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Abstract In previous work [7], we proposed a general framework for defining agent-
based models (ABMs) and introduced two algorithms for the automatic paralleliza-
tion of agent-based models: a general version P-ABMG for all ABMs definable in
the framework and a more specific variant P-ABMS for “spatial ABMs”, which
can utilize the additional spatial information to obtain performance improvements.
Both algorithms can automatically distribute ABMs over multiple processors and
dynamically adjust the degree of parallelization based on available computational
resources throughout the simulation runs. However, they are not sensitive to inef-
ficiencies in the sequence in which agents in each parallel simulation instance are
updated.

In this chapter, we introduce a minimal framework for describing ABMs and pro-
pose various asynchronous scheduling algorithms for agent-based simulations that
address the update inefficencies of simulation schedulers. The proposed algorithms
work in conjunction with P-ABMG and P-ABMS and allow for efficient simulation
runs that can automatically and better utilize the asynchronous nature of parallel
distributed agent-based simulations (including split-ups of specific simulation mod-
els and dynamic load-balancing). We demonstrate the significant performance gains
of the proposed algorithms using an actual agent-based model used for studying
female choice and foraging in biological research.
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1 Introduction

Simulations of agent-based models (ABMs) have been successfully applied in a va-
riety fields to reveal and elucidate interaction patterns among entities in complex
systems that are otherwise difficult to detect and understand. Depending on the in-
vestigated problem, the entities – or “agents”1 – in agent-based models might take a
different form. Model varieties range from chemicals or simple cybernetic creatures
in artificial life, to web pages, computers, or human users in complex networks,
to game-theoretic players in economics, to groups of humans or animals in social
studies, biology, and anthropology (see [7] for more references).

What is common to all these diverse models is that they decompose the behav-
ior of complex systems into tractable actions and interactions of individual agents.
This is typically achieved by defining rules that determine the behavior of individ-
ual agents for all possible contexts in which the agent might find itself. A special
class of agent-based models, the spatial agent-based models, explicitly defines an
environment, which is typically a metric space. Every agent is situated in a particu-
lar location in the environment at any given time, but the location may change over
time (e.g., if the agent is moving). Every agent also has an interaction range that,
given the agent’s location, determines the set of other agents in the environment with
which it can interact at any given time; it cannot interact with or have any effects on
agents outside of its interaction range.2

From a computational perspective, agent-based models are interesting because
they often lend themselves to efficient, parallel implementations. One obvious way
to parallelize agent-based models, for example, is to spawn a separate computational
thread for each agent in a given simulation. These computational processes will take
care of computing the agent’s behavior and will of course have to be synchronized to
ensure that all agents are updated consistently – we will say more about this shortly.
Since for typical models, the number of agents in the model will by far outnumber
the cores or processors available on the computer running the model simulations, it
might also make sense to distribute simulations across multiple computers to better
utilize the intrinsic parallelism in agent-based models. There is, however, a criti-
cal difference between distributing simulations over multiple connected computers
and parallelizing a given model within one computational process on one computer
(e.g., using a parallel programming language like ADA, or a threaded program-
ming language like JAVA). In single process simulations, all agents can access the
same environment and can use synchronization mechanisms available within the
process, while in distributed simulations the environment has to be replicated on
each host computer, and synchronization between agents and environments have to

1 Agent-based models–sometimes also called “individual-based” models–are often used to simu-
late the behavior of complex real-world systems. They are used when possible state changes of
individual entities are known and can be encoded in rules, while no such knowledge exists for
global world states (e.g., the state given by the environment and all its agents).
2 Note that general agent-based models can be viewed as a special case of spatial agent-based
models in that all agents are located in the same location and can interact with all other agents at
any given time.
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be achieved using networked “inter-process” synchronization primitives. Whereas
parallelism within one computational process might be already implemented in the
employed simulation environment, dynamic parallelization via distribution of the
environment over multiple computers is not available in any of the common model-
ing environments. Augmenting such environments to support multi-host distribution
requires significant programming expertise, which modelers usually do not possess
or are unwilling to invest their time, given that their research interest lies in the sim-
ulation results and not the computational infrastructure.3 We believe that modelers
should not have to worry about computational issues, but should be able to define
their models in their favorite modeling environment, and the computational infras-
tructure should take care of running these models in the most efficient fashion given
the available resources.

We have previously developed algorithms that will support modelers in achiev-
ing good turn-around times of model simulations by automatically parallelizing and
distributing general and spatial agent-based models [7]. In this chapter, we extend
our previous ideas for scheduling agents in simulations of spatial agent-based mod-
els by introducing novel scheduling algorithms. These algorithms take advantage of
both the inherent parallelism in agent-based models and the interaction ranges of
agents in spatial models. We demonstrate that these algorithms can achieve a signif-
icant performance improvement over standard scheduling algorithms in the context
of our previous parallel and distributed algorithms [7] through a reference imple-
mentation in our SWAGES system [8]. This improvement is achieved by virtue of
tightly integrating the simulation scheduler with the distribution algorithm. While
the proposed algorithms will already be of great utility for modelers, they also pose
a variety of interesting open problems for future research, which we will briefly
address at the end of our exposition.

2 Distributed Simulations of Agent-Based Models

Various kinds of formalisms and frameworks have been developed to capture this
diversity of agent-based models (e.g., some models are essentially physics-based,
while others operate solely on a social level). We have previously attempted to define
general formal frameworks for hierarchical [6] and spatial [7] agent-based models
that were intended to be maximally inclusive. Here, we take the opposite approach
and attempt to make due with the smallest formal framework for spatial agent-based
models that is sufficient for defining and employing our distribution and scheduling
algorithms.

We start with the assumption that each spatial agent-based model (S-ABM) M
has an environment 〈EnvM 〉 that can be modeled as a discrete or continuous metric
space (e.g., with the Euclidean norm). Such models allow for the simulation of in-

3 While we don’t have formal evidence for this claim, in our experience modelers are happy to
put up with very long single computer simulation runs, before they are willing to entertain the
possibility of having to manually distribute their models.
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teractions among agents based on a notion of distance. Spatial distance is not only
crucial for understanding the behavior of many biological systems and organiza-
tions of agents in physical spaces (e.g., insect swarms, flocks of birds, schools of
fish, etc.), but it is also essential for the parallelization and distribution algorithms
we will review in this chapter. We also assume that for each agent A in M there is a
clearly defined interaction range IA that, given the position of all agents in the envi-
ronment, determines at any given time the set of agents it can (potentially) interact
with at that time.4 Finally, we assume that each model has a set of initial conditions
InitM and a set of terminating conditions TermM which determine the initial and
final states of a simulation of model M under those conditions. A (discrete-event)
simulation of M is a sequence of updates of all agents A such that for any point in
the sequence and any agent, all agents within its interaction range have had the same
number of updates since the start of the simulation. The rationale for this definition
will become clear later, for now just note that the standard updating sequence in
discrete-time simulations falls under this defintion. This sequencing which we call
“cycle-based update strategy” updates every agent in A before starting over and up-
dating every agent in A again, and repeatedly looping through the set of agents until
a terminating condition is reached.

2.1 A Minimal Framework of Agent-Based Models

We start by defining the notion of spatial agent-based model.

