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Chapter 1
An Overview of the SimWorld Agent-based Grid
Experimentation System

Matthias Scheutz and Jack J. Harris

1.1 Introduction

Computational modeling is becoming increasingly important, even in fields that
have not traditionally used computational models (e.g., archeology or anthropol-
ogy). Researchers in both the natural and the social sciences employ computer sim-
ulations to elucidate the time-course of physical and non-physical processes, or to
explore the dynamics among different interacting entities, in an effort to discover
new relationships that might lead to generalizable laws or to verify hypothesized
principles as part of the empirical discovery loop (Peschl and Scheutz, 2001). How-
ever, there are two main obstacles to making effective use of today’s (and likely
also tomorrow’s) computing environments. First, navigating the complexity asso-
ciated with running large-scale computational simulations requires detailed knowl-
edge about the available high performance computing environments. Such prerequi-
site knowledge includes: how to set up a simulation on the host computers (possibly
including compilation on the target platform with installation of all the required
libraries), how to schedule sets of simulations through the batch system, how to
retrieve the resultant data, and how to troubleshoot if simulations do not finish (be-
cause they were terminated by the cluster’s batch system for taking up more than
the allocated CPU time, memory or storage allotment). The second obstacle is the
management of increasingly large data sets that are the result of explorations of
larger and larger model parameter spaces, both in terms of the dimensionality and
sampling density of the space. This includes the preprocessing of data to facilitate
statistical analysis and data mining, and the visualization of interesting relationships
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among data sets. Either one of these obstacles is usually prohibitive for non-experts
and will ultimately prevent modelers from using high performance computing re-
sources to run large-scale simulations.

While there are certainly other challenges involved in making computational
modeling more accessible to non-programmers (e.g., better modeling environments
and tools for developing computational models in the first place), in this chapter we
will focus on the above two challenges related to the high performance computing
environment and the subsequent data analysis and visualization phase. Our goal is
making the computational modeling process in high-performance computing envi-
ronments as easy and intuitive as possible for modelers. This includes providing
a computational framework that can automatically schedule, parallelize, distribute,
and run simulations, using different strategies for the exploration of large parameter
spaces. Moreover, it includes tools for automatically collecting data, organizing data
in databases (that enables efficient data mining and statistical analyses), and visu-
alizing data in effective, easily specifiable ways. Ultimately, we would like to have
a framework that supports the entire computational modeling process (Peschl and
Scheutz, 2001): from developing the first model, to testing and running it, to collect-
ing, analyzing and visualizing data, to comparing data to empirical findings, revising
the model, testing it, and so forth. Furthermore, this infrastructure should attempt to
minimize model run times to speed up this process, for example, by automatically
parallelizing the model (as we do not want to require modelers to be able to imple-
ment parallel code that can be executed on a cluster). Moreover, it would be desir-
able if the infrastructure could automatically handle vastly heterogeneous comput-
ing infrastructures (e.g., from dedicated homogeneous high performance computing
environments, to heterogeneous ad hoc clusters with different operating systems).
It would also be desirable for the infrastructure to dynamically adjust to changing
computing environments since computational resources and resource availability
can vary greatly over time and across research settings, and typically very specific
knowledge is required to schedule and run processes in each environment.

To this end, we present “SimWorld Agent-based Grid Experimentation System”,
SWAGES, which has been under development for over a decade in our lab. SWAGES
is used extensively for various kinds of agent-based modeling. In particular, SWAGES
was co-developed with SimWorld1 (Scheutz, 2001), an agent-based modeling en-
vironment built on top of the Birmingham SimAgent agent toolkit2 (developed
by Aaron Sloman). SimWorld is a generic simulation environment for spatial
agent-based models that provides both interactive and batch mode execution and
permits the definition of agent-based models in several programming languages. It
has been used extensively for simulations of artificial life scenarios (e.g., Scheutz
and Schermerhorn, 2008), evolutionary investigations (e.g., Scheutz and Schermer-
horn, 2005), social simulations (e.g., Scheutz and Schermerhorn, 2004), swarms-
based simulations (e.g., Scheutz et al., 2005) and individual-based biological mod-
els (e.g., Scheutz et al., 2010). It has also been used in education for teaching model

1 SimWorld was the first simulation environment supported by SWAGES, hence the “SimWorld”
prefix in SWAGES, even though it now works with many simulation environments.
2 http://www.cs.bham.ac.uk/research/projects/poplog/packages/simagent.html
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exploration and model development (e.g., Scheutz, 2008). SimWorld was the first
simulation environment to support the automatic parallelization algorithms spec-
ified by and implemented in SWAGES (Scheutz and Schermerhorn, 2006). While
the re-implementation of SimWorld in Java is still under development, several ad-
ditional asynchronous scheduling algorithms have already been included. Evalua-
tion of these asynchronous scheduling policies has demonstrated performance gains
compared to the typical cycle-based scheduling policy used in the previous version
of SimWorld and most other discrete-event simulators (Scheutz and Harris, 2010).

