
Matthias Scheutz and Paul Schermerhorn

Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering

University of Notre Dame

Notre Dame, IN 46556

Adaptive Algorithms for the Dynamic Distribution

and Parallel Execution of Agent-Based Models

Abstract

We propose a framework for defining agent-based models (ABMs) and two algorithms

for the automatic parallelization of agent-based models, a general version P-ABMG for all

ABMs definable in the framework and a more specific variant P-ABMS for “spatial ABMs”

targeted at SWARM and ANT-based models, where the additional spatial information can

be utilized to obtain performance improvements. Both algorithms can automatically dis-

tribute ABMs over multiple CPUs and dynamically adjust the degree of parallelization

based on available computational resources throughout the simulation runs. We also de-

scribe a first implementation of P-ABMS in our SWAGES environment and report both

results from simulations with simple SWARM agents that provide a lower bound for the

performance gains achievable by the algorithm and results from simulations with more

complex deliberative agents, which need to synchronize their state after each update cycle.

Even in the latter case, we show that in some conditions the algorithm is able to achieve

close-to-maximum performance gains.

Key words: agent-based model, adaptive parallelization and distribution

Preprint submitted to Elsevier Science 30 September 2005

PACS:

1 Introduction

Agent-based models (ABMs) and their simulations have been widely employed

in the fields of complex systems, artificial life, genetic programming and genetic

evolution, social studies, and others to study emergent group behaviors in swarms

[1–5], bacterial chemotaxis signaling pathways [6,7], population ecology [8–10],

social and economic systems [11–13], and many more. 1

While most ABMs are intrinsically parallel in that they implicitly decompose the

overall complex system behavior into tractable behaviors of individuals and their

interactions, most simulation environments for ABMs are sequential: they run on

a single CPU and do not support the distribution of the ABM over multiple CPUs

(even though they might support the scheduling of sequences of ABM simulations).

And the few existing simulation environments that support the parallelization of

ABMs, require the designer of the ABM to make provisions in the code that will

allow for the distribution of the simulation. As a result, it is very difficult for non-

experts (i.e., scientists with no background in parallel programming) to utilize the

potential parallelism present in many ABMs for running parts of their models in

parallel. Moreover, such parallelizations are typically not generic, but are tailored

Email address: {mscheutz,pscherm1}@nd.edu (Matthias Scheutz and Paul

Schermerhorn).
1 Agent-based models–sometimes also called “individual-based” models–are often used

to simulate the behavior of complex real-world systems, when possible state changes of

individual entities are known and can be encoded in rules, while no such knowledge exists

for global world states (e.g., the state given by the environment and all its agents).

2

to a specific execution environment (e.g., a given number of hosts, CPUs, etc.) and

thus require modifications for simulation runs in different execution environments.

We believe that an algorithm that can automatically and dynamically distribute a

given agent-based model over a dynamically changing set of CPUs without requir-

ing any assistance from the user would be of great utility for the ABM community;

most importantly, because the same ABM simulation will work both in sequen-

tial and parallel computing environments, but also, because it will be possible to

maximally exploit the available computational resources at any given time.

In this paper, we introduce a formal framework for capturing agent-based mod-

els and two subsequent algorithms for the automatic parallelization of agent-based

simulations defined in the framework, a general version P-ABMG for all agent-

based models and a more specific variant P-ABMS for “spatial ABMS”. The spa-

tial variant is especially targeted at the SWARM and ANT-based models, which

typically are defined in the context of metric spatial environments, where the ad-

ditional spatial information can be utilized to obtain performance improvements.

Both algorithms can automatically distribute ABMs over multiple CPUs and dy-

namically adjust the degree of parallelization based on available computational re-

sources throughout the simulation runs. We also describe a first implementation of

P-ABMS in our SWAGES environment and report results from simulations with

simple SWARM agents and more complex deliberative agents that use a version of

the A∗ε algorithm [14] for planning routes in a dynamic environment. The former

provide a lower bound of the performance gains achievable by the algorithm, the

latter demonstrate that the algorithm is also useful for complex agents that require

complex computations to compute their behaviors.