Definition 1 (Spatial agent-based model). A spatial agent-based model M =
〈EnvM ,ATypesM , InitM ,TermM 〉 consists of an n-dimensional bounded or un-
bounded metric space EnvM (consisting of locations that can be occupied by
agents), a set of agent types ATypesM , a set of initial conditions InitM , and a set
of terminating conditions TermM . InitM is a set of agents and TermM is a set
of functions from the powerset of AgentsM (the set of all possible agents in M
into {true, f alse}. An agent A is a triple 〈IDA,TypeA,StateA〉 which consists of the
agent’s unique identifier IDA ∈N (required to be able to dissociate agents that would
otherwise be identical with respect to their remaining information), an agent type
TypeA ∈ ATypesM , and an agent state StateA, where StateA = 〈LA, IA,TA,UA, ...〉
contains the agent’s location LA ∈ EnvM in the environment, its interaction range
IA ∈ EnvM , a translation function TA which determines for a given location the max-
imum distance an agent can travel within one update,5 an agent update function UA
mapping sets of agent states onto agent states, and any other pertinent information
about the agent particular to the model.6

4 Note that the interaction range is allowed to change over time, but at any given point in time it has
to be defined and uniquely determinable. Furthermore, note that we are not distinguishing between
“sensory” and “actuator” ranges here, see [7] for such a distinction.
5 We will discuss the reason for this function later.
6 Note that formally the definitions of “agent-based model”, “agent”, and “agent state” are co-
recursive, i.e., mutually dependent and thus mutually defined. This type of definition requires non-
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Equipped with the notion of agent, agent state, and agent-based model we can
now define what we mean by a simulation of an agent-based model:

Definition 2 (Simulation of an S-ABM). A simulation SM ,C0 of an S-ABM M is
defined as a finite sequence of configurations SM ,C0 = 〈C0,C1, . . . ,Ck〉 starting with
configuration C0 and ending with Ck. Each configuration Ci (0 ≤ i ≤ k) is a set of
agents of some type in ATypesM – we will use AgentsM to denote the set of all
possible agents supported by M . C0 is an initial configuration in InitM . Ck is a
terminal condition such that for some function f ∈ TermM f (Ck) = true and there
is no configuration C j with j < k and f ∈ TermM such that f (C j) = true. We also
require for all configurations Ci and Ci+1 (0 ≤ i < k) to be “consistent”, i.e., if C j
“follows” Ci in the simulation sequence (i.e., j = i+1) then C j is obtained from Ci
by (simultaneously) updating a subset of agents A ⊆Ci such that all agents A′ ∈Ci
whose interaction range intersect with that of some A ∈ A are (already) in A . An
agent A ∈Ci (part of a simulation 〈C0,C1, . . . ,Ck〉 of S-ABM M ) is said to be at the
n-th cycle if A has been updated n times, i.e., Un

A(State0
A) = StateA where State0

A was
the state of A in C0 and Staten

A is its state after n updates. Finally, a configuration Ci
is said to be at cycle n if all of its agents are at the n-th cycle.

Note that simulations of agent-based models are, by definition, consistent se-
quences of configurations where all subsets of agents with intersecting interaction
ranges are at the same cycle (this is a more permissive notion of configuration than
the one implicitly underlying typical event-based simulations, namely that all agents
in a configuration must be at the same cycle). Consequently, sequences of config-
urations that are not consistent (i.e., where agents get updated in an “inconsistent
fashion” as would be the case if an agent that was updated twice already got up-
dated based on its interaction with an agent that had only been updated once) are
not simulations of agent-based models. However, the above definition of “consis-
tent configuration” does not require that there be a “unique successor” of a given
configuration (as is typically defined for discrete-event-based simulations), because
for any given set of agents there could be many possible configurations that follow.
Consequently, an initial configuration will give rise to a directed graph of configu-
rations, call it the “configuration graph of M ”, which could be infinite (e.g., if the
sequence contains only non-final configurations of updates of the same agent that
does not change its state and update thus never lead to a final configuration) – we
will use C f gM to denote the graph of all configurations of M that successively
follow any configuration from InitM .

While we are, in general, interested in the shortest path through the C f gM since
that path will give us the desired result (i.e., the terminal configuration(s) we are
interested in), the shortest path may not be unique. And, moreover, it is possible
that there are two shortest paths that result in different terminal conditions. Stan-
dard discrete-time simulations do not usually distinguish between different terminal
states that differ only with respect to the ordering of the agents in the “cycle-based

well-founded set theory as a formal framework, where the “Solution Lemma” ensures that these
kinds of structures are properly defined and exist [1].
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update strategy” (i.e., there might be two agents in the same update cycle that cause
the termination of a simulation), although this problem can be easily avoided by
finishing the updates of all agents within the same cycle (e.g., by requiring as an
additional condition for termination that all agents are at the same cycle). We will
now formally define the notion of update strategy:

Definition 3 (Update strategy). An update strategy or update policy for an S-ABM
M is a mapping πM : C f gM 7→P(AgentsM ) from possible (consistent) configura-
tions to the powerset of all agents, which effectively in each possible configuration
selects a subset of agents for updating. An update strategy πM is consistent if for
all configurations C ∈C f gM with πM (C) = A and all A ∈ A at cycle k, there is
no agent A′ ∈C such that A′ within IA and A′ is at a different cycle l 6= k. A simu-
lation 〈C0,C1, . . . ,Ck〉 is updated based on a cycle-based update strategy whenever
for two configurations in sequence in the simulation all agent states are at most one
cycle apart (i.e., for any two configurations in sequence Cl and Cm with Al ∈Cl and
Am ∈Cm, if Al is at the i− th cycle and Am is at the j− th cycle, then |i− j| ≤ 1).

It follows immediately that cycle-based update strategies (such as updating
agents based on some ordering of their unique IDs) are consistent. While cycle-
based update strategies are commonly used in and appropriate for discrete-event
simulations on single computer systems, they do not necessarily give rise to good
performance in distributed simulations, as we will see in Section 3.

As a side remark, simulations of agent-based models, as defined above, are deter-
ministic and thus reproducible from initial configurations. However, it is sometimes
desirable to allow for “non-deterministic” state transitions (e.g., to model proba-
bilistic state transitions where each transition has a certain likelihood associated
with it). The above definitions can be straightforwardly augmented to allow for
non-determinism by dropping the requirement that agent updates be functions and
constructing them as annotated relations instead, where the annotation is a numeric
value in [0,1]–the transition probability–such that all annotations of transitions from
a given state with the same update sum to 1.7

2.2 Distributing Simulations of Agent-Based Models

Spatial agent-based simulation models can be automatically parallelized and dis-
tributed in different ways. One obvious way is to run each agent on its own proces-
sor. Before an agent can update its state, it needs to collect the current state infor-
mation from all other agents (running on other processors). Once the information is

7 The consequences for implementations are that explicit representations of random number gen-
erators and their seeds are necessary to be able to reproduce simulations. Reproducible simulation
runs are then defined in terms of the seeds of the random number generators and the initial states
(i.e., at any choice point the random number generator will deterministically produce a next “ran-
dom number”, which is used to determine the state transition).
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available, the agent updates its state and begins the update cycle again. All proces-
sors update their respective agents in the very same cycle-based fashion to ensure the
correctness of the results. Another possibility is to determine in advance whether an
agent needs the state of another agent for its update and to distribute agents based on
these dependencies (e.g., subsets of mutually dependent agents end up on the same
processor, which limits the exchange of state information to exchanges among local
agents). Other options are to predict or (empirically) determine the actual update
time of an agent and run computationally expensive agents on separate processors,
while running computationally cheap agents together on one processor.

The ideal case would be a setup where only one partition Π(C0) of the agents
in the initial configuration C0 has to be computed and after distributing and initial-
izing all agents on their respective processors, each processor can update its agents
independently and asynchronously until a final configuration is reached.8 Unfortu-
nately, this case is rarely true of agent-based models given that they are typically
used for the study of interactions among agents. Hence, additional mechanisms are
required to synchronize the states of agents residing in different simulations on dif-
ferent processors. “Synchronization” here means that if a simulation instance run-
ning on processor Pi requires the state of an agent E j from a “remote” simulation
instance running on another processor Pj, then the simulation on processor Pj needs
to be able to send this information back to the simulation on processor Pi.