SWAGES can be used to explore large parameter spaces of various cognitive mod-
els, both connectionist models and classical cognitive architectures. On the connec-
tionist side, our neural network simulator NNSIM has been used to explore parame-
ter spaces of several neural networks, including neural networks for spatial attention
(Scheutz and Gibson, 2006) and ideomotor compatibility (Boyer et al., 2009). On
the cognitive side, a special purpose Lisp-based ACT-R “wrapper component” was
developed to run the ACT-R cognitive architecture (Anderson et al., 2004) and pass
various model parameters between the cognitive model and SWAGES, thereby en-
abling automatic explorations of large parameter spaces (e.g., using various ACT-R
models in the “psycho-motor vigilance task” (Gluck et al., 2007)).

SWAGES started out as a set of shell scripts for running agent-based artificial
life models on remote hosts in the late 1990s and has since evolved into a robust
advanced modeling framework that meets all of the above requirements. Among its
highlights are that it

1. runs on any platform that supports Java and can be automatically distributed
over multiple hosts to guarantee high throughput for large numbers of parallel
simulations;

2. can use a heterogeneous computing environment including any mixture of ded-
icated compute clusters or stand-alone hosts with no pre-installed software re-
quired on any host (only secure shell access is needed);

3. works with any simulation environment (including closed-source simulations)
that can be minimally parameterized (e.g., through command line arguments or
a special-purpose socket-based protocol);

4. can automatically parallelize simulations based on available computational re-
sources for simulation environments that support parallelization, including syn-
chronous and asynchronous scheduling algorithms, to maximize throughput us-
ing a dynamic pool of hosts;

5. provides a simple intuitive Web-based user interface for specifying, scheduling,
and running large-scale model parameter spaces (including different supplied
exploration algorithms as well as user-defined strategies that can automatically
schedule additional simulations based on simulation outcomes);

6. enables automatic data retrieval and population of databases for efficient data
mining;

7. facilitates automatic statistical analyses which includes both model fitting based
on fitness criteria (error thresholds, types of models, etc.) and model discovery
(based on constraints on model classes);
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8. enables automatic visualization of different data sets obtained from large-scale
simulations (and for linking in other visualization environments);

9. contains mechanisms for ensuring that simulations will eventually finish (despite
crashes, interrupted simulations, or lack of available hosts), including check-
pointing mechanisms if supported by the simulation model.

SWAGES will be described in detail in the following sections, starting with an
overview of the system architecture. Next the new implementation of SWAGES in
the distributed Agent Development Environment (ADE) (Scheutz, 2006) is discussed
and some of the advantages of distributing its architecture are highlighted. Then de-
scribe an application of SWAGES in the context of a biological agent-based model
to highlight how SWAGES addresses the challenges of exploring large model pa-
rameter spaces in high-performance computing environments. Finally, SWAGES is
compared to other large-scale simulation frameworks and its new features are sum-
marized.

1.2 System Architecture

The initial design goal for SWAGES is to simplify the modeling process by allowing
modelers to define model parameter spaces they want to explore and submit them
to SWAGES for execution. SWAGES then automatically schedules all simulations,
runs them, collects the resultant data and transfers it to a specified place in the file
system. It also performs simple statistical analyses and displays them through a
Web-based user interface. Figure 1.1 shows an overview of the SWAGES architecture
divided into “server-side” and “client-side” components as described by Scheutz
et al. (2006) and Scheutz (2008).

The server-side components are responsible for scheduling, distributing, start-
ing, and monitoring the execution of distributed simulation clients and possibly
restarting failed clients to ensure that simulations will eventually finish. Specifi-
cally, users can submit experiments, check their status, perform simple statistics
and view experiment results using any standard Web browser through a Web-based
user interface provided by the Web Server. The Web Server forwards all submis-
sion requests to the Experiment Server which creates “experiment sets” based on
user specifications that contain all necessary model parameters (e.g., the set of ini-
tial conditions across different experiments) as well as various SWAGES system pa-
rameters. System parameters can include priorities of experiments and scheduling
parameters, levels of supervision and recovery parameters, formats of data collec-
tion and location for data storage, statistical analysis calculations to be used on the
results and conversions of the output formats, and modes of user notification of sim-
ulation progress. The Scheduler is responsible for taking experiments from several
priority-based queues (to which new experiments are submitted by the Experiment
Server) and starting them on remote hosts. The experiment Scheduler will sched-
ule new simulations when hosts become available and will only create experiment
data structures for these simulations on demand (so as not to run out of memory
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Fig. 1.1 Overview of the SWAGES architecture in 2009 (all server-side components within the
solid square on the left had to run on the same host computer).

when processing large-scale experiment sets). The Client Server then manages a re-
mote simulation and maintains an open communication channel with the simulation
instance, keeping track of the simulation’s progress, state, update, and degree of par-
allelization. This ongoing monitoring is critical for error detection and recovery so
the client server can restart or resume the simulation elsewhere based on its saved
state, if available, when a simulation crashes (e.g., due to OS problems on its host),
is not responding (e.g., due to network problems), or cannot be continued (e.g.,
because its current host does not meet user-defined criteria for running simulations
anymore). The Watch Dog implements a second level of supervision which is partic-
ularly important for dynamic computing environments where hosts can “disappear”
from the pool of usable machines without notification. It regularly checks all sim-
ulation clients for progress, terminates clients that are stuck or not responsive, and
reschedules simulations either from scratch or from saved states. The server-side
representation of remote simulation hosts is achieved by the SimHost component,
which keeps track of any simulations running on the host and is also responsible for
monitoring the host’s availability based on user-defined criteria (e.g., the remain-
ing CPU time on a cluster host or whether a console user is logged on). The Host
Manager keeps track of all available simulation hosts by managing a dynamic pool



6 Matthias Scheutz and Jack J. Harris

of available resources. It can automatically request new hosts in high-performance
computing environments by submitting requests on demand through the cluster’s
batch queuing system.

