RADIC - A Generic Component for the Integration of
Existing Reactive and Deliberative Layers

Matthias Scheutz
Artificial Intelligence & Robotics Lab
Department of Computer Science and
Engineering
University of Notre Dame
Notre Dame, IN 46556, USA

mscheutz@cse.nd.edu

ABSTRACT

Hybrid architectures have been developed to preserve the re-
sponsiveness of reactive layers while also providing the ben-
efits of higher level deliberative capabilities. The challenge
of hybrid architecture design is to integrate layers of very
different functional roles. We propose a component, called
RADIC, that uses a generic technique for the construction
of hybrid architectures from pre-existing reactive and delib-
erative layers that requires only minimal modifications to
each layer. In particular, we give a high-level description of
the operation and benefits of the component and its algo-
rithms.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence]: Robotics

General Terms
Design

Keywords

hybrid architectures, architecture integration, robotics

1. INTRODUCTION

Hybrid architectures for autonomous robots combine re-
active and deliberative layers to preserve both responsive-
ness and the efficiency of symbolic representations. Yet, as
pointed out in [11], “hybridism usually translates to ad hoc
or unprincipled designs with all its attendant problems” and
“hybrid architectures tend to be very application-specific.”

To address these issues, we present a Reactive And De-
liberative Layer Integration Component (RADIC) that pro-
vides a generalized “bridge” between layers. By maintaining
layer separation, RADIC allows their principled design in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
AAMAS’06May 8-12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/000555.00.

James Kramer
Artificial Intelligence & Robotics Lab
Department of Computer Science and
Engineering
University of Notre Dame
Notre Dame, IN 46556, USA

jkramer3@cse.nd.edu

isolation; by effecting a mapping of data between layers of
disparate functionality, RADIC provides a general connec-
tion method to reduce application related specificity.

2. HYBRID ARCHITECTURES

For autonomous robotic agents, which require fast, highly
responsive reactive layers (e.g., [7, 10]), the design of hybrid
architectures is difficult, largely because the nature of the
layers is so different. The challenge of hybrid architectures
is to integrate the layers’ disparate aspects of operation, at
least achieving the following functional mappings:

F1: between “global” and “egocentric” relations

F2: from discrete actions to continuous motion

F3: between logical update time and real-time operation
F4: from stateful to stateless operation

We give a brief overview of a varied selection of hybrid
architectures, describing how each satisfies items F1-F4:

SSS [4]: Short for “Servo, Subsumption, Symbolic” layers,
the symbolic layer uses a coarse-grained world model
that configures the reactive layer via parameterization
of selected behaviors in the subsumption layer. SSS
explicitly addresses the functional mappings by dis-
cretizing space between the servo and subsumption
layers (F1, F2) and time between the subsumption
and symbolic layers (F3, F4).

AuRA [2]: AuRA’s deliberative layer is composed of a
planner, spatial reasoner, and sequencer, while the re-
active layer consists of libraries of behavior schemas,
activated by the sequencer and adaptable via a homeo-
static component, producing actuation commands via
vector summation of schema output. Functional map-
pings F1, F3 and F4 are made through the interaction
of the schema controller with the plan sequencer, spa-
tial reasoner, and planner, while F2 is accomplished
by the selection of behavior schemas.

3T [3]: The 3T (short for “three tier”) architecture, which
extends work on both the RAPs [5] and ATLANTIS
[6] architectures, uses a deliberative planner to syn-
thesize goals in a partially ordered task list, executed
by reactive skills (RAPs), bridged by a skill man-
ager/sequencer (RAP interpreter). Tiers tend to oper-
ate at different time scales to fulfill mapping F3. Map-
pings F1 and F4 use all tiers; the planner operates at
a high level of abstraction, the sequencer selects a set



of skills from the RAP library, while skills operate in a
context dependent manner. Mapping F2 is performed
by the integration of skills and the sequencer; RAPs
are symbolic, discrete steps for accomplishing a task
composed of skills that implement continuous motion.

Saphira [8]: Saphira uses a strong internal world model
called the local perceptual space (LPS) that coor-
dinates sensory data with representations. Plan-
ning is performed by the PRS-Lite component, which
(de)activates sets of behaviors that are fused using
fuzzy logic. Functional mappings F1 and F3 are ac-
complished via the LPS and PRS-Lite, while F2 is
accounted for by behavior selection and fuzzy logic fu-
sion. Abstract representations are integrated in the
LPS to fulfill mapping F4.

4-D/RCS [1]: 4-D/RCS features a hierarchy of six levels
(actuator, servo, primitive, subsystem, vehicle, and
section) that operate on different scales. Each con-
tains a supervisor and a set of subordinate agents that
supervise units at the next lower level. Each node
contains behavior generation, world modeling, sensory
processing, value judgment processes and a knowledge
database. Mappings F1-F4 are explicitly made be-
tween each level.