Which of the above approaches works best will depend on various factors, in-
cluding the complexity of the update function of the involved agents, the distribu-
tion of agent types in a particular setup, the computational overhead of sending state
information requests and receiving them (including network latencies), the pool of
available processors (e.g., individual speeds, etc.) and whether this pool remains
constant throughout a simulation run or can change over time, etc. All these factors
(and their interdependencies) are important for efficient parallelizations of agent-
based models.

We start by formalizing the intuitive idea of splitting up a set of agents and as-
signing them to processors in a given set of processors.

Definition 4 (Split of Configuration). Let M be a S-ABM, C a configuration
in C f gM , and Proc = {P1,P2, . . . ,Pn} a set of available processors (“processor
pool”). Then a split PC

Proc of C is a mapping P : C 7→ Proc–called agent-processor
assignment–of agents to processors Pi in Proc.

Note that the agent-processor assignment does not have to be surjective as we
might not need all processors in the processor pool.

Corollary 1. A split PC
Proc induces a partitioning ΠC of a configuration C into i

disjoint subsets of agents ΠCi in C.

Proof. It is straightforward to check that the sets ΠCi := {A|A ∈C∧PC
Proc(A) = Pi}

for each Pi ∈ Rng(PC
Proc) form a partition of C (they are disjoint and their union is

C).

8 Note that detecting final configurations in a distributed simulation can be very tricky and will be
briefly addressed in the Discussion section.
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Each “subconfiguration” ΠCi is itself a configuration and can thus be updated
in the same way as C. In the context of parallelizing a simulation, i.e., a sequence
of configurations, we can simply split the initial configuration C0 of a simulation
among the processors in Proc and then continue to update the agents on each pro-
cessor Pi independently as long as the states of agents updated by Pi do not depend
on the states of agents updated by other processors Pj. If there is such a dependence,
then there are two options: (1) either the external state information has to be ob-
tained before the state of the local agents can be updated, or (2) both configurations
are “merged” before the update (we will consider both options below).

Hence, the critical aspect in parallelizing a spatial agent-based simulation is to
detect these dependencies automatically and communicate the necessary informa-
tion among processors. We will first formally define the notion of “update indepen-
dence”, and then propose a sufficient condition for detecting it in Section 2.3.

Definition 5 (Update Independence). An agent A1 is update-independent
UIC(A1,A2) of another agent A2 in a configuration C (with A1,A2 ∈ C), if the
updated state of A1 in each following configuration C′ of C is the same as in
each respective following configuration (C− A2)′ of C− A2 (i.e., the configura-
tion obtained from C by removing agent A2). A1 is called update-dependent on A2
in C if ¬UIC(A1,A2). A1 and A2 are called mutually update-independent in C if
A1 is update-independent of A2 and vice versa (see Figure 1). Two subconfigura-
tions C1,C2 ⊆ C are mutually update-independent UIC(C1,C2) if ∀A1 ∈ C1,A2 ∈
C2[UIC1(A1,A2)∧UIC2(A2,A1)]. A set of configurations C is update-independent if
∀C1,C2 ∈ CUIC(C1,C2). A split PC

Proc is update-independent if the set of all ΠCi is
update-independent.

In other words, the presence of the other agent Ai cannot have any effect on
A if its removal does not change the update of A. Note that update-independence
is not symmetric (that is why we need the additional notion of “mutual update-
independence”): it is possible that one agent A1 is update-independent in C from
another agent A2, while the latter is not update-independent in C from the former
(e.g., consider A1 with interaction range of 10 located in (0,0) and A2 located in
(0,50) with interaction range 100 for its sensors only; then A2 can sense A1 and might
change its behavior based on the perception without being able to affect A1, while
A1 is oblivious to A2’s presence). Moreover, update independence is not transitive
either for obvious reasons, nor is it reflexive (e.g., an agent’s behaviors might or
might not be completely independent of its own state).

Most importantly in the present context, update-independent configurations have
the nice property that they can be directly “merged”:

Corollary 2. Let C be a configuration and ΠCi update-independent configura-
tions obtained by splitting C via PC

Proc. Then update(C) =
⋃

update(ΠCi) (where
update() is applied to all agents in the configuration).

Proof. By induction on the size of the split. The base case, C = PC
Proc is obvious. As-

sume the Corollary has been shown for splits of size n. Then observe that for splits of
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Configuration C

Configuration C’

A1

A2

A1

A2

Fig. 1 An illustration of “update independence”. Two agents A1 and A2 are both about to move
in different directions (as indicated by arrows) in a configuration C. Since their interaction ranges
(indicated by dashed circles) within which they can affect their environment do not overlap, either
agent can be removed in C and will end up in the same position in C′ (on the right) if the reduced
configuration is updated as when C is updated with both agents. Hence, A1 and A2 are mutually
update-independent.

size n + 1, update(C) = update(PC
Proc) = update(

⋃
ΠCi) = update(

⋃−(n+1)
ΠCi ∪

ΠCn+1) where
⋃−(n+1) is the union over the first n configurations. By induction as-

sumption, it follows that update(
⋃−(n+1)) is the same as

⋃
update(ΠC−(n+1)), the

union of the updates of all configurations ΠCi except for ΠCn+1 . Now observe that
update(ΠC−(n+1) ∪ΠCn+1) = update(ΠC−(n+1))∪ update(ΠCn+1) given that the up-
date of an agent A ∈ ΠC−(n+1) does not depend on any agent in ΠCn+1 since A is
update-independent from all agents in ΠCn+1 (by def. of update-independence of
two configurations). The analogous argument shows that is is also true for all agents
in ΠCn+1 . Hence, update(C) =

⋃
update(ΠCi).

The fact that update-independent configurations can be directly merged suggests
a straightforward way to parallelize a given agent-based simulation with initial con-
figuration C0:

P-ABMG (C0,Proc,M ) C := C0
while ¬∃ f ∈ TermM : f (C) = true do

compute an update-independent split PC
Proc of C for Proc

distribute each subconfiguration ΠCi onto Pi in Proc
compute update(ΠCi ) on each Pi and merge all ΠCi into C
Proc := update(Proc)

end while
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It is a direct consequence of merging at the end of each update that the algorithm9

is “step-wise correct” in the following sense:

Definition 6 (Step-wise Correctness). Let A be a parallel algorithm for up-
dating a spatial agent-based simulation SM ,C0 = 〈C0,C1,C2, . . . ,C f inal〉 of an S-
ABM M . A is stepwise correct if it produces a sequence of split configurations
〈ΠC0 ,ΠC1 ,ΠC2 , . . . ,ΠC f inal 〉 such that Ck =

⋃
(ΠCk) for all 0≤ k ≤ f inal.

Corollary 3. P-ABMG is step-wise correct.

Note that the above algorithm is adaptive because the set of available processors
is updated after every configuration update. Hence the algorithm can take the new
set of resources (e.g., a larger number of available processors) into account when
the new split is computed.

Aside from the question of how to compute an update-independent split, to which
we will return shortly, it is clear that a parallelization of a simulation according to the
above algorithm is only worthwhile if the cost of computing such a split, distributing
subconfigurations and merging them subsequently is low compared to the cost of
updating agents. At the same time, if updating an agent is very expensive, splitting
agents based on update-independence might not be the best option in the first place.
For example, if C consists of a large subconfiguration Ci of update-dependent agents,
this configuration will be updated on one processor and thus incurs a computation
cost linear in |Ci|, which is in the worst case O(|C|). In such a case it is likely better
to further split agents in |Ci|, distribute them over different processors, and use a
mechanism to request and transfer the states of update-dependent agents in other
subconfigurations as part of the update of an agent on-demand.