On the client side, special SimClients representing particular simulation envi-
ronments communicate updates about the simulations to the (server-side) Client
Servers. SimClients are responsible for saving the state of simulations (if supported
by the simulation) and routinely checking that the simulation is still allowed to
run on its current host according to user-defined criteria. Generic SimClients are
available to interface with simulations written in various programming languages
(Java, Pop11, Scheme, Lisp, and R) and customized SimClients are available for
SimWorld (Scheutz, 2001) and ACT-R (Anderson et al., 2004). Furthermore,
SWAGES also supports various special purpose reusable clients (e.g., a generic gra-
dient search client3).

Recently, however, it became clear that to truly scale up to the requirements of
tomorrow’s modelers, several additional steps in the design and implementation of
SWAGES needed to be taken. First, the server-side part of SWAGES, while paral-
lelized, was monolithic (i.e., all server-side components had to run within the same
Java virtual machine on the same host). And while multi-core CPUs are partly able
to alleviate the processing bottleneck, they cannot help the networking bottleneck
created by a monolithic grid engine that communicates with thousands (if not tens
of thousands) of simulations simultaneously. The solution, therefore, is to distribute
and duplicate (some of) the parallelized server-side components over multiple hosts.
Second, for SWAGES to effectively handle large data sets (of hundreds of gigabytes
and beyond), simply storing data as text files in the file system is not practical as data
queries searching sequentially through these large files would take too much time.
Rather, a database interface is required that allows automatic commits of data (as
results are produced by SimClients) into a database (which potentially can be dis-
tributed itself and facilitate efficient data querying and data mining). Third, to aid
the modeler in the exploration of large parameter spaces, automatic statistical analy-
ses on the returned intermediate data sets are required in order to determine whether
a particular region of the parameter spaces should be further explored. Hence, ad-
ditional mechanisms for automatic data analysis, model fitting and model discovery
were developed and integrated. Fourth, the previously integrated simple visualiza-
tion mechanisms were too limited to do justice to the complexities of large data
sets. Therefore, a new visualizer component has been added to provide better, more
effective automatic generation of data visualizations based on model space parame-
ters and experimental results. Finally, to reduce the complexities of data exchanges
between different components (from the simulation environment, to the database,
statistical analysis and visualization) and to enable the easy integration of exter-
nal components (e.g., simulation environments, statistical analysis tools and visu-

3 This client is capable of wrapping a generic simulation process and supports batching a group of
parameters to run on the client. This client has a two fold benefit: (1) it minimizes the amount of
independent server connections, which can incur an overhead for very fast simulations and (2) aids
distributed Monte Carlo search experiments.
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Fig. 1.2 Overview of the server-side components of the SWAGES architecture as currently imple-
mented in ADE (large rounded boxes depict new ADE components, small grey rounded boxes depict
old SWAGES components; the two dashed rounded boxes show ADE infrastructure components).
ADE components can be freely distributed to any host, thus enabling the distribution of SWAGES
server-side components. Except for the Manager, multiple copies of each component are now pos-
sible within a SWAGES instance, thus allowing SWAGES to scale with the number of simulations it
is serving (see text for detail).

alizers), a new open, experiment definition and data exchange format based on the
Extensible Markup Language (XML) was specified and implemented.

To address the required modification of SWAGES (for scaling up to large num-
bers of simultaneous simulations), all SWAGES components were re-implemented
in the distributed ADE (e.g., Scheutz, 2006). ADE provides many features that are
of critical importance for the distributed version of the SWAGES server-side com-
ponents: automatic load balancing and host management, component supervision,
error detection and restart, and various other mechanisms for autonomic comput-
ing. Moreover, ADE’s tight security services provide fine-grained, method-level au-
thentication, which is integtral in an open distributed computing environment. ADE
also provides distributed graphical interfaces that allow location-independent sys-
tem configuration and monitoring. To leverage these features, SWAGES components
were converted into ADE components and new features related to large-scale com-
putational simulation experimentation were added. At a high level, SWAGES is now
composed of the following components: the Manager, the Engine, the Analyzer and
the Visualizer (the extended server-side architecture of SWAGES as implemented in
ADE is shown in Figure 1.2).

The Manager is responsible for receiving experiment specifications and poten-
tially ending a simulation based on specified termination criteria. It initializes the
Engine and the Analyzer together so they can communicate directly with each other
in order to process simulation results.
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The Engine receives the specification of a simulation, including simulation ex-
ecution details and the parameter space for evaluation from the Manager, and is
responsible for distributing the simulation environment across a collection of net-
worked nodes and consolidating the results. The Engine is considered a reliable ser-
vice and will ensure that results are returned from a simulation by handling events
such as check-pointing and restarting of simulations.

As results are collected by the Engine, they are forwarded to the Analyzer. The
Analyzer first stores the data in an indexed database to aid data analysis and fu-
ture interactive exploration of the results. The Analyzer then performs a battery of
statistical analyses on the data. Topographical function forms (which can poten-
tially explain the relationship of parameters in an experiment) are produced for the
specific parameter space and are evaluated in real-time using distributed statistical
processing nodes as the data returns from the simulations. The Analyzer also pro-
vides a conduit for carrying out post-hoc data evaluation by data mining over the
processed results (e.g., by supplying an interface for querying the simulation results
closest to a particular parameter combination). This type of post-hoc data mining
of a parameter space lets modelers identify optimal models during model validation
and evaluation.