While all of the above hybrid architectures successfully
combines reactive and deliberative layers, each subscribes
to a specific design philosophy, if not in integrating lay-
ers, then by specifying the design of the layers themselves.
This restriction not only limits potential reuses of the de-
veloped layers and software, but more importantly the ex-
tent to which the designs themselves generalize. It would
be desirable to achieve a more general connection or inte-
gration method that could be employed for many different
reactive and deliberative layers without the need for much
adaptation of either layer. Ideally, we would like a single,
generic, “mediating component” to connect existing reactive
and deliberative layers that successfully achieves the requi-
site functional mappings F1-F4. Several design desiderata
suggest themselves for such a component; in particular, the
method should:

I1: require minimal changes to existing layers

I2: provide integration of individual layers, while executing
independently, autonomously, and in parallel

I3: use minimal processing time

I4: add functionality that improves the performance of sys-
tems that contain the layers in isolation

All the hybrid architectures above fail to satisfy some
of I1-14, in addition to the various criticisms (including
those presented in [6, 3, 9]). Neither Saphira nor 4-D/RCS
satisfies I1, albeit for different reasons. While the large
amount of integration performed by the LPS in Saphira
has the benefit of coherency, it also means that functional
changes necessitate large modifications. On the other hand,
the strict specification of interfaces between levels and sub-
stantial data flow within a single level in 4-D/RCS has the
effect that slight modifications to functionality may entail
large changes across components or levels. None of SSS,
AuRA, and 3T meet 12 because all switch completely back
and forth between reactive and deliberative layers; the delib-
erative layer produces a fully formulated plan that is passed
to the reactive layer, which then remains in control until a
step either completes or fails. Both Saphira and 4-D/RCS

suffer from difficulties with I3; the use of the LPS in Saphira
requires a substantial amount of processing, while the full
complement of components in 4-D/RCS introduces possibly
redundant or unnecessary processing. Finally, I4 presents
difficulties for 3T, AuRA, and 4-D/RCS. In both 3T and
AuRA, operation of the reactive layer is tightly knit and
depends completely on the sequencer, making it difficult to
add external functionality. A similar situation occurs with
4-D/RCS, where the functionality of a given level is spec-
ified completely by its internal operation. The proposed
RADIC component, which we describe next, has been de-
signed to satisfy all the functional mappings F1-F4 and
design desiderata 11-14.

3. THE RADIC APPROACH

Functional mappings F1-F4 are made in all hybrid archi-
tectures. The approach taken with RADIC can be described
as effecting a generic technique for integrating (1) a sequence
of goals originating from a deliberative layer, (2) a stream of
sensor data, and (3) a sequence of actions (e.g., motor com-
mands) from the reactive layer (see Figure 1), as performed
by the updateRADIC algorithm given in Figure 2. The uni-
versality of a particular RADIC component is dependent on
the representations used in mapping data between layers; at
some application-dependent level, representations are either
too abstract to be useful or too narrow to be applicable. For
instance, a deliberative layer that produces a goal list com-
posed of an ordered sequence of spatial locations to “visit”
(such as in navigation or arm movement) requires transla-
tion of world-coordinates into egocentric-coordinates. While
a RADIC component that integrates such layers may be ap-
plied to other tasks requiring spatial reasoning, it may not
be adequate for, say, a higher level goal list that includes
what to do at each location. RADIC provides a generic
technique for integrating layers, but specificity is dependent
on mapping implementation.

Deliberative Layer 5 “egt%%gf
Exteroceptive data - #|
Proprioceptivedata = RADIC RADIC Output

Reactive Layer — R4S,

Figure 1: Functional diagram of the RADIC com-
ponent showing (possible) inputs and output.

Functional mapping F1 is satisfied by the convertGoal
function, detailed below. The updateRADIC function is called
at least as frequently as the reactive layer produces outputs
(e.g., sends motor commands), and thus satisfies item F3.
The functional mappings F2 and F4 are an inherent part of
the RADIC component’s operation: a goal is a discrete rep-
resentation, while RADIC’s output effects continuous mo-
tion (F2, either via discrete actions or via discrete motor
commands), and the state of the deliberative layer is main-
tained in internal memory, while not requiring any state
from the reactive layer other than its outputs (F4).

In more detail, the updateRADIC function takes as ar-
guments the outputs from the reactive layer R-out (typ-
ically, intercepted motor commands), the changes as de-
termined by sensors S-change (proprioceptive, exterocep-
tive, or missing), a sequence of goals from the delibera-



tive layer D-goals (which can be empty), and a strategy
for goal attainment G-strat. The sequence of goals D-
goals = (G1, G2, ...,Gy) is transformed, in accordance with
item F1, from a “global” representation into an ego-centric
representation (G1, G, ..., G,) by the convertGoal function
and stored in RADIC’s internal memory M. convertGoal
also associates a set of “blocking goals” Bg and a set of
goal conditions C¢ with each goal G that will depend on
G-strat (in general, G-strat is a function that defines or in-
fluences the relation among G, Bg, and C¢). Blocking goals
are used to impose a priority ordering on goals (goals that
are blocked are not considered for action selection). Simi-
larly, goal conditions are used to determine when goals have
been achieved. A goal can then either be active or inactive,
depending on whether or not its set of “blocking goals” is
empty. A goal G is removed from M when at least one of
its goal conditions C' € Cg is met. The state of the robot is
computed based on the old state using updateState, while
the default action (i.e., output) is chosen in defaultAction
based on R-out. All goals are then updated in updateGoal
based on R-out and any possible changes detected via sen-
sory inputs S-change and the active goals are used to deter-
mine the action of the robot via the chooseAction function
based on the goal and the chosen action so far.