2.3 Towards Exploiting Properties of Spatial ABMs

As already mentioned, the important missing ingredient that is needed to be able to
implement parallel algorithms like the above is an efficient way to detect update-
independence. Detecting update-independence directly based on the definition of
update-independence clearly defeats the purpose. In order to determine whether a
split is update-independent for a given pool of processors Proc would require re-
peated computation of a split, independent update of all subconfigurations, and then
a comparison of the merged updated subconfigurations to the update of the whole
configuration. This means that the computational cost (in terms of space and time)

9 Note that P-ABMG is an algorithm because it is always possible to compute a (trivial) update-
independent split in the following inefficient way: choose a split (at random), run the simulation in
parallel for one step, and then compare the result to the simulation updated without a split (i.e., run
on a single processor): if the simulation states are the same, then the split was update-independent
(repeat for all permutations). While this way of computing an update-independent split obviously
defeats the purpose of parallelizing a model in the first place (as the whole simulation needs to be
updated without being split), it shows that there is always a way of computing it, hence P-ABMG
is an algorithm.
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of parallelizing and updating the subconfigurations in parallel is higher than com-
puting the update of the whole configuration at once.

Fortunately, in spatial ABMs there is another criterion that is sufficient (but not
necessary) for detecting the update-independence of two agents: being within each
others’ interaction range. For, clearly, agents that are not within interaction range of
each other in a given configuration cannot possibly have any effect on each other,
by definition, and are thus mutually update-independent.

Note that being outside of each other’s interaction range is a “conservative” es-
timate for mutual update independence, because two agents can still be update-
independent even if they can sense each other (either because they do not take per-
ceptions of each other into account or because their perceptions coincidentally do
not have any influence on the update in the particular context). In some cases, a
finer-grained distinction may be possible and desirable (e.g., when a type of agent
always ignores perceptions of its own kind). The general difficulty connected to any
better derivation of potential interactions, however, is how to determine them auto-
matically from the agent update functions, which may not be possible in a practical
implementation if their representations are not explicitly accessible (and even then,
this will, in general, only be possible in a limited way).

Since each agent A, as part of its state, contains a translation function TA which
determines for a given location the maximum distance the agent can travel within
one update cycle, the set of locations that A can influence after k of its update cycles
is given in terms of T k

A (i.e., applying TA repeatedly up to k times to each location
in the set of locations returned after each application). In a continuous 2D metric
environment with TA > 0, this will be the radius of an expanding circular region
(as T k

A amounts to all locations within k ·TA). Call this expanding subspace of the
environment that results from the motion of an agent starting in a given configuration
Ci the agent’s “event horizon”:10

Definition 7 (Event Horizon). The event horizon EH(A,Ci,k) of an agent A starting
in configuration Ci is the set of all locations T k

A after k updates based on its location
in Ci.

Clearly, the event horizon of agents A in metric environments with TA > 0 is
monotonically increasing, symmetric, reflexive, but not transitive (which is impor-
tant for computing dependencies among agents). Figure 2 shows the expanding
event horizon in a metric 2D environment where TA models the “maximum speed of
locomotion” of A.

We can now refine the above algorithm for S-ABMs by merging only those sub-
configurations that have update-dependencies across updates. The others can con-
tinue to update without merging. To determine which subconfigurations need to be

10 The term event horizon has been previously used in a slightly different sense in the domain of
parallel simulation. E.g., “event horizon” in [11] refers to the set of events E that can occur before
the first consequent event E ′ generated by an event E ∈ E . Hence, it is the set of events E that can
be safely executed in parallel, because no effects of any events in that set are seen during that time
frame. This is similar to the way the term is used above, however, our usage refers to the first cycle
an agent could affect another agent, rather than when it will.
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A2 at n

A2 at n+4

A1 at n

Fig. 2 An illustration of the event horizon. Agent A2 moves from its position at cycle n to the new
position at cycle n + 4 (indicated by the arrow). The position of the agent represented by proxy
agent A1 at cycle n is known, but not thereafter. The dashed circles indicate the increasing event
horizon of that agent for subsequent cycles (including the maximum of the two sensory ranges–
sensory ranges are indicated by dotted circles). At cycle n+4 A2 intersects with the event horizon
of A1 indicating that the actual position of A1 is required before the update of A2 can be computed.

merged and which can continue, we introduce the notion of a “proxy agent”, which
serves as a (local) placeholder in a subconfiguration for the last known state of an
agent updated in another subconfiguration (on another processor).

Definition 8 (Proxy agent). A proxy agent A of an agent A (in the following always
denoted by a bar) consists of the agent’s state with the location LA replaced by a set
of possible locations LA and the update function UA replaced by UA (the function
that just repeatedly applies T (A) to LA on each cycle).11

Proxy agents merely have a representational function and cannot be updated like
regular non-proxy agents (i.e., they cannot change their state across configurations).
Yet, they are used to compute the event horizon of the agent in subsequent configu-
rations based on the last known configuration at which the proxy agent was updated
by repeatedly applying UA

k to each L ∈ LA. That way, given the state of a proxy-
agent A j (representing agent A j in subconfiguration C j) it is is possible to determine
the subspace of the environment on which an agent A j in configuration Ci could
exert any influence in subsequent updates of Ci and thus the number of updates of Ci
(based on the known states and state changes of agents in Ci) before any interaction
between A j and any Ai ∈Ci is possible.

We can now state an important lemma (for a proof, see [7]):

Lemma 1 (Interaction Lemma). Let C1 and C2 be two subconfigurations of a
configuration C containing only non-proxy agents and let C∗1 and C∗2 be the con-
figurations obtained from C1 and C2 by adding the proxy agents in Agents2 and

11 We will extend the bar notion of proxy agents to sets of proxy agents (e.g., if Agents is a set of
agents, then Agents is a set of proxy agents obtained from the agents in Agents).
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Agents1 that represent the states of some non-proxy agents in C2 and C1, respec-
tively. Moreover, let n be the largest number such that no non-proxy agent A1 ∈C1
has LA1 ∈ EH(A2,C1,n) for any A2 ∈ Ent2 and no non-proxy agent A2 ∈ C2 has
LA2 ∈ EH(A1,C2,n) for any A1 ∈ Ent1. Then for all k ≤ n, Un

M (C1)∪Un
M (C2) =

Un
M (C1∪C2). Or put differently, C1 and C2 are mutually update-independent for at

least the first n updates.

The Interaction Lemma confirms that two mutually update-independent subcon-
figurations C1 and C2 can be updated independently as long as none of the event
horizons of the proxy agents in either configuration contains a location of a non-
proxy agent in that configuration. When such a configuration is reached, the actual
state of the agent represented by the proxy agent needs to be obtained. Hence, we
can formulate the following refined version of P-ABMG for S-ABMs:

P-ABMS (C0,Proc,M )
oldProc := /0
k := 0
while ¬∃ f ∈ TermM : f (Ck) = true do

if oldProc 6= Proc then
compute an update-independent split PCk

Proc for Proc
distribute each configuration ΠCk,i onto Pi in Proc

Π ∗Ck,i
:= {ΠCk, j |ΠCk, j ∈ PCk

Proc∧ i 6= j}∪{ΠCk,i}
oldProc := Proc

end if
compute all EH(ΠC j ,C,k) for the last known state from some configuration C
for proxy agent A j that has a non-proxy agent A within EH(ΠC j ,Ck,k) do

get state of A j at k from processor j and update E j
end for
compute (Π ∗Ck,i

)’ := update(Π ∗Ck,i
) on each processori

update Proc
if oldProc 6= Proc then

merge all Ck+1 :=
⋃

UM (ΠCk,i )
end if
k := k +1

end while

It follows that P-ABMS is step-wise correct (see [7] for a proof sketch).