Complementing the Analyzer, the Visualizer can provide a way for quickly iden-
tifying interesting parameter relationships, understanding the breadth of a simula-
tion’s performance or even identifying problematic performance of a simulation
through interactive three dimensional renderings of the processed data. The Visu-
alizer can plot individual data points, line plots, lego plots and even surface plots in
order to help explain the properties of the performance space.

1.3 System Implementation

The ADE middleware for designing distributed autonomous agent systems was cho-
sen as the implementation platform for the extended version of SWAGES for sev-
eral reasons. First, a number of other higher-level architectures have already been
successfully developed within the ADE framework including DIARC, an embodied
agent framework for robot software development (Scheutz et al., 2007) and ADE-
Unreal, a virtual world simulator. Thus, ADE provides a suitable infrastructure that
allows functionality associated with SWAGES to be distributed across a set of com-
puters. ADE is also implemented in Java which aids easy code integration of exist-
ing SWAGES components. Furthermore, this distributed infrastructure permits the
introduction of new processor and storage intensive functionality associated with
large-scale computational experimentation.

To facilitate the integration of the separate functional components, each exist-
ing and new SWAGES service is implemented or “wrapped” as an ADE compo-
nent. This is possible because ADE provides a class hierarchy for extending ADE
services, which gives new services the ability to intercommunicate with one an-
other as well as utilize core ADE features (such as server security, a server recovery
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mechanism, service logging, and monitoring). Access to ADE services are readily
accessible using this wrapping mechanism, however non-Java based services can
also intercommunicate with ADE servers using Web services in the form of XML-
RPC (http://xmlrpc.com/spec) or Representation State Transfer (Fielding and Tay-
lor, 2002). New ADE services extending ADEWebServicesServer permit the expo-
sure of a subset of remote methods based on user credentials and remote IP.

ADE enables secure message transport to SWAGES components via a remote
method calling feature which utilizes Java’s Remote Method Invocation, a set of
application programming interfaces that allow developers to build distributed appli-
cations. ADE also provides a meta-level naming scheme to allow an abstraction over
these interfaces capable of service migration. The remote method calling feature of
ADE is protected using a centralized authentication and access system. This is the
predominant mechanism by which ADE services communicate.

ADE also provides a method for creating distributed graphical user interfaces
(GUIs) using ADE-GUI, an extensible framework that abstracts away many of the
issues of distributed GUI development. This abstraction and encapsulation of func-
tionality thereby aids the easy creation and integration of new GUI components.
Many components within the system implement GUIs that can be viewed through
ADE-GUI components, however some servers provide an additional Web-based
user interface for control.

1.3.1 Key Components

Messaging - The SWAGES system communicates using our new Simulation Speci-
fication Markup Language (SSML). This simple XML specification allows all com-
ponents to utilize the same data structures for defining simulation experiments.
Such a shared representation is useful because many components need access to
the same type of information (e.g., the Analyzer and the Visualizer both need access
to schemas describing the results data). There are primarily three types of top-level
SSML structures: Execution Details, Parameter Space Definition, and the Results
Definition Schema. Using these basic structue, SWAGES components can commu-
nicate with one another (using the standard message passing mechanisms defined
within ADE).

Manager - Centralized access to the collection of SWAGES components is provided
through the Manager. The Manager is responsible for receiving all of the compo-
nents’ specifications used to process, analyze and evaluate the experiments. This
role is similar to that of the Experiment Server in the previous version of SWAGES.
The Manager receives the three basic SSML structures from a user and passes them
along to other SWAGES components. The Manager also relays to the Engine simu-
lation execution details along with the parameter space information which together
define the scope of the simulations to evaluate. User interfaces to the Manager are
provided via the command line and other external add-on ADE components in the
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ADE network. The Manager also exposes programming methods using Web services
to make the direct submission from external user appliations possible.

Engine - The Engine is essentially a distributed form of the server-side SWAGES
components with several extensions to let it communicate externally with other
ADE services. The Engine is comprised of three distinct ADE components that allow
server-side components of SWAGES to run on multiple hosts. These three new com-
ponents of the Engine intracommunicate in-order to carry out the task of distributing
and managing the execution of simulations.

1.3.2 Novel Features in SWAGES

We now briefly summarize the advantages of distributing the SWAGES architecture
and its extended features that allows it to interoperate with the other components.

1.3.2.1 Distributed SWAGES

The distribution of the subcomponents of the Engine across a set of hosts provides
many performance advantages. As the number of executing SimClients grows, so,
too, does the amount of communication back to the SWAGES server. Large amounts
of concurrent communication can potentially render a Client Server as a bottleneck
for a parallel simulation run. Processing these messages can be both a processor
intensive operation as well as a bandwidth bottleneck. Distributing the management
in a hierarchical manner produces a completely scalable system (e.g., a new Client
Server can be started on a new host as soon as existing ones reach their capacity
limits based on experiment submissions and available simulation hosts).

