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Abstract

In this paper we describe the vision system of a robot

which has to accomplish a path following task. The

vision system combines three di�erent learning meth-

ods: reinforced, competitive, and supervised. A ge-

netic algorithm is used to determine the regions of the

visual �eld essential for discriminating the path from

its surroundings. These regions, in turn, serve as input

for a neural network that categorizes the information

present in the visual stimulus. The output of the net-

work is used by a motor system to navigate the robot

on the path.

Introduction

Robot models have recently gained much attention

in cognitive science for many reasons, probably the

most important one being that they are the \ultimate"

touchstone for cognitive theories. In many important

respects, the life of a robot mimics much more faith-

fully the life of the human/animal than does the life of

a simulated agent or experimental subject. Even in the

performance of a simple task, robots and other physical

agents must be able to cope with a variety of challenges

which the agent in a simulated environment may able

to ignore. For a robot to behave appropriately in an

environment that was not carefully designed by an ex-

perimenter, it must �rst be able to identify information

in its environment that can be exploited to provide a

useful basis for action. It must also be able to reliably

detect this information in the face of changing circum-

stances and imperfect stimuli. The situation is quite

di�erent for an agent which operates in a simulated

environment that is well-behaved and fully-described,

that is, an environment which provides perfectly ac-

cessible information, all of which relates directly to the

agent's goals. An agent which exhibits perfect behav-

ior in such an environment might completely fail in

the \real world", where the outcome of a robot's ac-

tions may be a�ected by a multitude of factors that

the robot's designer understands but poorly and can-

not control.

Another one of the problems which physical agents

must contend with is the successful integration of per-

ception, cognition, action, and learning. It is possi-

ble, in the laboratory or simulated environment, to

ignore the dependencies among these activities, and

study each of them in isolation. Yet it is clear that

for an agent to perform any non-trivial task in the real

world, these activities cannot take place independently,

but must constrain one another in essential ways. The

robot model thus provides an arena in which theories

of perceptual, cognitive, motor or learning processes

may each be evaluated in the context of the other. It

is unarguably one the primary goals of arti�cial intelli-

gence (AI) to understand how these processes interact

to produce interesting behavior.

There are many other theoretical arguments which

could be made in favor of physical agents. However,

there is a �nal one that we would like to underscore

in this context, which, although very often neglected

by people who are merely concerned with simulations,

we believe to be one of the crucial criteria in modeling

cognitive systems: a dynamic environment requires an

agent to function under real-time constraints!

1

And

these constraints exclude a major bulk of learning and

programming techniques because of their time-intense

nature.

In the following, we describe the control system for a

robot that is designed using a combination of a genetic

algorithm and neural networks. The robot operates in

the \real world" (a forest, in this case), and solves a

path-navigating task that brings to bear on the robot

each of the challenges just discussed. We present re-

sults of tests of the system's performance in categoriz-

ing raw visual stimuli, and in autonomously navigating

a path. Finally, we discuss related work by others, and

some possible extensions our own work.
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The important consequences of this fact are described

in (vanGelder & Port 1995).



The path following task

Motivated by our interest in the e�ect of real world

constraints on cognitive systems, we wanted to choose

a task for a physical agent, which, while being man-

ageable from an engineering and programming point

of view,

1. is computationally feasible

2. is at the same time biologically plausible

3. integrates di�erent learning methods

4. lends itself naturally to further investigations of

higher level cognitive faculties

In view of these criteria, we have de�ned a path fol-

lowing task for our robot model, in which the robot is

required to navigate on red brick paths leading through

a small forest in front of the computer science depart-

ment at Indiana University, Bloomington (IUB). (see

�gure 1). The main challenge for the robot in this task

lies in processing the \real world" visual input: not

only does the path have no uniform color, but depend-

ing on various circumstances (such as the weather, the

time of the day, the foliage on the path, etc.) the path

looks very di�erent, and what is part of the path or

just part of the surrounding forest cannot be deter-

mined by simple rules (which could be easily done in

a simulation!). It is thus obvious that certain parts

of the visual �eld are more important and relevant for

detecting the path than others (depending on the per-

spective, the position of the camera above the path,

etc.). Therefore, the visual system needs to be able

to compute a reliable estimate of which part of the vi-

sual �eld counts as path in order to allow the robot to

navigate successfully through the woods.

Figure 1: The path

The robot

The robot, which we are using for our project, is cur-

rently under development by a group of graduate stu-

dents at IUB. It is intended as a multi-purpose plat-

form for and sponsored by the IUB cognitive science

program to test cognitive models that need a physical

agent. It consists of a three-wheeled body, carrying

a PC as well as the batteries that supply two motors

for locomotion. A head with a camera and two micro-

phones is mounted on the body allowing the robot to

look around and localize sounds. In addition, speakers

will be added later to permit speech production.