3 Update Strategies for Distributed Parallel Agent-Based
Simulations

The main advantage of P-ABMS over P-ABMG is that it does not require all simula-
tion instances running on different processors to synchronize after all agents in each
of the distributed simulation instances have been updated once. Rather, as long as all
non-proxy agents located in a given simulation instance are located outside the event
horizon of all proxy agents, the simulation instance can update its agents without re-
quiring information from any of the other simulation instances. On the other hand,
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when there are potential interactions, as determined by the proxy agents’ event hori-
zons, simulations do not necessarily have to be merged, instead it suffices to update
only the proxy agents based on the communicated locations of the non-local agents
(in other simulation instances) they represent. Consequently, it is also not necessary
to compute new update-independent splits before every update cycle (although sim-
ulations will still have to be merged and splits will still have to be recomputed, as
with P-ABMG, should the processor pool Proc change to preserve the adaptiveness
in P-ABMS). To elucidate how this asynchronous update could work, we start with
an intuitive example, and then look at the properties of asynchronous updates more
formally.

Suppose agent15,4, i.e., the agent with ID = 15 in simulation instance 4, requires
at its cycle 321 an update for its proxy agent proxy agent64,7 (i.e., the proxy agent
representing the agent with ID = 64 in simulation instance 7). Furthermore, let’s
assume that both simulation instances, 4 and 7, have been running asynchronously
up to that point without communicating with each other. When simulation instance
7 gets the request from simulation instance 4 to send the pertinent information (i.e.,
the reduced state) of agent64,7, agent64,7 is already at cycle 598 (in simulation in-
stance 7 due to the asynchronous updates). At first glance, the mismatch in cycle
numbers seems to prevent an information transfer that can be used in a way that will
keep the distributed simulation consistent. On further examination, however, it turns
out that it is completely unproblematic for simulation instance 7 to communicate the
current reduced state of agent64,7 and for simulation instance 4 to use it (instead of
the state of agent64,7 at cycle 321) – why is that? The answer lies in the event horizon
of proxy agent proxy agent15,4 in simulation instance 7, which represents agent15,4
from simulation instance 4: if there had been any chance for agent15,4 to interact
with agent agent64,7 before cycle 598, then agent64,7 would have ended up being
located within the event horizon of proxy agent15,4 in simulation instance 7 before
that cycle and simulation instance 7 would have requested an update (i.e., reduced
state) from agent15,4 in stimulation instance 4. However, since no such request oc-
curred based on our assumption, agent64,7 never ended up being located within the
event horizon of proxy agent15,4 and therefore never had a chance to interact with
agent15,4, at least until cycle 598. Since there cannot be any earlier interaction, sim-
ulation instance 4 can simply use the reduced state of agent64,7 at cycle 598 and
set its proxy agent proxy agent64,7 to that state, and even skip updating the agent’s
event horizon until all other agents reach cycle 598.

We formally summarize the above argument in a proposition:

Proposition 1. Let Ai,m and A j,n be agents with agent IDs i and j, respectively, and
let Sm and Sn be two simulation instances with Ai,m ∈ Sm at cycle m and A j,n ∈ Sn at
cycle n, with m < n such that for all cycles m≤ k≤ n A j,n, is not in the event horizon
of Ai,k (where Ai,k is the proxy of agent Ai,k in Sn). Then for all cycles m ≤ k ≤ n,
Ai,k is not in the interaction range of A j,k and vice versa.

Proof. Suppose there is a cycle l such that m ≤ l < n at which both agents are
within interaction range and suppose further that cycle c≤ m was the last time that
simulation instance Sn updated its proxy agent Ai,l based on the actual state of Ai,l .
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Since the event horizon of is the maximum range at any given cycle within which an
agent can interact and for no cycle c with j≤ c≤ n was A j,c within the event horizon
of Ai,c, by deviation of Ai,c, Ai,c could not have interacted with A j,c. Contradiction.

Intuitively, it seems clear that the ability of simulation instances to run asyn-
chronously and only communicate agent states when necessary should lead to per-
formance improvements, and we have indeed been able to show previously that
running simulations asynchronously using the above proposition leads to better per-
formance than running simulations in lock-step (as is required for P-ABMG) [7].
However, the extent of the performance improvement depends on several factors,
including the complexity of the agent update function and the distribution of the
agents across simulation environments, but most importantly on the update strategy
given agent update functions and distributions. Unfortunately, there is no general
update strategy that will yield optimal results, i.e., maximum parallelism among
distributed simulation instances.

To see this, consider two simulation instances with two agents each as arranged
in the left part of Figure 3. Agents A and D are non-proxy agents in simulation
instance 1 and proxy agents in simulation instance 2, and, conversely, agents B and
C are non-proxy agents in simulation instance 2 and proxy agents in simulation
instance 1. Each agent only moves in the direction indicated by the arrow pointing
away from its center. The dashed circles indicate the agents’ interaction ranges. We
further assume that the maximum change in location that agents can perform in one
update cycle is large enough so that agent D will be in the event horizon of proxy
agent B in simulation instance 1 and agent C will be in the event horizon of proxy
agent A in simulation instance 2, hence requiring both simulation instances to get the
updated states of the non-proxy agents from the other simulation instance. In fact,
an update strategy that decides to update agents C and D first, can lead to a lock-
step process where on every cycle updates for proxy agents are required, which
will, in turn, trigger updates for the remaining agents. As a result, a “cycle-based
update strategy” (which is the default in many simulation environments) is not a
good choice for the given scenario because it requires updates on every cycle and
forces both simulation instances to be in sync at each cycle, thus effectively forcing
the distributed simulation to run in lock step.

If, on the other hand, simulation instance 1 updated agent A and simulation in-
stance 2 updated agent B a few times before updating agent C, then the communi-
cated state information would show that agent A has moved out of the way and that
agent C could move freely for a certain number of cycles until it has the same cycle
number as proxy agent A. In fact, the best update strategy for a situation where a
simulation has to be run for a fixed number of cycles n is to first update agents A
and B for n cycles and then update agents C and D for n cycles. This is possible
because agent A will never be in the interaction range of any agent in simulation
instance 1, and agent B will never be in the interaction range of any agent in simu-
lation instance 2. Hence, they are update-independent and can be updated until the
terminating condition is reached. As a result, this update strategy will require only
one communication of the updated states of A and B (namely after the first update of
C and D), then C and D too can be run to completion for n−1 cycles – note that at
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least one update of state information is necessary given the initial condition, hence
this update strategy is optimal.

A

D

Simulation 2Simulation 1

C

B

A

D

Simulation 2Simulation 1

C

B

Fig. 3 Two simple scenarios demonstrating that a general optimal update strategy does not exist
(see text for details).

While is it possible to have optimal update strategies for particular scenarios such
as the above, it is now also easy to see that there cannot be a general optimal update
strategy that is best for in every scenario. Consider the right part of Figure 3, which
is the same setup as on the left except that all agents move in opposite directions.
Hence, the optimal update strategy is to “reverse” the update sequence from before,
starting with updating agents C and D for n cycles, followed by updating A and B for
n cycles (with one state update required for each proxy agent after cycle 1). Since
both scenarios are the same – same number of agents, same split – yet the optimal
strategy is different for each scenario, there cannot be a general algorithm that deter-
mines the optimal strategy based on the number of agents and splits alone. Rather,
the direction of movement, which is determined by the agent update function, is
essential for selecting the best update strategy, hence:

Fact 1 There is no general algorithm which for any given split of a spatial agent-
based model simulation can determine the best update strategies for each simulation
instance (without knowledge of the specific agent update function).

