will allows to determine
a parsimonious set of functional components (necessary
to distinguish the processing of word and arrow cues in
humans).

Empirical Experiment and Results

There were two important effects observed in Gibson and
Kingstone’s (in press) study. First was the cued loca-
tion effect (RTs in the “above/below” cue condition were
faster than RTs in the “left/right” condition) which was
obtained exclusively in the word cue condition. The sec-
ond important result was the cue type effect (RTs in the
arrow cue condition were faster than RTs in the word
cue condition). Surprisingly, both effects continued to
persist even after cue-target SOAs of 500 ms. The cued
location effect observed in the word cue condition re-
mained constant across the three SOAs; the cue type ef-
fect was found to decrease as a function of SOA, but was
not eliminated. Because the time course associated with
each of these two effects has important implications for
fitting model parameters, the present experiment was de-
signed to provide a more detailed understanding of how
these two effects might change over time.

Method

Participants. Thirty-six undergraduates from the Uni-
versity of Notre Dame participated in this experiment in
partial fulfillment of a course requirement. Eighteen un-
dergraduates were randomly assigned to either the word
cue condition or the arrow cue condition. The observers
all reported normal or corrected-to-normal vision.

Stimuli. The experimental methodology was based on
the experiments reported by Gibson and Kingstone (in
press). Three displays were presented on each trial: a
fixation display, a cue display, and a target display. The
initial fixation display was a small fixation dot (0.38o in
diameter). The cue displays contained one of the two
cue types. The word cues were written in capital letters.
The words were all 0.68o tall, and ranged in length from
1.18o to 1.94o. The word cues replaced the fixation dot
when they appeared, as did the arrow cue which sub-
tended 0.48o X 1.18o of visual angle. The target display
contained four colored O’s that measured 1.26o in diam-
eter and were presented at the four cardinal locations,
approximately 4.37o from the central fixation point. Two
of the O’s were colored red and two were colored green
on each trial.

Procedure and Design. A typical trial sequence is
shown in Fig. 1. Each trial began with a fixation dis-
play for 500 ms followed by the cue display. Cue type
remained constant within each of the two groups of ob-
servers. The cues were presented equally often in each
of eight cue-target SOA conditions: 250 ms, 500 ms,
750 ms, 1000 ms, 1250 ms, 1500 ms, 1750 ms, and 2000
ms (the eight SOA conditions were presented randomly
during the experimental trials). Cues stayed on through-
out the duration of the trial to dissuade observers from
using verbal codes to maintain the spatial information
conveyed by the cue. The target display then appeared
and, together with the cue, remained on the screen until
a response was made. The cues were 100% valid and al-
ways indicated which one of the four O’s was the target;
observers’ task was to determine as quickly and accu-
rately as possible whether the target O was red or green.
The cue referred to each one of the four target locations
equally often, and on any given trial, each location was
equally likely to contain a red or green O. In this way,
observers could not determine (without guessing) how
to respond without the aid of the cue These contingen-
cies provided reasonable assurance that observers would
process the different cue types equally, even though such
processing might differ in complexity. Observers always
used their left hand to respond “red” and their right
hand to respond “green;” however, for half of the ob-
servers the response pad was arrayed horizontally (with
“red” to the left of “green”) and for the other half the
response pad was arrayed vertically (with “red” above
“green”).

Figure 2: Results from the human experiments.

Results
Mean correct RTs are shown in Fig. 2 as a function of cue
location and SOA in each of the two cue type conditions.
The present study was conducted to investigate two is-
sues. The first issue concerned the time course of cued
location effect observed between the “above/below” and
“left/right” locations in the word cue condition; and,
the second issue concerned the time course of the cue
type effect observed between the word cue and arrow



cue conditions. A three-way mixed analysis of variance
(ANOVA) was performed with cue type (word cues vs.
arrow cues) as the sole between-subjects variables, and
SOA (250 ms vs. 500 ms vs. 750 ms vs. 1000 ms vs. 1250
ms vs. 1500 ms vs. 1750 vs. 2000 ms) and cued loca-
tion (“above/below” vs. “left/right”) as the two within-
subjects factors.