1.3.2.2 Post Processing

The system provides additional components to process the results returned by the re-
mote simulations. These post-processing tools provide services including data ware-
housing, statistical analysis and visualization features. Some of the services rely on
system-unique resources such as database installation or even graphic card require-
ments. However, as is the case for all ADE components, these services do not need
to run on the same host as the Engine or the Manager but can run on any host in the
ADE environment that meet the requirement of the service.
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1.3.2.3 Analyzer/Database

It is not uncommon for a large-scale distributed simulation experiment to evaluate
billions of parameter combinations and produce gigabytes (if not terabytes) of re-
sulting data. As Charlot et al. point out, “these data need to be managed, shared
and analysed using varied computational methodologies, such as data mining and
database management systems” (2007). SWAGES can perform such tasks through
the Analyzer, which provides the storage and efficient management capabilities to
facilitate automated results analysis as well as real-time interactive data mining.

1.3.2.4 Database

Loading all simulation results into main memory for analysis quickly becomes in-
feasible with large-scale simulations producing terabytes of data; even searching
for a desired result in a massive data set (e.g., over one billion simulation results)
can be extremely time-consuming if standard sequential file access is used to scan
a file system. The Analyzer, therefore, utilizes a MySQL4 database to house the
massive number of results produced by SWAGES. The tables are indexed using “B+
trees” (Comer, 1979) which minimize the number of filesystem accesses required
to search for a result while also maximizing the usage of the main memory of the
system. Users can manage and manually analyze a stored data set by accessing it
via a Web-based user interface.

1.3.2.5 Analysis Processes

With a robust data storage and retrieval backend in place, the Analyzer can provide
automated analysis of large amounts of data. The processes for doing this analysis
involve creating and populating a model repository (database), learning topograph-
ical functions that best fit the data (automated analysis), executing predictions, and
reverse lookups from the data store (interactive analysis).

The process begins when information about the parameter space is received from
the Manager and a model repository is created to house the data. A model repository
is defined in terms of the variables of the parameter space for the experiment. Using
additional information provided by the Manager, the Analyzer then subscribes to the
Engine and requests all results produced for a given experiment. The received data
is parsed and stored into the respective model repository for that experiment. The
Analyzer then begins to produce a set of potential “hypotheses” about functional
relationship between the parameters of the space.

As results are uploaded from the remote simulations, automated analysis of the
data begins. The goal of the analysis is to find a function that best describes the topo-
graphical form of the data based on the set of function schemas originally generated

4 http://mysql.com
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in the previous process. Multivariate regression analysis, which uses the database di-
rectly, is used to evaluate each candidate function. Earlier versions of the Analyzer
utilized multiple subprocesses running R5 and MATLAB6 for statistical analysis.
Though effective, memory constraints for very large data sets produced run times
an order of magnitude slower than the database statistical package written for the
current Analyzer. Thus, relying on the database directly versus using external statis-
tics packages has proven to be an efficient way of doing automatic data analysis for
large data sets.

As new results flow into the system and the data set grows, the candidate topo-
graphical function forms are continuously re-evaluated based on goodness of fit to
the current data set. The selection of which functions to evaluate is determined by a
greedy algorithm which identifies those function forms that best fit the data set prior
to the addition of the new results. The result of this process is that at any moment
the Analyzer has a set of functions that describe the relationship of the parameters
for the experiment.

1.3.2.6 Visualizer

The Visualizer provides an interactive three dimensional graphical interface, us-
ing the FreeHEP Java3D7 library extensions (produced by the high-energy physics
modeling community), for plotting model parameters against one another to aid the
evaluation process. However, visualization, like data analysis, is complicated by the
problem of handling vast amounts of data, therefore, the Visualizer provides prepro-
cessing mechanisms for data to minimize the amount of data that needs to be sent
to the user’s three dimensional rendering system. Hence, the Visualizer consists es-
sentially of two components: the client-side rendering application and the database
plus the preprocessing server-side scripts. This architecture makes the visualization
of massive data sets possible and efficient by exploiting the speed of the highly in-
dexed database representation and minimizing the data that needs to be transferred
to the client.

1.4 A Case Study in Employing SWAGES

In this section we will present an interdisciplinary research project in biology and
computer science that demonstrates the use and application of SWAGES. We first
summarize the research questions addressed in the particular project and briefly
introduce the agent-based simulation environment used to explore these questions.
Then we discuss the role SWAGES played in conducting the simulation experiments

5 http://cran.r-project.org
6 http://www.mathworks.com/products/matlab/
7 http://java.freehep.org
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and the subsequent data analysis, showing how large-scale simulation experiments
can be defined and executed in a grid environment, and ultimately how the results
returned from the parallel simulations can be stored, analyzed, and visualized to
provide feedback to the modeler.

1.4.1 Research Questions and Simulation Model

The main research question we explored in the project comes from mate choice in
biology: how do females pick their mates? Specifically, how do female treefrogs
decide which male treefrog to approach in the swamp at night when the only infor-
mation about males available to females are the acoustic properties of the males’
mating calls? Prior work in theoretical and ecological biology proposed two main
competing strategies for females: “pick the closest out of N males” or “pick the
closest above some threshold θ”. To test the success of and tradeoffs among these
two strategies, we developed a social agent-based model that explicitly models male
and female frogs as “agents” located in a spatially extended, two dimensional en-
vironment. The model included both environmental parameters (e.g., the number
and distributions of male and female frogs) and individual parameters (e.g., the call
quality of males or the mating strategy employed by females). The goal was to
systematically vary environmental and individual parameters to gain an understand-
ing of the various dependencies and tradeoffs among the different dimensions (e.g.,
how mating success depended on the distribution of males, how time-to-mating de-
pended on the number of competing females, how male-female ratio influenced the
performance of the different strategies, etc.). Details about the biological questions
and the computational model, have been reported by Scheutz et al. (2010).