Even though there is no general algorithm to determine optimal update strategies,
it still makes sense to attempt to define heuristics that will improve over the above
lock-step behavior caused by the “cycle-based update strategy”. In the following,
we will discuss four proposals of such strategies and later show how three of them
can be an improvement over the “cycle-based update strategy” in an agent-based
model taken from a real-world modeling application.
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3.1 A General Alternative Scheduling Strategy for Agent-Based
Models

Alternative scheduling strategies for ABMs can be used to avoid some of the ineffi-
ciencies associated with “cycle-based update strategies”. Unlike the typical “cycle-
based update strategy”, which require repeatedly updating every agent in a given
configuration once (without updating one agent twice unless all other agents have
been updated at least once), alternative scheduling strategies relax this update con-
straint. Instead, they allow for agents to be at different cycles within one simulation
instance as long as these cycle differences do not lead to inconsistent update se-
quences.

In a way, alternative scheduling strategies apply the idea of P-ABMS, that parallel
simulation instances can run asynchronously as long as none of their agents are
within each others’ event horizon, at the level of an individual simulation instance:
all agents in a subset AS ⊆ C of a configuration C can be updated until one of the
agents A ∈ AS enters the event horizon of some agent B 6∈ AS. Note that for this
idea to work, we have to extend our notion of proxy agent to agents within the
same simulation instance. Specifically, we have to first select a subset of agents
AS = π(C) based on our selection policy π given the current configuration C such
that all agents A ∈ AS are at the same cycle n. Then we replace the remaining set of
agents RS := C−AS with proxy agents that will get updated along with the selected
non-proxy agents. This is done to detect possible interactions with agents outside of
AS at which point AS is no longer update-independent. To make this update strategy
work in a consistent fashion, it is important to pay attention to the cycle at which
each agent B ∈ RS is when their respective proxy agent is initialized: if B is at
a cycle ≤ n, then the event horizon of its proxy agent B has to be computed for
cycle n; otherwise the proxy agent will not be updated until its cycle number > n
is reached. We can summarize this scheme as the general alternative scheduling
algorithm AltSchedG:

AltSchedG (C0,π ,M )
C := C0
while ¬∃ f ∈ TermM : f (C) = true do

AS := π(C) (with all A ∈ AS at the same cycle k)
RS := C−AS (*)
RS := {B|B ∈ RS}
C := (C−RS)∪RS
while ¬∃A ∈ AS,B ∈ RS : LA ∈ EH(B,C,cyc(A)) ∧ ¬∃ f ∈ TermM : f (C) = true ∧
cycle(AS) < k +maxupdate do

C := update(AS∪RS)
end while
C := (C−RS)∪RS (**)

end while

There are several important points to notice about AltSchedG. First note that
AltSchedG is consistent (which follows from the Interaction Lemma) but will in
general not lead to the same simulations as cycle-based strategies. While the latter
are guaranteed to find a termination condition (if it exists) given that they perform
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a breath-first search, whether AltSchedG will find a terminal condition critically
depends on how the update policy π selects subsets of agents and on how long they
are updated using maxupdate (the maximum number of updates to be performed
on a set AS before another set is chosen again based on π). In infinite configuration
graphs, for example, a depth-first update strategy might fail to find a terminating
condition. A simple solution to this problem is to require of π that no agents in a
configuration C be selected that are more than a maximum difference δ cycles ahead
of any other agent in C.

Second, AltSchedG subsumes the standard “cycle-based update strategy” using
maxupdate = 1 and the policy π(C) = C for all C in a model M .

Third, with only minor modifications it lends itself to multiple asynchronous par-
allel runs: simply recursively apply π to RS at the line marked (*) yielding a set of
agents ASi and their associated proxy agents RSi until RSi = /0, and then merge all
updated non-proxy agent sets ASi to obtain the new configuration (instead of replac-
ing the proxy agents RS with their non-updated counter parts RS in the sequential
version). This way of parallelizing a single simulation instance might be preferable
over the non-parallelized version even though the parallelization incurs a small com-
putational overhead because it will be able to automatically utilize real parallelism
available on multi-processor and multi-core machines as well as idle processor time
on a single processor with only one core (e.g., due to wait times on network com-
munication in the context of P-ABMS, or various OS blocking).

Fourth, by being able to change the update sequence of agents, using AltSchedG
can lead to much shorter simulation runs if the update policy π is sensitive to ter-
minal conditions. For example, suppose in a simulation with 1000 agents the goal
is for at least one agent to reach a particular goal location in the environment and
the terminal condition is thus defined by one of the agents being in that location.
Moreover, suppose that the update policy π gives priority to agents that are close to
the goal location and that in the initial configuration a group of 10 agents which is
outside of the interaction range of other agents is headed directly towards the goal
location. To keep things simple, let us also assume that all agents travel at the same
speed. Repeatedly selecting these 10 agents for update will then cause the simula-
tion to reach a terminal state without ever having to update any of the other agents
(because they will never be in the event horizon of any of the other 990 agents). As
a result, the run time under the “goal-sensitive” policy π is about 1% of the runtime
of the policy corresponding to the “cycle-based update strategy”.

And finally, AltSchedG can be combined with P-ABMS and should lead to a
performance improvement for distributed simulations if general update policies can
be defined that they are sensitive to the update requirements of distributed simulation
instances, which we will address next.
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3.2 Combining AltSchedG and P-ABMS

The goal of combining AltSchedG and P-ABMS is to significantly reduce the over-
all runtime of parallel distributed simulations compared to the standard “cycle-based
update strategy”. Hence, we need to define general policies for AltSchedG that will
select agent groups for updates in a way that better exploits the parallelism of dis-
tributed simulations in P-ABMS. One of the main performance reducing factors that
we have seen in our previous implementation of P-ABMS (with the cycle-based
update strategy run by all simulation schedulers) is that simulation instances are
blocked, i.e., that they cannot update any of their agents without first having ob-
tained updated information on one of their proxy agents. Blocked simulations lead
to idle processor time and cannot continue to utilize their computational resources
until they get the requested updates. Hence, time wasted due to blocking can be re-
duced by any policy that is able to anticipate blocks in a remote simulation instance
and update its local agents in such a way that the update information is available
when requested by the remote simulation instance. Note, however, that giving pref-
erence to agent groups that will reduce remote blocking can be in tension with the
goal of selecting local agent groups (within each simulation instance) that are likely
to make the most progress towards reaching a terminal condition – while we briefly
return to this problem in the Discussion section, we will focus here on how we
can reduce the latencies and delays in running distributed simulations introduced by
remote blocks.

While it is in general not possible for a given simulation instance to detect
whether and when a remote simulation will require information about one of its
local agents, it is possible to compute conservative estimates that if executed by all
simulation instances will improve overall system performance. For example, we can
determine for each local agent the earliest cycle at which the local agent could be
in the event horizon of some proxy (i.e., remote) agent. An update strategy could
then decide to give preference to updates of those agents, which will cause the lo-
cal simulation instance to block earlier than it otherwise would have had it updated
other agents first. The benefit of such “early blocks” is that the remote simulation
instance can get the updated state from the blocked agent as part of the blocked
simulation’s request for an update on the proxy agent. Since the remote simulation
instance uses the same update policy and thus also gives preference to agents that
are likely to need update information in the near future, it is probable that it will
either already or at least soon have an update available. Hence, if all simulation
instances give preference to updates of agents whose state information will be re-
quested by remote simulation instances in the future, the overall effect is that cycles
with blocking agents will occur more frequently in the beginning of a simulation
sequence compared to the standard cycle-based updates. As a result, simulation in-
stances will likely still be able to update some of their (non-blocked) local agents
while they are waiting for state updates for blocked agents as opposed to a simula-
tion instance waiting to update any agents until the state information is received for
all blocked agents. In sum, policies that are sensitive to the information demands of
remote simulation instances will in many cases be able to reduce the idle time of
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parallel simulation instances, which in turn will lead to overall shorter simulation
runs (everything else being equal).

We now define four general policies that are intended to reduce the overhead
associated with blocking simulation instances in a distributed simulation based on
P-ABMS.