3

2 A Description Framework for Agent-Based Models

Agent-based modeling has been applied in many diverse fields (as mentioned in the

introduction). Consequently, different kinds of formalisms and frameworks have

been developed to capture this diversity (e.g., some models are essentially physics-

based, while others operate on a mere social level). Common to all of them is the

idea that individuals (in groups of entities) are modeled as such (e.g., molecules

in a cell, ants in a colony, strategies in a tournament, etc.), rather than as relations

among global state variables abstracting over the individuals (although the latter

typically can be recovered from the individual’s interactions). Hence, simulations

of these models could all potentially benefit from parallelizing the model at its nat-

ural seams: the individuals. Specifically, it would be beneficial for ABM research

if ABM simulations could be distributed over a set of CPUs such that the over-

all execution time of a simulation run can be reduced, ideally by a linear factor in

the number of employed CPUs. Moreover, it would be particularly helpful if ABM

researchers did not have to worry about the parallelization themselves, but rather

could defer it to simulation software, which adaptively distributes an ABM over

CPUs as they become available. In this paper, we will propose algorithms that can

accomplish this task.

A prerequisite for the definition of any such algorithm is a formal description of the

notion of “agent-based model”, for otherwise it is only possible to define ad-hoc

algorithms for specific model instances. Clearly, the generality of the description

will limit the applicability of the algorithm. Hence, it is important to take care in

laying out the formal description framework to be as inclusive as possible, while

at the same time not sacrificing the potential of the algorithm to save time (via

parallelization). We will attempt this balancing act in the rest of this section by

4

first introducing a general framework for ABMs that is intended to capture what

is essential about ABMs, and then extending the notion of “agent-based model”

to “spatial agent-based model”, a class of models that is particularly amenable to

parallelization. 2 The proposed framework is based on a formalism introduced to

define multi-level, multi-scale agent-based models [15].

2.1 Agent-Based Models

ABMs are generally models of some behavior of (real-world) entities in their en-

vironment over a period of time. “Agents”–in the context of ABMs–are then the

representations of these real-world entities, whose behavior is characterized by a

set of rules that determine the state change of an entity based on the past state of

the entity and (possibly) environmental states. These rules are encoded in the rep-

resenting “agents” within the ABM. A simulation of an ABM is a computational

process that starts in some initial condition and then updates the agents’ states and

environmental states over time, thus providing a model of the evolution of the real-

world system (within the confines of the rules and state representations chosen in

the ABM to model the real-world system).

A subset of agent-based models (e.g., SWARM or ANT models), very common in

artificial life simulations or socio-economic models, includes spatial assumptions

about the environment. 3 Typically, the environment is modeled as a discrete or

2 We believe that most ABMs in the literature can be translated into the proposed formal-

ism, but for space reasons we cannot give translation for a representative set of models

here.
3 Examples of non-spatial agent-based models are versions of the iterated prisoner’s

dilemma, where all participating strategies are modeled as agents playing all other agents

5

continuous metric space (e.g., with the Euclidean norm). Such models allow for

the simulation of interactions among entities based on a notion of distance, which

is crucial for understanding the behavior of many biological systems and organi-

zations of agents in physical spaces (e.g., insect swarms, flocks of birds, schools

of fish, etc.). In a sense, any agent-based model can be viewed as a “spatial agent-

based model” (S-ABM)–if no notion of space is defined in an ABM M, it can be

trivially viewed as an S-ABM with only one location, which all entities occupy.

Hence, we start with a general characterization of (metric) S-ABMs, including the

main constituents: (1) a spatial environment, (2) a set of global (or environmen-

tal) states, (3) a set of locations in the environment for which global states can be

updated, (4) a set of entity types (of all entities defined in the model), (5) a set of

initial conditions (some/all of which are to be investigated in simulation runs of the

model), and (5) a set of conditions that single out final configurations (i.e., con-

figurations that mark important states of the model, typically used for terminating

simulations, such as equilibrium states or states without any entities left, etc.). 4

Definition 1 (Spatial Agent-Based Model) A spatial agent-based model M =

〈EnvM ,GSM ,LocM ,EntM , InitM ,CondM 〉 consists of an n-dimensional bounded

or unbounded metric space EnvM , a set of global environmental states GSM , a

set of locations in the environment together with their respective update functions