As expected, cued location had a significant effect
in the word cue condition, but not in the arrow cue
condition, F (1, 34) = 12.52,MSe = 6470.36, p < .01,
for the cued location X cue type interaction. Further
ANOVAs conducted for each of the two cue type condi-
tions separately confirmed that there was significant in-
teraction between SOA and cued location in the word cue
condition, F (7, 119) = 2.38,MSe = 6665.42, p < .05,
but there was no evidence that cued location had any
effect on performance in the arrow cue condition (all
p′s > .15). Consistent with the findings reported by Gib-
son and Kingstone (in press), there was a large and rela-
tively consistent cued location effect observed in the 250
ms, 500 ms, and 750 ms SOA conditions (all p′s < .05);
however, the present findings also showed that the cued
location effect decreased in the longer SOA conditions.
In fact, with the exception of the 1750 ms SOA, which
show a relatively small but reliable cued location effect,
F (1, 17) = 4.95,MSe = 1533.68, p < .05, the effect of
cued location was generally found to be small and non-
significant when SOA was 1000 ms or greater (all re-
maining p′s > .05). Thus, these findings indicate that
attention can be shifted more efficiently in response to
“above/below” cues than in response to “left/right” cues
at relatively short SOAs; however, this advantage is di-
minished at longer SOAs.

The present results also showed that the overall RT
difference observed between the word cue and arrow cue
conditions did decrease as SOA increased, F (7, 238) =
13.17,MSe = 3796.76, p < .001, for the SOA X cue type
interaction. However, the overall RT difference observed
between the word cue and arrow cue conditions never-
theless remained significant at each of the eight SOA
conditions used in the present study (p < .05 or less
for each of the eight pair-wise comparisons). Notice also
that RTs appeared to have reached asymptotic levels in
the both the word cue and arrow cue conditions; thus,
the enduring effect of cue type observed in the present
study cannot be attributed to the use of insufficiently
long SOAs. In summary, the experimental results raise
two critical questions:

(Q1) cued location effect – why are RTs in the
above/below condition faster than in the left/right con-
dition when word cues are shown, but not when arrow
cues are shown? Previous answers to this questions have
critically involved the notion of a “reference frame” (see
the Background Section).

(Q2) cue type effect – why are overall RTs in the arrow
cue condition faster than the overall RTs in the word
cue condition? This is a new effect for SOAs beyond
500 msec for which no detailed hypotheses have been
proposed.

Connectionist Model and Simulations

The purpose of the computational model is to find the
simplest architecture that has both psychologically plau-
sible functional components and can be fit to the above
experimental data. Consequently, any model of the
above task needs to have, at the very least, a compo-
nent representing the features of the input image, a vi-
sual workspace in which visual representations can be
processed, an attentional mechanisms that can bias pro-
cessing in the visual workspace, a conceptual representa-
tion of locations and directions, a lexical representation
of words, and a decision mechanism to choose a target
color.

Given such a model, we will be able to provide ex-
planations for the cued location and type effects wit-
nessed in the present experiments. Specifically, we for-
mulate two hypotheses corresponding to the previous
two questions (Q1) and (Q2) that will be tested with
the model: (H1) the differences in response times be-
tween above/below vs. left/right conditions for words is
solely due to a difference in connection strength between
lexical and semantic representations of above/below vs.
left/right; and, (H2) the overall differences in response
times between the word cue and arrow cue conditions is
due both to the direct activation of concepts by arrows (as
opposed to the indirect activation of concepts by words
via a mediating lexical representation) and the direct
activation of processing areas in the visual workspace.

We start with a description of the general model ar-
chitecture and then proceed to the specification of the
particular model used to fit to the human data. We in-
clude a brief justification of the employed methodology
for parameter fitting and then report the results from
simulations with the model.

Figure 3: The basic model architecture, consisting of
six major architectural components. Lines with arrows
and circles depict excitatory or inhibitory connections,
respectively (see text for an explanation of the labels of
the connections).