Remote Event First.

The Remote Event First policy projects out the next potential “event” with an agent
on a remote host (i.e., a local agent ending up in the event horizon of a remote
agent). Remote Event First intuitively has benefits because it increases the number
of agents that can be run at any one time in every simulation instance and reduces
the risk that the simulation instance is completely blocked waiting for state updates
from remote simulation instances. This method of ordering performs a depth-first
traversal through the configuration graph and therefore is not guaranteed to termi-
nate. Variations of Remote Event First (as mentioned above) can be implemented
utilizing mechanisms that disallow an agent to advance too far into the future with-
out catching up other younger agents in the same simulation instance.

Remote Blocks Then Remote Event First.

The Remote Blocks Then Remote Event First policy is a cooperative variation of
the Remote Event First policy that works with the other nodes to identify which
agents to run next. This policy can drastically improve performance because it will
quickly unblock a remote agent that is traversing though the simulation timeline.
When an agent becomes blocked, that simulation instance shares this information
with all of the other simulation instances causing them to give immediate priority
to those agents whose updates will allow the blocked agent to progress. If some of
the selected agents are also blocked, a simulation instance will revert back to the
Remote Event First criteria.

Youngest First.

A Youngest First policy simply chooses the agent with the lowest cycle time from all
of the potentially update independent agents. This method of ordering has a breadth-
first type of traversal through the configuration graph. The main benefit of such a
selection policy is that it is guaranteed to terminate if an exit criterion is reachable.
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Remote Blocks Then Youngest First.

The Remote Blocks Then Youngest First policy is a variation of the Youngest First
policy that cooperatively works with the other nodes to identify which agents to
run next as described above. As with the Remote Blocks Then Remote Event First
policy, it will revert to its base strategy of Youngest First when it cannot advance
agents whose updates are requested by remote simulation instances because they
are all blocked.

4 Implementation of P-ABMS and Experimental Evaluation

We implemented all proposed scheduling algorithms in our agent-based SWAGES
environment in order to provide a (non-optimized) proof-of-concept system that
tightly integrates the scheduler in the simulation environment with the paralleliza-
tion and distribution algorithm. To be able to demonstrate performance gains of
the proposed update strategies over the standard “cycle-based update strategy” us-
ing a practical example, we selected an actual agent-based model from a biological
modeling research domain of female choice [5]. We first discuss the details of our
implementation and then report the results from the empirical evaluations.

4.1 Implementation of P-ABMS in SWAGES

SWAGES is a JAVA-based agent-based simulation and experimentation server
intended for any kind of computing environment (e.g., from homogeneous Be-
owulf clusters to heterogeneous computers connected only via the Internet). It con-
sists of several distributed components that cooperate closely to achieve high re-
source utilization in a heterogeneous dynamically changing computing environ-
ment. SWAGES was used and extended to support the scheduling and monitoring
of the execution of simulations for both cycle-based and non-cycle-based update
strategies for agent based simulation experiments.

Without modification, SWAGES provides the communication infrastructure to
start, run, and supervise simulations. It also gathers and stores simulation results
in an easily accessible manner for future statistical analysis. The server can sched-
ule sets of simulation experiments (e.g., simulations with a variety of different initial
conditions) and ensure their timely completion by monitoring their performance and
detecting problems with the execution (e.g., because the load on a host is too high,
or the simulation crashed), in which case it can take any number of recovery actions
(from resuming a simulation on a different host if its state was saved, to restarting
it anew if no state information was available). Each simulation instance can run on
its own host and maintains a socket connection instance for all communication pur-
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poses (e.g., information about the current simulation cycle, simulation parameters,
etc. will be delivered on this connection).

SWAGES required several modifications to be able to implement and work with
non-cycle-update strategies. SWAGES was extended to support the merging of
distributed configuration and distributing simulation environments containing only
subsets of agents across a series of processors. Associated communication support
protocols were also added to provide a mechanism for simulation instances running
on different processors to access the new features. In order to facilitate non-cycle-
based update strategies, a single simulation instance must distribute the agents in
addition to the context in which they are to run (e.g., environmental specification,
agent initial conditions, agent models). This distribution could be performed inside
the centralized server if the server had explicit knowledge of how to initialize an
agent.

Since SWAGES can only start simulation instances, but cannot initialize agents
within a simulation instance (or perform any other operation within simulation in-
stances), parallelizing and distributing new simulation instances is therefore a three-
step process. First, SWAGES informs a simulation instance that a resource for dis-
tributed parallel simulation is available (i.e., that there is a host computer where a
new simulation instance can be run). If the simulation instance decides that it wants
to split off a subset of its agents and run it on another host, it accepts the resource of-
fer by sending back a serialized representation of all those agents that are supposed
to be run in the remote simulation instance. SWAGES, in turn, launches a new sim-
ulation environment on another processor and provides it with the serialized agent
set. From that point on, the local and remote simulation instances continue to update
their agents, with the local instance treating the serialized agents as proxy agents and
the remote instance treating all other agents as proxies. Whenever an update for a
proxy agent is required by a simulation instance (because a local agent ended up in
the even horizon of the proxy agent), the simulation instance will request an update
from the simulation instance running the proxy agent via SWAGES.

Updated state information for any agent needs to be shared among all simulation
instances. This can be done in peer-to-peer fashion using some broadcast or shared
memory mechanism, or it could be accomplished using a server to broker the com-
munication. SWAGES uses the latter mechanism and acts a global repository for
the updated agent states computed in the simulation so that proxy representation
can be updated on demand. The updating of a simulation instance and request for
proxy agent state is accomplished in a non-blocking manner to allow agents in other
instances of the algorithm to be chosen and updated during the slow I/O operation
of communicating the updates. During the communication phase newly generated
agent states are shared and received. The information of new update states of remote
agents is stored in their respective proxy representation to be used by the simulation
instance. If a requested agent state does not exist in the central repository, SWAGES
will store the request until the data becomes available and also inform the simula-
tion instance that “owns” the agent that another simulation instance requires updated
state information. This information can be used to influence the update policy in
AltSchedG (e.g., in the Remote Block policy).
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To implement the above policies and select a set of (unblocked) agents AS that
can be updated, we start with a set that contains a given agent A chosen by the
policy and then recursively add into A all agents within the event horizon of any
agent already in the set. This final set TC(A) forms a transitive closure of A that
contains all agents that are connected via their overlapping interaction ranges and
is thus update independent from all other agents in the simulation instance (i.e.,
agents in the set C−AS).12 If AS contains a proxy agent, then AS can be updated
only once until that proxy agent’s state updates thus blocking all agents in AS by
placing their updates on hold. Optionally, the list of agent states that were updated
is sent back to the SWAGES server for bookkeeping. If no agent states are updated,
a list of proxy agents causing blocking in that simulation instance is requested. The
SWAGES server responds with any updated agent states requested or previously
requested by that simulation instance. Additionally, a list of identifiers of agents in
that simulation instance that are causing blocking in other simulation instances is
also sent, which can be used in update policies.