LocM = {〈L,UL〉|L ∈ P (EnvM ,UL : P (EnvM ×GSM 7→ GSM)}, 5 a set of entity

types EntM
6 , a set of initial configurations InitM , and a set of conditions for final

in every round of a tournament.
4 The qualifier “metric” was chosen simply because we are not aware of any non-metric

spatial ABMs, but nothing theoretical hinges on it. We will focus on n-dimensional contin-

uous Euclidean spaces (discrete Euclidean spaces are then just a special case).
5 We use “P (X)” to denote the power set of a set X .
6 We prefer the term “entity” to refer to the computational representation of some real-

6

configurations CondM . Typically, CondM will consist of logial formulas (e.g., in

first order logic) that describe properties of configurations. 7 Each configuration in

the set of initial configurations is C = {E|τ(E) ∈ EntM }∪ f irst LocM , i.e., a set of

instantiated entities E (whose types τ(E) are in EntM together with all the defined

locations, i..e, the first projections of LocM). 8

We will use C f gM to denote the set of all possible configurations determined by

the model M . If we assume discrete environments with finitely many locations

and entity types with only finitely many instances, then the set of configurations

will also be finite. Note that locations have their own update functions directly

associated to allow for local and global changes of environmental states (e.g., global

and/or local temperature, updates pheromone concentration, etc.). 9

world entity within an ABM over the more common term “agent” given the ambiguities

in the literature associated with the term “agent”, which we would like to avoid (e.g., any

computational entity within an agent-based simulation is called “agent” even though it

might not even have sensors or actuators, which are requirements for many notions of

agent, e.g., as in an “autonomous computational entity with sensors and actuators that is

situated in some environment”).
7 The reason for including conditions for final configurations instead of a set of final con-

figurations in the definition of the model is that the former is more intuitive, closer to

practical applications of ABMs and directly implementable, while the latter might obscure

what is common to these configurations and might require the specifications of general

conditions that define the set of final configurations to be efficiently implementable after

all.
8 Note that by “instantiated entity E” we always intend the state of an entity of type E.

Also, we use “FIRST” to denote the function that returns the first component of a typle.
9 For S-ABMs where new locations can appear and old ones can disappear at various times

a different way of introducing locations (e.g., as functions of environmental states over time

or as entities themselves as we have done in the past) might be formally more succinct.

7

2.2 Entities in Spatial Agent-Based Models

There are many ways in which entities in S-ABMs could be formally characterized,

each with its own advantages and disadvantages (e.g., some are easily accessible

for the non-expert programmer, others are quite technical and focus on a mathemat-

ically precise formalization in set theory). We chose to formalize entities in ABMs

as consisting of a body (i.e., a representation of their physical extension and shape

in space) together with sensors that can measure the environment and actuators

that can affect it. Hence, interactions between entities can only occur via sensors

and effectors. This includes communications among agents, which in some simu-

lation environments can take place directly (e.g., analogous to “telepathy”). 10 The

advantage of our proposed approach is that communication is treated as a special

case of sensing and acting (just as in the real world), and thus does not require

any additional, special formal apparatus (nor any special provision in the parallel

algorithms to be proposed later).

The conceptual separation between body, on the one hand, and sensors and actua-

tors, on the other, is intended to make it easier to model entities that share the same

geometric shape and bodily characteristics (e.g., in terms of the extension in space),

but differ with respect to their sensory and actuator capabilities (e.g., sensory and

actuator range, modalities, etc.). With this separation it is possible to define rules

that govern the behavior of the sensors independently of those used for the body.

This is, for example, useful for investigations of the effects of sensory range on

agent performance (e.g., [16]).

10 One consequence of our model is that communication ranges are determined by sensory

and actuator ranges. If unlimited communication is required, then the corresponding ranges

need to be set accordingly, e.g., see [16].

8

Definition 2 (Entity, Body, Sensor, Actuator) An entity E = 〈BE ,CE ,UE〉 consists

of a body BE , and possibly a controller CE , and an update function UE that updates

the state of the entity (see below).

A body B = 〈SenB,GeomB,LocB, IntB,ActB,UB〉 consists of a sequence of sensors

SenB, a geometry configuration GeomB of its shape (including where sensors and

actuators are located), a location LocB where the body is situated, a sequence of

internal bodily state variables IntB (e.g., for energy sources), a sequence of actu-

ators ActB and a mapping UB from a sequence of sensor states, geometry states,

locations, and a sequence of internal states to a sequence of actuator states, geom-

etry states, locations, and a sequence of internal states (e.g., UB could be given by

a set of differential equations or difference equations).