Model Architecture
The general model architecture, depicted in Fig. 3, con-
sists of six main functional divisions or components,
each of which comprises several individual computa-
tional units that are connected via inhibitory (G1-G4)
and excitatory (G5-G13) connections (numbers of units
employed in the specific instance of the architecture are
given for each component in parentheses):

• The (pre-processed) input image (16 units), consist-
ing of representations for colored circles, words, and
arrows and their location in the image.

• The visual workspace (8 units), which has representa-
tions for colored objects and is used for visual compu-
tations to determine the target object.

• The directional attention (4 units), which can acti-
vate or suppress different locations in visual workspace
based on attentional focus.

• The word representations (4 units), which are acti-
vated by word images and, in turn, effect the semantic
mapping onto concepts.

• The direction concepts (4 units), which represent the
direction concepts of “above,” “below,” “left,” and
“right.”

• The decision making component (2 units), which de-
termines the color of the target object via an decision
threshold θ = 0.2 (for the difference in activation be-
tween the two node representing one of the two colors
each).

The employed computational units are simplified ver-
sions of the well-known “interactive activation and com-
petition” units (McClelland & Rumelhart, 1988), whose
change in activation is given by

∆act/∆t = netin − act · (netin + decay)

where act ∈ [0, 1] is the activation of the unit, netin ∈
[0, 1] the summed weighted input to the unit and decay ∈
[0, 1] is a constant decay factor (set to 0.05 for all nodes).
Moreover, the sum of all incoming connection weights
can be at most 1 (to guarantee that netin ∈ [0, 1]).

Specific Model Parameters and Parameter
Fitting
The specific model we used to model the empirical data
from human subjects was intended to be the smallest
model that can be fit well. Hence, we included only
those computational units that were necessary to com-
plete the task appropriately and excluded other units
that would have to be present to implement more accu-
rately the full functionality of a functional component
(e.g., we did not include units for word representations
in visual workspace as they are not necessary for the
explanation of the empirical data).

In the minimal model, units in one component are
typically connected to corresponding units in another

component (as indicated in Fig. 3). Units in the atten-
tion and decision making component are, in addition,
fully connected without self-connections via G4 and G1,
respectively, and units in the visual workspace repre-
senting the two colors “red” and “green” in the four dif-
ferent locations “above”, “below”, “left”, and “right”
are connected pairwise via inhibitory links G2. Finally,
directional attention units suppress all locations except
the one they represent in visual workspace via inhibitory
connections G3. The unit representing “left green” circle
in the input image, for example, is connected to the unit
representing “left green” in the visual workspace via G7,
which in turn has inhibitory connections G2 to “left red”
(as an object cannot have two colors at the same time),
and has excitatory connections G11 to the “left” concept
node via G11 (to activate the “left” concept if something
is processed in the left area of the visual workspace). The
“left” concept node, in turn, has an excitatory connec-
tion G13 to the “left” attention node, which suppresses
the activation of all other attention nodes via G4 (in a
competition process) and, moreover, suppresses the ac-
tivation of the representations in locations other than
“left” in the visual workspace via G3. The “left arrow”
node in the center of the input image then corresponds
to the prime and activates concepts directly via G12,
but also primes the “left” location in visual workspace
via G5. The word image “left” in the center of the input
image, on the other hand, first activates its lexical repre-
sentation via G8, which, in turn, activates the direction
concept “left” via G10. Note that G10 is used for con-
nections between the words “left” and “right” and their
respective direction concepts, while G9 is used for the
words “above” and “below” and their respective direc-
tion concepts. The reason for separating out these two
sets (instead of having one weight group with the same
values for all four weights between words and concepts)
will become discussed shortly. Note that all connections
labeled “Gn” (i.e., weight groups) have the same value
for each n (i.e., within a group).