The model

In this section, we will �rst give a brief overview over

the program that controls the robot and then describe

the vision system in detail.

The basic structure

The program, guiding the robot's actions, consists of

two major parts: the vision system and the behav-

ioral (i.e., motor control) system. Both systems run in

parallel and asynchronously (Brooks 1991). The motor

system processes the output of the visual system, lead-

ing to motor actions, which in turn change the input

to the visual system, thereby establishing a coupling

between the robot and the environment.

The vision system

Visual input is received from a camera mounted above

the robot's two front wheels. While navigating, the

camera collects approximately 3 to 4 images per sec-

ond, which{encoded as matrices of gray-scale values{

are sent to the on-board PC. There, the images are

used as inputs to an array of \virtual" sensors. Each

sensor is responsible for reporting information about

a particular region of the robot's visual �eld, and so

attends to a single connected subset of the image ma-

trix. Thus, a sensor array is determined by a set of

vectors S = f(x
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The standard deviation of gray-scale values is used to

provide a rough model of texture di�erences between

regions of the robot's visual �eld. The path which the

robot navigates is composed entirely of red brick, so



that di�erences in pixel values about a small neigh-

borhood of any point on the path are almost always

negligible. Surrounding the path is a forest, where a

rich variety of shapes and colors serve to increase the

possibility of deviation within a given region signi�-

cantly.

The output vectors of the sensor array serve as in-

put to a 3-layer, feed-forward neural network. The

hidden layer uses a clustered competitive learning al-

gorithm to determine regularities in the visual �eld. It

learns to attend to \blobs" in the visual �eld using the

mean and standard deviations of neighboring regions

to constrain sensor data. A \backprop" layer, in turn,

uses a back-propagation learning algorithm (hence the

name) to \translate" the blobs of the hidden layer into

a few general categories such as \right turn", \straight

path", \junction", etc.

Sensors

Competitive
Layer

Competitive Clusters

Backprop Layer

Figure 2: The structure of the vision system

Motor system

Input from the backprop layer provides for a sim-

ple, non-adaptive scheme for generating motor com-

mands. As mentioned, the backprop layer translates

visual stimuli into simple categories that can be used to

provide prescriptions (e.g., turn right, turn left, stop)

for the robot's movement. Given the proper encoding,

these prescriptions can be sent directly to the motors

to produce an action. Although a variety of possible

commands can be tested over di�erent trials, the robot

can only select from among a �xed set of commands

while actually navigating.

Evolving the vision system

Learning in the system splits into two separate phases:

and o�-line genetic learning phase, during which the

visual system is \evolved", and an on-line adaption

phase, during which the robot learns to generate be-

haviors that will allow it to stay on the path. In the

following, we will focus only on the vision system.

The goal of the genetic algorithm is to evolve a sen-

sor con�guration (together with the neural network

processing it) such that the motor system can use the

output to generate behaviors that will allow the robot

to stay on the path. This aspect of the design is in

keeping with ecological principles (Gibson 1974), as

it equips the agent with a perception system that is

well adapted to its environment, and particularly well-

suited to the task for which it is used (Beer 1990). The

choice is also sound from an engineering standpoint, for

although we have set up a \hand-made" sensor array

to test the behavioral system, we were not convinced

that this array, being merely the result of analyzing

the constraints of the robot, is the best possible.

The challenging problem in our case was to come up

with a �tness function which assesses the functional-

ity of the sensor array. The best possible would be, of

course, an actual test run on the robot, but this is ob-

viously not feasible. So a neural network is used with

real images of the path together with teacher values

that describe (in human categories) all possible direc-

tions that the robot could move in. The following steps

have to be taken for every generation in the GA:

1. The GA generates a population of sensor arrays.

The initial population is generated by assigning ran-

dom values to all sensor parameters (array size is not

allowed to vary, it is �xed for each complete run of

the GA).

2. A 3-layer neural network with small random weights

is created for every sensor in each array. Then the

average grey value and the standard deviation are

computed for every image. In our current implemen-

tation, these values are paired with \teacher" values,

each corresponding to one of three movement cate-

gories: \right" and \left".

3. The input patterns to the network are computed de-

pending on the particular sensor array of the individ-

ual. Every input pattern is paired with a prede�ned

teacher pattern to train the network.



4. The hidden layer of the network is trained for a given

number of epochs using competitive learning in clus-

ters.