A sensor S = 〈LocS,RngS,OutS,TS〉 consists of a location of the sensor LocS in

EnvM , a sensory range RngS ⊆ EnvM , a set of output states OutS and a transfor-

mation function TS : f irst LocM ×C f gM 7→ OutS that maps sensor locations with

respect to any arrangements of entities to sensor output states.

An actuator A = 〈LocA,RngA, InA,TA〉 consists of a location LocA of the actuator in

EnvM , an actuator range RngA ⊆ EnvM , a set of input states InA and a transfor-

mation function TA : f irst LocM × InA×C f gM 7→ f irst LocM ×C f gM that maps

actuator locations based on actuator input and the given configuration onto a new

configuration and new actuator location (e.g., if the actuator is attached to a body,

this will allow for moving the body).

Define the sequences of sensor and actuator states InB(i) := OutSi and OutB(j) :=

InA j , where Si = SenB(i) (i.e., the i-th sensor in the body B) and A j = ActB(j)

(the j-th actuator in the body B), respectively. Based on these definitions we can

now formally define the bodily update function UB : InB×GeomB× IntB×LocB 7→

9

OutB×GeomB×IntB×LocB. A triple 〈g, i, l〉 ∈GeomB×IntB×LocB (without input

and output states) is called bodily state of the entity.

The above definition of the “body” of an entity E is sufficient to describe au-

tonomous entities in the sense of “agents” in many agent-based simulations. Hence,

an entity E can consist of only a body BE (as mentioned above), in which case

UE = UBE . However, we believe that it is often useful to separate bodily processes

from control processes (e.g., to allow for the possibility of having different con-

trollers for the same kind of body). Hence, we allow entities to include a separate

controller whose whole purpose is to control the entity’s body based on its bodily

states. 11

Definition 3 (Controller) A controller C = 〈InC,CompC,OutC,UC〉 has a sequence

of inputs InC : InBE × IntBE , a sequence of outputs OutC : OutBE × IntBE , a sequence

of internal computational states CompC and a mapping UC : InC×CompC 7→CompC×

OutC from input and internal states to output and internal states (e.g., the mapping

could be specified via condition-action rules or feedback equations from control

theory).

Entity update functions UE for entities E that consist of both a body BE and a con-

troller CE have to be defined both in terms of the body and the controller update

functions UE : InBE ×GeomBE × IntBE × LocBE ×CompCE 7→ OutBE ×GeomBE ×

IntBE ×LocBE ×CompCE . The state of an entity is then given by its bodily and con-

trol states, i.e., the quadruple 〈g, i, l,c〉 ∈ GeomBE × IntBE ×LocBE ×CompCE . The

bodily output (OutBE) is sent to the actuators ActB, which attempt (but potentially

fail) to carry out the actions specified. This last point is important in modeling sit-

11 Note that the above definitions do not allow for “disembodied controllers” as we believe

that this concept cannot be coherently formulated in the present context.

10

uations, where an entity’s controller might attempt to achieve a state that is incon-

sistent with the environmental state (e.g., the control attempts to move the entity

forward even though an obstacle is blocking the way). In such a case, the bod-

ily actuator state has precedence over the controller commands (e.g., in a physics

simulation the actuator transition function will always obey the laws of physics,

regardless of attempts by the controller to produce forces that are not possible in

the given configuration). A controller, and consequently the entity of which it is a

part, can thus only attempt to affect the environment without any guarantees that

“motor commands” can and will actually be executed.

2.3 Simulations of Agent-Based Models

In the above exposition, we introduced all individual UE as functions; moreover

all locations also had update functions associated with them. Hence, each config-

uration Ci has a unique successor configuration Ci+1 and we can define an overall

“model update function” UM on the set of configurations in terms of the update

functions of each entity and each location:

Definition 4 (Successor Configuration, Model Update Function) Let Ci ∈C f gM

be a configuration in a spatial agent-based model M . Then the successor con-

figuration of C′
i = UM (Ci) is given by UM (Ci) = {UE(E)|E ∈ Ci} ∪ {UL(L)|L ∈

f irst LocM ∧UL ∈ f irst LocM }. UM is called the model update function of the

model M .