FUNCTION updateRADIC(R-out,S-change,D-goals,G-strat)
static M «— 0
static currentState «— ()
static oldState «— 0
M — M + convertGoal(D-goals, G-strat)
oldState «— currentState
currentState +— updateState(S-change)
action +— defaultAction(R-out)
for all G € M do
for all C € Cg do
if Cg then
M — M — {G}
end if
end for
G — updateGoal(R-out, S-change)
if Bg = 0 then
action +— chooseAction(G, action)
end if
end for
return action

Figure 2: The generic update algorithm for RADIC.

Note that the above algorithm is kept as generic as pos-
sible, allowing application to the broadest range of delib-
erative and reactive layers. To apply it to a particular ar-
chitecture (e.g., to integrate two pre-existing layers), the
five functions convertGoal, updateState, defaultAction,
updateGoal, and chooseAction need to be implemented.
RADIC can also be used in a standalone fashion with ei-
ther type of layer, so long as the functionality of the other
layer is implemented internally. Reactive layer functionality
requires mapping goals to actions, while deliberative layer
functionality requires appropriate internal representations
(akin to the symbolic layer in SSS).

Unlike other hybrids, RADIC satisfies all of items I1-4.
Minimal changes to each layer are required for integration
(I1), as layer output is simply redirected as RADIC input;
RADIC relies on internal data structures and functions for
its operation. The RADIC component operates indepen-
dently of either layer, performing its tasks in parallel with
the layers’ operation, responding to whatever input is re-
ceived from either layer (I2). Computational cost is small

(I3), as only state updates, goal list updates, and action
choice are required. Updates of the goal list require both
a measure of state change (via updateState) and a subse-
quent application of the calculated change for each point (via
updateGoal). Only “active” goals are considered in modi-
fications of the reactive layer’s output at any given time.
Finally, combining the layers improves overall performance
(I4) by augmenting the reactive layer with planning capac-
ities and providing the deliberative layer with the ability to
act. Furthermore, custom improvements can easily be incor-
porated into the updateState (such as additional process-
ing of S-change) and updateGoal (such as goal reordering
or progress monitoring) functions.

4. CONCLUSION

RADIC has been experimentally validated and compared
with other hybrid architectures in a trajectory following
task. Beyond demonstrated performance improvements
(and unlike other hybrid architectures), RADIC has the ben-
efit of satisfying design desiderata I1-4, in the most extreme
case actually substituting for a layer. The RADIC algo-
rithm is not limited to navigation tasks, but can be used as a
generic action sequencer in hybrid architectures for any task.
RADIC can be attached to any reactive layer by virtue of
its method of intercepting reactive output. Moreover, it can
subsequently be used with any deliberative layer for which
the convertGoal function is implemented.

5. REFERENCES

[1] J. Albus. 4-D/RCS reference model architecture for
unmanned ground vehicles. In Proc. of ICRA, 2000.

[2] R. Arkin and T. Balch. AuRA: Principles and practice
in review. JETAI, 9(2-3):175-189, 1997.

[3] R. Bonasso, J. Firby, E. Gat, D. Kortenkamp,

D. Miller, and M. Slack. Experiences with an
architecture for intelligent, reactive agents. JETAI,
9(2/3):237-256, Apr 1997.

[4] J. Connell. SSS: A hybrid architecture applied to
robot navigation. In Proc. of ICRA 1992, pages
2719-2724, 1992.

[5] R. J. Firby. Task networks for controlling continuous
processes. In Artificial Intelligence Planning Systems,
pages 49-54, Chicago, IL, June 1994.

[6] E. Gat. Integrating planning and reacting in a
heterogeneous asynchronous architecture for
controlling real-world mobile robots. In AAAI pages
809-815, 1992.

[7] R. Jensen and M. Veloso. Interleaving deliberative and
reactive planning in dynamic multi-agent domains. In
Proc. of the AAAI Fall Symposium. AAAT Press, 1998.

[8] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti.
The Saphira architecture: A design for autonomy.
JETAI 9(1):215-235, 1997.

[9] D. Lyons and A. Hendriks. Planning as incremental
adaptation of a reactive system. Robotics and
Autonomous Systems, 14(4):255-288, June 1995.

[10] P. Maes. Situated agents can have goals. In P. Maes,
editor, Designing Autonomous Agents, pages 49-70.
MIT Press, 1990.

[11] H. Nwana. Software agents: An overview. Knowledge
Engineering Review, 11(2):205-244, 1995.