1.4.2 The Simulation Environment

The social female choice model was implemented as a discrete-event agent-based
simulation in Java. After initial testing of the simulation in a graphical environment
to verify that all agents individually behaved as expected, the simulation environ-
ment was connected to SWAGES to permit the automatic scheduling and running
of the millions of simulations required for the parameter space we had set out to
explore. The integration of the simulation with SWAGES was accomplished by ex-
tending a SWAGES client-side component, the JAVAClient, and overriding some of
its methods. The primary method that had to be overridden was the entry-procedure
which receives a list of startup parameters used by the simulation to govern its op-
erations (other methods can also be overridden if advanced features such as check
pointing or SWAGES-level control over the event-scheduler algorithm are desired).
The main functionalities provided by the JAVAClient are the systematic representa-
tion of agent types and the parallelizable, discrete-event scheduler (for details about
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an integration that takes advantage of the advanced intra-simulation discrete event
scheduling algorithms, see Scheutz and Harris (2010)). These pre-defined algo-
rithms allow for quick model development and verification. Moreover, the social fe-
male choice simulation environment used mechanisms provided by the JAVAClient
for handling initial conditions and specifying event details (e.g., mating events) for
data recording during simulation runs. All data is recorded in systematically named
files which can then be collected by SWAGES for subsequent data analysis.

1.4.3 Simulations Runs in SWAGES

The data presented in this case study was obtained by operating SWAGES within a
standalone HPC configuration where both the server and processing nodes all op-
erated on the BigRed supercomputer.8 Other phases of the research project used
different HPC configurations (e.g., a heterogeneous set of processing nodes con-
sisting of local laboratory machines and compute nodes on a shared resource grid).
Regardless of the particular composition of the computing environment, the simu-
lation environment along with resource files defining the parameter space, the sim-
ulation’s execution details and the resulting output files’ data format, need to be
submitted to the SWAGES server. SWAGES then initializes simulations on compute
nodes as they become available, passing startup parameters to simulation instances
and collecting data from simulation output files for subsequent insertion into the
SWAGES database.

For the particular experiment set performed on BigRed, three different mating
strategies were evaluated: a minimum threshold strategy (where the closest mate
exceeding some fitness criteria is selected), a best o f N strategy (where the mate
with the highest fitness metric is chosen out of the N closest candidate mates), and
a random mating strategy (used as a baseline). Each strategy was tested across the
same set of initial starting conditions which varied different environment factors
and the characteristics of the frog population. For example, for the random condi-
tion to be evaluated across the range of initial conditions, 240 000 simulations were
run. More simulations were run for the minimum threshold and best o f N because
both strategies included additional strategy parameters (fitness threshold level and
size of N, respectively). For the best o f N strategy, five different values of N were
evaluated. This resulted in 1 200 000 simulation runs (5 ·240000). For the minimum
threshold strategy, ten different values for the fitness threshold were tested, resulting
in 2 400 000 additional simulation runs (10 ·240000).

In order to execute such a large number of simulations quickly, a large number of
compute nodes were required. However, at the time of submission the queue on the
cluster environment was long for simulations with a large number of compute node
requests. Rather than attempting to reserve a large number of nodes which would
have caused the requests to sit in the queue for weeks, we decided to let SWAGES

8 For details on BigRed system, see http://kb.iu.edu/aueo.html.
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request compute nodes dynamically and individually (up to a maximum number
of 50 node requests at a time each for four hour increments). When nodes became
available, SWAGES then scheduled and executed simulations until that node’s alloted
time expired.

1.4.4 Data Management and Visualization

As a result of employing this dynamic resource request strategy, the entire set of
3 840 000 simulations finished in a little over two weeks from the time they were
submitted (roughly 17 days). The simulations generated over 11 gigabytes of sum-
mary data (with precomputed statistics) and over 10 terabytes of detailed results in
over 35 billion files. Clearly, without tools like SWAGES, the number of simulations
and the size of the resultant data would be prohibitive for model exploration of this
magnitude. For example, for large datasets like the ones produced in this study, stan-
dard file systems are not a practical method for data management when searching
for patterns inside the data files requires a slow scan of every file. This is where
the automatic insertions of results in a database has proven to be of great use for
quickly querying the dataset. Earlier versions of SWAGES did not utilize a database.
Instead, custom scripts were generated to search the returned results files for patterns
of interest. To appreciate the potential speedup provided by the automatic database
creation and usage, consider the time it would take to search through every results
file to find the set of parameters that produced the maximum number of mated tree
frogs: the process of using results files involved searching each file, which required
N file accesses where N is the total number of parameter combinations explored!
In the case where the data is stored in an indexed database, the desired value can
quickly be found without the need to examine every simulation result.