4.2 Evaluation

We evaluated the three most promising update strategies defined above: Remote
Event First with Remote Blocks, Youngest First, and Youngest First with Remote
Blocks.13 In addition, we included the “Cycle-Based Update Strategy” as a stan-
dard control condition. For the simulation model, we picked a realistic model from
one of our current agent-based modeling domains, that of female mate choice in
treefrogs. In this model, male and female treefrogs are located in a swamp area.
Male frogs are stationary within the environment and indicate their presence and
readiness for mating by repeatedly making “mating calls” of fixed, but different
quality. Females initially enter the swamp from the rim, listening to the males’ calls
and repeatedly making choices about which of the males to approach based on the
“quality” of male’s mating call. Once a female has picked a male, she will approach
the male based on the directions she obtains from locating the source of the male’s
call (“phonotaxis”). It is known from the biological literature that females show
phonotaxis toward calls of males with higher pulse numbers (e.g., [9, 10]). Our spe-
cific model of female choice is intended to study the influence of male and female
spatial distributions on mating success of females (measured in terms of the over-
all male fitness) when females pursue one of two “choice strategies”: a best-of-n

12 Another way to view this concept is to consider the collection of agents as a graph of all agents
at a given time. Let each node represent an agent and directed edges represent that agent’s ability
to sense or influence the connecting node. All nodes that are reachable from a given node define a
transitive closure. Therefore, the collection of agents in a transitive closure is a set of agents that
can be updated independently from other agents in the simulation. Independent updating is possible
because agents outside of the transitive closure have no ability to influence or be influenced by
those agents inside the transitive closure.
13 Remote Event First was left out because it did not show sufficient performance gains in our
evaluation scenario even though it might work well in others.
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strategy where they pick the male with the best quality of the closest n males [3],
or a minthresh strategy where they pick the closest male whose quality is above a
minimum threshold [4] (for more details on the model, see [5, 2]).

For the evaluation experiments, ten females were initially positioned based on a
Gaussian function along the rim of the swamp. 27 males were initially positioned by
an inverse Gaussian function in the middle of the swamp (positioning more males
towards the critical rim areas, see the left part of Figure 4). The swamp was modeled
by a continuous rectangular area of 10×25 meters. In comparison, frogs are 4.75cm
in size and can leap up to 1.44cm in one hop. While the male update function does
not change the male frogs behavior unless a female frog is within mating range, in
which case the male will mate, the female update function will map perceived call
qualities onto the direction towards the chosen male and cause the female to leap (at
a fixed speed of 1.44cm/sec) in that direction. When a female is within mating range
of a male (4cm), she will attempt to mate (regardless of whether the male was the
chosen one or not, which models the biologically hypothesized behavior). A simula-
tion run starts with placing all agents (male and female) in their initial locations and
updating them until all females have mated (which is always guaranteed to happen
because there are more males than females in the environment).

For the evaluation of the four update strategies, we ran the same initial configu-
ration (keeping male and female distribution fixed as well as the distribution of the
male calls) under 10 different random split conditions distributed on a fixed pool
of processors (i.e., 2, 4, and 8).14 The right graph in Figure 4 shows the results,
which were obtained by averaging over the total simulation run-time (from start-
ing the SWAGES gridserver with the experiment startup file until the server quit)
across the different split conditions. As can be seen from the results, there is already
an immediate benefit of using any of the update strategies other than the standard
cycle-based strategy with more than one processor, even though the performance
gain really becomes more pronounced as the number of processors increases. In
particular, in the case of 8 processors, changing from the standard update strategy
reduces the overall execution by more than half for all cases. Note that the excel-
lent performance of the Remote Event First with Remote Blocks strategy has to do
with the fact the agent update sequence of this policy closely aligns with the optimal
agent update sequence of this simulation. The optimal agent update sequence of a
simulation is based on the characteristics of the agents in the simulation as well as
the simulation’s terminating condition. Since males do not and females select males
based on closest proximity then the projected remote event of a male-female inter-
section would actually accurately measures the simulations terminating condition
and therefore select the agent updates necessary to achieve the simulation termina-
tion quickly. Also, the small increase in overall run-time has to do with the additional
bookkeeping required for more processors, which is due to the low run-times of Re-
mote Event First with Remote Blocks that shows up explicitly while being absorbed
within the run-time of the other strategies (given that it is only a small fraction).

14 We did not include the one processor case since there is no significant performance difference
between any of the employed strategies.
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Fig. 4 The initial configuration of male and female frogs in the swamp (on the left) and the re-
sults (on the right) showing the mean overall simulation run-time (in seconds) together with their
standard deviation averaged over all split conditions (see text for details).

4.3 Discussion

The empirical evaluation confirms what we were expecting based on the rationale
for defining our update strategies, namely that coordinating the updates of agents in
distributed simulations using simple heuristics that re-order update sequences with-
out changing the “semantics of the simulation” (i.e., the simulation outcome) can
lead to significant performance improvements in the context of parallel distributed
simulations. It is important, however, to keep in mind that the exact gains of us-
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ing different update strategies will depend on several factors, at least on (1) the
complexity of the update functions of individual agents, (2) the agent distribution,
(3) the agent interaction range, (4) the agent translation function, (5) the size of the
world, etc. For the above strategies, we expect to see in general the best performance
gains for more complex agents where most of the processor time is spent on agent
update functions relative to the simulation book-keeping. In those cases, any way
that can re-order the update sequence to give priority to agents that either require
information from other simulation instances or could provide information to other
simulation instances (that are required at some future point) will reduce the overall
simulation run-time relative to that of the “cycle-based update strategy”, which is
oblivious to any interactions between parallel simulation instances (recall the exam-
ple from the non-optimality proof where the “cycle-based update strategy” can lead
to a lock-step behavior).

It is also important to note that while the above evaluation shows significant per-
formance improvements over the cycle-based update strategy, there is still room
for further improvement. For example, it is possible to use a finer-grained distinc-
tion about dependencies among agents that does not amount to computing the full
transitive closure (e.g., an agent really only needs information for agents that can
potentially interact with it at cycle n and not the full transitive closure). Hence, as
long as all agents in its interaction range are at cycle n, it can be updated and by
keeping its previous state at cycle n around it will allow other agents in its interac-
tion range to update at a later point without causing inconsistencies. This type of
optimization can lead to fewer blocked scenarios since there will be fewer agents
identified as dependent that would therefore be required to update at cycle n before
any of the agents advance to cycle n+1.

Another interesting question is how update strategies that are intended to reduce
remote blocks can be combined with heuristics that prioritize agents based on their
estimated distance to a terminal condition. It is currently unclear whether there is a
general answer to this question (e.g., to always prefer advancing agents close to ter-
minal conditions if there are guarantees for the heuristic such as being admissible).

Finally, we would also like to point out that richer agent-based simulations that
include, in addition to agents, environmental states (e.g., global or local tempera-
ture) or other entities (e.g., non-movable, but consumable food sources) will require
additional mechanisms for distributing and keeping track of those state across sim-
ulations instances effectively. This is also true of locations that can have properties
assigned (e.g., swamp land vs. mountain side).

5 Conclusions

In this chapter, we investigated the utility of using novel update strategies for agents
in simulations of agent-based models. These strategies differ from the standard
cycle-based update strategy with respect to the update sequence of agent updates
from initial to terminating conditions, but without changing any simulation out-



Adaptive Scheduling Algorithms 27

comes. We demonstrated that the performance of parallel distributed agent-based
simulations extended from our previous parallelization and distribution algorithms
can be significantly improved if the proposed heuristics are employed. Specifically,
we were able to achieve more than 50% shorter overall simulation run times in an
agent-based simulation model taken from a biological research domain that investi-
gates female choice behavior in tree frogs.

While any particular performance improvements will always critically depend on
the nature of the employed agents, the proposed heuristics seem promising across
the board. This is because they attempt to anticipate information exchanges between
distributed simulation instances that will likely be required at some future time and
prioritize agent updates of those agents whose state will be required.

Future work will investigate how the heuristics can be adaptively combined to
utilize their individual strengths. We will also investigate ways to improve the de-
tection of update independent subsets of agents that do not solely rely on event
horizons (which are only a rough estimate of possible interactions). In particular,
we are interested in exploring reflection methods that will be able to gain and utilize
information in the agent update function about whether an agent is likely to inter-
act with another agent. Finally, we will also look at replacements for the transitive
closure computation which is expensive and not needed in its entirety to determine
subsets of agents that can be updated.
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