5. The output layer of the network is trained for a given

number of epochs using back-propagation. The

teacher patterns serve to determine the error sig-

nal which is then used to adjust the weights from

the hidden layer to the output layer. After training,

the network is tested on these patterns and the dif-

ference in output between the prede�ned categories

and the ones learned by the network are used to de-

termine the �tness of the sensor array. Speci�cally,

�tness is given by

fitness = 1=

k

X

pat=1

n

X

i=1

(teacher

pat;i

� output

pat;i

)

where k is the number of images and n the number

of output nodes.
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6. When a �tness value has been generated for each

member of the population, the GA constructs a new

population using three standard genetic operators:

selective reproduction, crossover, and mutation. Pa-

rameter values for the \�ttest" sensor-array and its

associated network are recorded. When the GA

halts, the array with the highest �tness value over

every generation is selected for testing.

This method of evolving sensor arrays which allow

for network classi�cation of inputs contributes to the

robot's success mainly via its e�ect on the input space.

By adjusting the placement and size of individual sen-

sors, the GA manages to locate those areas of the vi-

sual �eld which consistently contain salient, stable in-

formation about the robot's environment. By �xing

sensors in these areas, the GA constrains the robot's

perception of the world in much the same the way as

an attention mechanism does in other organisms. The

competitive layer then searches for regularities in the

restricted input space, thus further reducing the vol-

ume of input data. In absence of these constraints, the

sheer number of states of the world to be interpreted

by the robot might well preclude the possibility of its

generating useful actions on the basis of sensory input.
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At �rst glance, this seems to be an instance of the

\credit assignment problem". It turns out, though, that

if the hidden layer classi�cation is \good enough", back-

propagation can always learn to map it onto the prede�ned

categories. Therefore, we concluded, that those sensor ar-

rays where the representation in the hidden layer are useful,

but where backprop fails to achieve a reasonable mapping,

can be ignored without too great a loss.

Results

We now describe the performance of several of the

evolved arrays when used to categorize visual input,

and to navigate the robot down the path. We provide

speci�c examples of the interactions between certain

con�gurations of the sensors, and the ability of the

network to correctly classify inputs given these con�g-

urations.

Figure 3: The �ttest sensor array

In order to assess the potential e�ectiveness of the

sensor arrays prior to their use in the navigation task,

\movies" of the path environment were recorded while

driving the robot manually down the path. Movies

were taken in a variety of light conditions, and con-

sisted entirely of images which were not present in the

training set of the evolved array. These images were

then paired with appropriate teacher values, and fed

to a network simulator which displayed the output of

a trained network for a given image when coupled to

an evolved array.

Figure 3 depicts an evolved array which had highest

overall �tness after a 10,000 generation run of the GA

on a 20-image training set.
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The teacher values used

during the run were \right turn" and \left turn". A

network coupled with this sensor array correctly clas-

si�ed 360 separate images.

The array depicted in �gure 4 is a \hand-coded" ar-

ray. Networks coupled to this array managed to clas-

sify roughly one third of the movie-�le images correctly.

These results clearly indicate the network's dependence

on an \intelligent" selection of inputs from the input

space. Note that the majority of the sensors in the

evolved array are clustered in the upper left and right

hand corners of the visual �eld{precisely the location

3

Notice that individual sensors can overlap.



Figure 4: The hand-coded sensor array

where the presence or absence of vegetation indicates,

to the human eye at least, the dividing line between

forest and path. It also not unreasonable to hypothe-

size that the lack of centrally-placed sensors re
ects a

response to the \noisiness" (in the form of glare, see

�gure 5) of the central region of the visual �eld.

Figure 5: Glare on the path

But the proof of the pudding, so to speak, is demon-

strated by the robot's ability to perform the task for

which it was designed. Coupled with the array in �g-

ure 3, a network that was trained for 1,000 epochs

on a 20-image training set was installed on the robot's

on-board PC. Under the control of this coupled ar-

ray/network, the robot successfully traversed the forest

path, covering some 150 yards, in 2 out of 5 separate

trials. This performance can be compared to tests run

with the \hand-coded" sensor array, which, when cou-

pled with a network given the same amount of training,

failed to navigate the path for more than 30 feet on any

one of �ve trials.

Related work

The application of genetic algorithms to problems in

robotic control has generated a number of success-

ful results (Floreano & Mondada 1996; Beer 1990;

Colombetti, Dorigio, & Borghi 1996), particularly

where a GA has been used in conjunction with a neural

network. Our use of a GA/neural network combina-

tion di�ers from many previous applications in three

notable respects: �rstly, we have used a GA not to op-

timize connection weights of the network (Floreano &

Mondada 1996; Beer 1990; Law & Miikkulainen 1994;

Cli�, Husbands, & Inman 1992) but rather to con-

strain the network's input space, thus optimizing the

e�ectiveness of further network learning procedures.