Once the data is pre-processed, visualizations can be produced. In previous ver-
sions of SWAGES, these visualizations had to be generated manually; in the cur-
rent version, visualizations can also be produced automatically. Figure 1.3 shows
examples of the simulation results from the frog study that visualize different ef-
fects of mating strategies. These types of graphs are immediately meaningful for
the modeler and have been used both for verifying theoretical predications as well
as developing new refined computational models.

1.5 Discussion

Computational frameworks and infrastructures that are intended to support large-
scale explorations of model parameter spaces face significant challenges as the num-
bers of usable CPUs and hosts in clusters and grid environments rapidly grow and
data sets increase in size by several orders of magnitude. The first question that
arises is how an infrastructure will “scale up” in light of this enormous growth in
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Fig. 1.3 Sample graphs of results generated based on a systematic exploration of the parameter
space for two strategies. The left graph shows the dependence of the quality of the mated male
frogs on the number of females in the simulation and different parameters for the best o f N female
mating strategy. The right graph shows the dependence of the quality of the mated male frogs on
their average call qualities and the value for the minimum threshold in the female mating strategy.

both resources and resource demands. A second related question is how the large
amounts of data should be managed (i.e., stored, accessed, analyzed, mined, vi-
sualized, etc.). And third, as infrastructures become larger and more complex, a
technical question arises as to whether and to what extent these infrastructures are
able to autonomously handle various types of errors (component crashes, network
problems, etc.) that are inevitable in complex computing systems. The goal of the re-
implementation of SWAGES in the ADE middleware is to answer all three questions
and address the associated challenges.

1.5.1 Automatic parallelization of agent-based models

One feature that makes SWAGES unique among experimentation frameworks is its
ability to automatically parallelize and distribute agent-based models. This feature
is particularly important for modelers who would like to quickly run a particular
model, visualize the results, possibly change a few parameters and run it again. This
type of interactive model exploration is usually only possible with models that run
over a short period of time on a single computer, but not with models that have
run-times of tens of minutes or hours (when minutes might already be too long).
Since there is a natural limit to how fast a simulation can run on a single com-
puter, the only way to allow quasi-real-time interactions is to parallelize the model.
However, parallelization usually requires advanced programming skills and support
by the modeling environment (neither of which is usually available). SWAGES ad-
dresses this problem by removing the burden of parallelization from the modeler.
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Specifically, the need for a modeler to manually execute model simulation runs is
eliminated by SWAGES with its ability to automatically utilize all computational re-
sources available for parallelization. This is possible for simulation environments
that implement an “event horizon”, a particular notion of influence a simulated en-
tity can have on other simulated entities within the model simulation (Scheutz and
Schermerhorn, 2006; Steinman, 1994). While the event horizon is currently only
implemented for (metric) spatial agent-based models, it can be generalized to non-
spatial models. For example, it could be used for non-spatial models that are based
on interaction graphs that connect every entity in a simulation to those entities with
which it can interact.

In addition to parallelization SWAGES also provides mechanisms to support asyn-
chronous updating and scheduling within the simulation environment. Parelleliza-
tion allows simulation instances to run asynchronously on different hosts until one
simulation instance needs data from an entity that is updated in another simulation
instance. In asynchronous scheduling, simulation entities are not updated cycle by
cycle, but scheduled (to the extent possible) based on which entity in one simula-
tion instance will be required to provide information needed by another simulation
instance in the future. This anticipatory way of updating entities within each sim-
ulation instance in the distributed simulation system can lead to significant overall
run-time speedups (Scheutz and Harris, 2010).

In general, the automatic parallelization of simulation models enables fast “model
discovery loops” (especially with complex models) while alleviating the mod-
eler from having to parallelize model code manually. Furthermore, parallelized
models also facilitate distributed real-time simulations (e.g., of mixed live-virtual-
constructive environments) that would otherwise not be able to run in real-time.

1.5.2 Integrated data management

A large amount of data can be produced by even simple agent-based models. For
example, models created by Scheutz et al. produced hundreds of gigabytes even
though each model run finished within only a fraction of a second (2010). In such
cases it is not possible to store simulation data distributed over millions of files in
the regular file system (e.g., we have seen simulations produce more result files
than a directory could hold given the OS file system restrictions). Rather, data needs
to be automatically inserted in a database in a way that aids efficient data access.
SWAGES automatically creates a database based on the initial experiment setup and
inserts simulation results in an organized way into tables that can subsequently be
combined using Structured Query Language (SQL) queries. Moreover, since the
database can effeciently access large datasets it is used to preprocess the data for
real-time interactive visualizations. The immediate availability of visualizations (if
only on sparse data) lets modelers anticipate results and possibly correct simulation
setups early on (e.g., if the explored region of the space is not interesting, or if the
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results are counter-intuitive) rather than wasting many expensive compute cycles on
completing the entire simulation run.

1.5.3 Automatic error detection and recovery

SWAGES comprises several levels of error detection and recovery. At the infrastruc-
ture level, ADE provides component supervision, component monitoring, and com-
ponent restarting in case components fail or crash (for core SWAGES components
as well as custom simulation components). Moreover, at the SWAGES level, simula-
tion monitoring, supervision, check-pointing and restarts guarantee that (eventually)
scheduled simulations will finish. This includes mechanisms for SWAGES itself to
become “dormant” if no host is available (i.e., the Scheduler will save its state to
disk and schedule a special shell script for execution that will be able to resume
the system). At the simulation client level, error recovery comprises restarting of
all parallelized clients if any errors prevent a parallelized simulation from finishing.
Finally, advanced notification mechanisms are available at each level to inform op-
erators or users about the state of the system at any given time (e.g., through the
ADE-GUI or through a Web-based user interface).