Hence, the model has 13 free parameters that can be
used to fit the model to the empirical data. To reduce
the number of free parameters, we use the same value
(-0.065) for all inhibitory connections (G1 - G4) and re-
quire that the remaining excitatory connections be rea-
sonably similar in magnitude (i.e., between 0 and 0.1).
Since we wanted to determine the best set of the remain-
ing 9 values such that the difference between the model
data and the human data was a low as possible, it was
critical to determine a mapping between the response
time data from humans and the model simulation. As
in previous models (e.g., Scheutz & Eberhard, 2004),
we used the simple mapping f(t) = t/10 from millisec-
onds into update cycles (i.e., 100 msec of real-time cor-
responds to 10 update cycles in the model). Given the
mapping f , it is then possible to apply “external inputs”
(e.g., the prime “left arrow”) for a particular number of
update cycles to the corresponding unit in the input im-
age. These external inputs supply a constant activation
of 0.25 for the time the external stimulus is present.

For example, for an SOA of 250 msec the prime node



would be activated for 25 update cycles, before the other
nodes for the four colored circles would be activated in
addition. The number of cycles required from the time
the stimulus is applied to the time when the difference in
activation of the two decision nodes exceeds the thresh-
old θ is then taken to be the model’s response time for
an experimental condition (e.g., if 52 update cycles are
required after the SOA, the model’s response time is con-
sidered to be 520 msec.).

To measure the extent to which a given set of exci-
tatory weight values (for the 9 weight groups G5-G13)
fits the human data, we define the goodness of a set of
(nine) parameters as

G(p) =
∑
c∈C

‖ RTh(p, c) − RTm(p, c) ‖2

where C is the set of the 32 experimental conditions
(words vs. arrow combined with above/below vs.
left/right for 8 SOAs), p is a vector of parameter values
(in our case, p ∈ [0, 0.1]9 for G5 through G13), RTh(p, c)
is the average human response time in condition c for pa-
rameter values p, and RTm(p, c) is the model’s response
time (computed from update cycles via f). Clearly, the
smaller the G value, the better the fit.

Simulations and Results
Given G, it is possible to systematically vary all nine
parameters (G5-G13) in order to find the values p that
result in the smallest G(p) for the given architecture.
These parameter values then define the “best model”,
i.e., the model that deviates the least from the human
data (among all the considered models). The best model
can then be used as base model in two ways: (1) as the
basis for explanations for the effects seen in the human
data, and (2) as the basis for comparisons with other
models with different parameters values for connections
that are critical to the hypotheses (e.g., G5 or G9/G10).

In the first case, the degree of deviation of the best
model from the human data (i.e., the magnitude of G(p))
has to be sufficiently small, i.e., it has to meet some a
priori criteria to be considered a good enough fit to be
appropriate for generating explanations (e.g., all model
data completely within the 95% confidence interval of
the human data). In the second case, the goodness of
alternative models compared to the goodness of the best
model can be used as an indication of the extent to which
the particular relationships among parameter values in
the best model are critical for the explanation of effects
(e.g., the extent to which G5 connections are necessary).

Systematic search of the parameter space yields a
minimum of G(p) = 11128 (for G5=.005, G6=.032,
G7=.0325, G8=.04, G9=.035, G10=.029, G11=.065,
G12=.039, G13=.0545). This means that the models
data points differ by at most 19 msec on average from
the human data (this is at most 2 update cycles in the
model runs, hence very close to the minimum temporal
resolution of the model of 10 msec). The comparison
of the model results with the human data depicted in
Fig. 4 shows that the model matches the human data –
the above/below condition is faster than the left/right

condition for words, and the word cue condition is over-
all slower than the arrow cue condition, which shows no
effect of cued location. In particular, the fit for arrows
is very close to perfect. Most of the model’s deviation
comes at two places: (1) in the low SOAs (250 and 500
msec) the model’s difference between above/below and
left/right in the word cue condition is not as pronounced
as in the human case, and (2) the model does not repli-
cate the deviation of the human data for the 1000 msec
data point in the above/below condition for word cues,
which, upon closer examination, turned out to be an
artifact of one outlier subject and is statistically not sig-
nificantly different from the data point predicted by the
model. Moreover, all model data points are within 95%
confidence intervals of the human data, so we consider
the model appropriate as base model.

Figure 4: Comparison of the results from model simula-
tions and human data for the 32 conditions (see text for
explanation).