A second distinction, shared by (Cli�, Inman, & Hus-

bands 1996) and (Cli�, Husbands, & Inman 1992), lies

in our utilizing the GA in the construction of a sensory

system that is well-suited to the robot's task, as op-

posed to the construction of a motor system that must

accomplish a given task, using a representation of the

environment that is �xed by the designer. Finally, the

network training algorithm we employ is distinctive in

it's integration of self-organizing and supervised learn-

ing procedures.

A comprehensive overview of current practices and

approaches in evolutionary robotics can be found in

(Mataric & Cli� 1996) and (Nol� et al. 1994). Con-

vincing arguments for the necessity of evolving robot

controllers for complex tasks are given by (Cli�, Hus-

bands, & Inman 1992). For further examples and dis-

cussions of adaptive robotics, broadly construed, see

(Kaelbling 1993) and (Nehmzow & Mitchell 1995). Fi-

nally, the important links between robotics and other

branches of AI and Cognitive Science are explored in

(Harnad 1995) and (Brooks 1991).

Conclusions

A major goal of our \path-following project" was not

only to explore the e�ectiveness of a novel learning

application, but also, in accordance with the ideas dis-

cussed in the introduction, to further tighten the links

between research in robotics and the rest of AI. An

agent which can navigate autonomously in an envi-

ronment as complex as the one we have chosen would

provide an ideal platform from which to launch inves-

tigations of higher-level cognitive activities in the \real

world". Yet our pursuit of such an agent has already

generated some results which might be of some interest

to the concerns of cognitive science. In particular, we

have demonstrated that, at least in this instance, an



agent's perception of its environment cannot be arbi-

trary, but must be crafted by an adaptive process to

conform to the task at hand. As was shown above, an

appropriate vision system is conditio sine qua non for

the robot, because all behaviors, i.e., motor commands,

hinge upon its interpretation of the world.

In the future, we intend to replace the primitive mo-

tor system used in these experiments with one that

will allow the robot to adaptively generate motor com-

mands. Once we can elicit reliable, independent path-

following, we may begin making progress towards an

overarching goal: the evaluation and design of cogni-

tive theories for agents in the \real world".

Acknowledgments

The genetic algorithm used in our experiments was

constructed from \Matthew's GA Library", to be

found at http://lancet.mit.edu/GA. Funding for the

robot used in these experiments was provided by the

IU Cognitive Science Department. We would also like

to thank the IU Robot Group for their ideas and tech-

nical support.

References

Beer, R. 1990. Intelligence as Adaptive Behavior:

an experiment in computational neuroethology. San

Diego: Academic Press.

Brooks, R. A. 1991. Arti�cial life and real robots. In

Proceedings of the Workshop on Evolution and Chaos

in Cognitive Processing (IJCAI-91).

Cli�, D.; Husbands, P.; and Inman, H. 1992. Evolving

visually guided robots. In Proceedings of the Second

International Conference on Simulation of Adaptive

Behavior. Cambridge: MIT Press Bradford Books.

Cli�, D.; Inman, H.; and Husbands, P. 1996. Arti-

�cial evolution of visual control systems for robots.

Forthcoming.

Colombetti, M.; Dorigio, M.; and Borghi, G. 1996.

Behavior analysis and training: A methodology for

behavior engineering. In Transactions on Systems,

Man, and Cybernetics, volume 26(6).

Floreano, D., and Mondada, F. 1996. Evolution

of homing navigation in a real mobile robot. IEEE

Transactions on Systems, Man, and Cybernetics 26.

Gibson, J. 1974. The Perception of the Visual World.

Westport, Conn.: Greenwood Press.

Harnad, S. 1995. Grounding symbolic capacity

in robotic capacity. In Steels, L., and Brooks, R.,

eds., The \arti�cial life" route to \arti�cial intel-

ligence". Building Situated Embodied Agents. New

Haven, Conn.: Lawrence Erlbaum.

Kaelbling, L. P. 1993. Learning in Embedded Systems.

Cambridge, Mass.: MIT Press.

Law, D., and Miikkulainen, R. 1994. Grounding

robot control with genetic networks. Technical Re-

port AI94-223, Dept of Computer Sciences, Univ. of

Texas at Austin.

Mataric, M., and Cli�, D. 1996. Challenges in evolv-

ing controllers for physical robots. Forthcoming.

Nehmzow, U., and Mitchell, T. 1995. The prospec-

tive student's introduction to the robot learning prob-

lem. Technical Report UMCS-95-12-2, University of

Manchester, Manchester.

Nol�, S.; Floreano, D.; Miglino, O.; and Mondada,

F. 1994. How to evolve autonomous robots: Dif-

ferent approaches in evolutionary robotics. Technical

Report PCIA-94-03, Dept of Cognitive Processes and

Arti�cial Intelligence, Viale Marx.

vanGelder, T., and Port, B. 1995. Mind as Motion.

Cambridge: MIT Press.