1.5.4 SWAGES compared to other frameworks

SWAGES shares several features with other grid middleware systems such as Berkley
Open Infrastructure for Network Computing (BOINC), Condor, or QosCosGrid. For
example, BOINC (Anderson, 2004) also supports the distribution of parameters and
input files from a centralized server to client applications running on remote hosts.
Architecturally, there is a similarity between the BOINC manager application and a
SWAGES SimClient in that they both broker communication back to the server and
execute the client-side simulation. Furthermore, the corresponding BOINC server-
side feeder application responsible for providing initialization information to the
client simulation can be likened to the role provided by the SWAGES server-side
Scheduler and Simulation Manager. In SWAGES, the Simulation Manager fills the
additional function of overseeing all communication with its associated SimClient
whereas in BOINC there are a series of independent services responsible for these
interactions (i.e., the respective feeders, validators, and assimilators). Also, similar
to other batch submission systems, SWAGES handles distribution of work across a
series of available nodes, and like Condor (Bent, 2005) and BOINC, SWAGES is sen-
sitive to the usage availability of the processing host. SWAGES also shares features
with QosCosGrid ProActive. Both are Java-based grid middleware systems and sup-
port the parallel distribution of simulation (Kravtsov et al., 2008). Additionally, the
ability of QosCosGrid to utilize systems crossing security domains (Choppy et al.,
2009) is shared by SWAGES. SWAGES can automatically establish a secure shell
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tunnel for systems behind firewalls and permits the use of either shared or system-
unique access credentials when establishing these connections. Furthermore, both
systems support an XML markup structure for job submission but differ in their
implementation: QosCosGrid’s QCG Job Profile supports a broader range of sim-
ulation execution types while SWAGES is a targeted system for large-scale experi-
mentation and therefore has specialized features to support its workflow.

However, unlike most other popular grid systems, SWAGES supports some fea-
tures not commonly found elsewhere. SWAGES has been tailored to natively sup-
port experimentation through integrated parameter sweep mechanisms. This feature
coupled with a Web-based submission capability make SWAGES very easy for a
modeler to use. Furthermore, SWAGES supports the unique capability of being able
to dynamically parallelize a multi-agent simulation at the client level across a se-
ries of hosts. While some extensions to existing simulations add support for dis-
tributed computing (e.g., HLA RePast (Minson and Theodoropoulos, 2004), which
uses HLA to distribute simulations based on the RePast toolkit (Collier, 2001)), the
distribution is not automatic and does not provide advanced distributed discrete-
event scheduling that is found in SWAGES. Furthermore, SWAGES modelers do not
have to include any provisions for parallelization in their code. Simply adding the
keyword “parallelize” to the experimental setup definition is sufficient for SWAGES
to attempt parallelization of simulations whenever possible based on the available
computational resources.

SWAGES’s fine grain parallelization and asynchronous scheduling can lead to a
much better use of a large array of computational resources when individual simu-
lations are extremely computationally intensive.

1.6 Conclusions

In this chapter we provided an overview of the latest version of SWAGES. Many
attributes of SWAGES make it an easy system to install and use from a modeler’s
perspective:

• no pre-installed components are required (only secure shell access),
• no fixed pool of compute nodes is required (SWAGES dynamically adjusts to the

pool of available hosts in the grid environment),
• simulation supervision and recovery mechanisms are included, and
• simulation experiments can be easily defined through a Web-based user interface,

which also allows the modeler to look at results and data visualizations as data
becomes available.

And since SWAGES is now implemented in ADE, it provides an open interface that
facilitates easy interconnections with other platforms and components, and thus en-
ables easy extensions of SWAGES functionality. In particular, it inherits the flex-
ibility of ADE to use any other component implemented in ADE. For example,
existing natural language components (developed in the context of a distributed
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robotic architecture DIARC) could be used for user interactions, or action script in-
terpreters for controlling physical agents could be used as scripting engines. More-
over, SWAGES can be easily extended by adding new ADE components based on
the standard interface mechanisms provided by ADE (even closed-source commer-
cial off-the-shelf software could be “wrapped” as ADE components and integrated
into the system). Finally, the new distributed architecture allows SWAGES to man-
age large-scale grid simulations that are not possible for a system with a monolithic
single server configuration.

References

D. P. Anderson. BOINC: A system for public-resource computing and storage. In
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, pages 4–10. IEEE Computer Society, 2004.

J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An
integrated theory of the mind. In Psychological Review 111, pages 1036–1060,
2004.

J. Bent. Data-driven batch scheduling. PhD thesis, University of Wisconsin, Madi-
son, May 2005.

T. Boyer, M. Scheutz, and B. Bertenthal. Dissociating ideomotor and spatial com-
patibility. In Proceedings of the 31st Annual Conference of Cognitive Science,
2009.

M. Charlot, G. de Fabritis, A. L. Lomana, A. Gómez-Garrido, D. Groen, L. Guy-
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Glossary

SWAGES SimWorld Agent-based Grid Experimentation System

ADE Agent Development Environment.

NNSIM Neural Network Simulator.

HPC High Performance Computing.
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