The base model directly confirms the first hypothe-
sis (H1) that the differences between above/below and
left/right in the word conditions are due to the differ-
ence in G9 and G10 connections. Note that in the con-
text of the model, the G9 and G10 connections are the
only causes for a difference between above/below and
left/right word conditions (even though it might be pos-
sible the differences are partly due to factors not cap-
tured within the model). This can been from the fact
that the goodness of models with identical G9 and G10
is worse than that of the best model (236.68 for models
with G10:=G9 of the best model, or 222.68 for models
with G9:=G10 of the best model; other models are even
worse).

To confirm hypothesis (H2) that differences between
all word and all arrow conditions are due both to the
direct connections G12 of arrows to the concepts and to
priming of the visual workspace via G5, we examined
the “reduced model” resulting from the best model by
setting G5=0. The goodness of that model, 83668, is not
only much worse than that of the best model, but the
reduced model also effectively eliminates the difference
between words and arrows. And while it is possible to



obtain a goodness of 41488 for a model G12=0.03 (which
is lower than the value of the best model for G5=0), this
model does not show the human data’s characteristics
when arrow cues were shown at short SOAs (for space
reasons we cannot include additional graphs). Hence, G5
is critical for the effect. This, however, does not make
the case yet that G12 is actually needed. Hence, we also
consider the model obtained from the best model by set-
ting G12=0, which has a really poor goodness of 915808.
Adjusting G5=0.054, we can improve the goodness sig-
nificantly to 37008 (while keeping G12=0), however, this
model also suffers from strong deviations from the hu-
man data when arrow cues were shown at short SOAs.
Hence, both connections, G5 and G12, are needed, con-
firming hypothesis (H2).

Discussion

By confirming (H1), the computational model provides
an alternative explanation of the cued location effect
that does not involve reference frames. Rather, the
difference in RTs is due to a lexical-semantics map-
ping where the weights between words for directions and
direction concepts are different for different directions.
Specifically, the weights for “left/right” are lower than
those for “above/below”. We hypothesize that this dif-
ference is due to the learned difference in the validity
of word-concept mapping: whenever the words “above”
and “below” are encountered, they always denote the di-
rections “above” and “below”, whereas the words “left”
and “right” sometimes, depending on context, can de-
note the opposite direction. Thus, from a statistical
learning perspective, one would expect the weights be-
tween the words “left” and “right” and their correspond-
ing concepts to be lower due to these “inconsistencies”
than if the words “left” and “right” always denoted the
direction concepts “left” and “right”.

While this explanation of the cued location effect in
terms of statistical learning is consistent with explana-
tions based on spatial reference frames, it is conceptually
simpler and based on a general mechanism that is not
specific to visual attention tasks. Moreover, the compu-
tational model demonstrates that no specific computa-
tional mechanism (e.g., one that would effect a mapping
between different spatial reference frames) is needed to
explain the empirical findings. It should be emphasized,
however, that this alternative explanation does not dis-
miss spatial reference frames as explanatory concepts
for other effects (or even this effect, for that matter).
Rather, the existence of a simpler explanation might
point to need for new experimental paradigms with more
sensitive measures to disentangle processing mechanisms
that do not involve reference frame from those that do.

By confirming (H2), the model provides an explana-
tion for the cue type effect which suggests that word and
arrow cues can bias the selection of visual information in
two distinct ways. The first pathway is unique to arrow
cues and involves the direct activation of spatial loca-
tions within the visual workspace. The existence of this
direct activation of spatial locations via arrow cues is
theoretically important and may explain recent findings

suggesting that arrow cues can elicit reflexive shifts of
spatial attention (Gibson & Bryant, 2005). The second
pathway is shared by both words and arrows and involves
the top-down activation of directional attention.

Conclusion
In sum, two important conclusions can be drawn from
the present study. First, we have provided an alter-
native, simpler explanation by way of a computational
model for the cued location effect observed in the word
condition. And second, we have provided new empirical
and computational evidence that word cues and arrow
cues can bias the spatial selection of visual information
in two distinct ways.
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