Given that UM is a function, sequences of configurations–call them “simulations”–

are entirely determined by the initial configuration C0 of a model. This leads to the

following definition:

11

Definition 5 (Simulation of an S-ABM) A simulation of an S-ABM M is defined

as a finite sequence of configurations U i
M (C0) = 〈C0,C1,C2, . . . ,C f inal〉 starting

with an initial configuration C0 ∈ InitM and ending in the final configuration C f inal

(as determined by the conditions in CondM , i.e., CondM (C f inal)∧¬CondM (Ci6= f inal)),

where all Ci ∈C f gM (0 ≤ i ≤ f inal). A transition between two subsequent config-

urations Ci,Ci+1 (0 ≤ i < f inal) in a sequence is also called simulation step. The

duration of the simulation is measured in terms of simulation cycles (or just cycles,

for short), i.e., |〈C0,C1,C2, . . . ,C f inal〉|, and we use the term “cycle” to refer to the

position of configurations in the sequence of configurations.

Simulations for ABMs, as defined, are consequently deterministic and reproducible

from initial states. However, it is sometimes more convenient to allow for “non-

deterministic” state transitions in models (both for entities and locations), e.g., to

model probabilistic state transitions where each transition has a certain likelihood

associated with it. In such a case, it is straightforward to augment the above defini-

tions of entities and locations by dropping the requirement that entity and location

updates be functional, but construct them as annotated relations, where the annota-

tion is a numeric value in [0,1]–the transition probability–such that all annotations

of transitions from a given state with the same update sum to 1. The consequences

for implementations are that explicit representations of random number generators

and their seeds are necessary to be able to reproduce simulations. Reproducible

simulation runs are then defined in terms of the seeds of the random number gen-

erators and the initial states (i.e., at any choice point the random number generator

will deterministically produce a next “random number”, which is used to determine

the state transition).

We are now interested in general algorithms A that compute simulations of agent-

based models (defined in the proposed framework) in the following sense: for any

12

configuration C ∈C f gM given as input, A produces the successor configuration as

output UM (Ci). In particular, we are interested in parallel algorithms that take initial

configurations of agent-based models and return final configurations of simulations,

where intermediate configurations are distributed across a possibly dynamically

changing pool of multiple CPUs.

3 Parallel Simulation Algorithms

Spatial agent-based simulation models can be automatically parallelized and dis-

tributed in different ways. One obvious way is to run each entity on its own CPU.

Before an entity can update its state, it needs to collect the current state information

from all other entities (running on other CPUs). Once the information is available,

the entity updates its state and begins the update cycle again. All CPUs update their

respective entities in the very same cycle-based fashion to ensure the correctness of

the results.

Another possibility is to determine in advance whether an entity needs the state of

another entity for its update and to distribute agents based on these dependencies

(e.g., subsets of mutually dependent entities end up on the same CPU, which limits

the exchange of state information to local entities).

Other options are to predict or (empirically) determine the actual update time of an

entity and run computationally expensive entities on separate CPUs, while running

computationally cheap entities together on one CPU.

Which of the above approaches works best will depend on various factors, includ-

ing the complexity of the update function of the involved entities, the distribution

of entity types in a particular setup, the computational overhead of sending state in-

13

formation requests and receiving them, the pool of available CPUs (e.g., individual

speeds, etc.) and whether it remains constant throughout a simulation run or can

change over time, etc. All these factors (and their interdependencies) are important

for efficient parallelizations of agent-based models. For space reasons, however,

we will have to limit our discussion to two factors: the automatic distribution of

entities over a pool of available homogeneous CPUs and the automatic, dynamic

adjustment of this distribution based on the changes of that pool over time.

We will start with a discussion about splitting configurations, then give a formal

characterization of the general algorithm and proceed to the special spatial variant.

We will also show that both algorithms are correct in the sense that they will yield

the same results as a sequential version.

3.1 Splitting Configurations

We start by formalizing the intuitive idea of splitting up a set of entities and assign-

ing them to processors in a given set of CPUs.

Definition 6 (Split of Configuration) Let M be a S-ABM, C a configuration in

C f gM , and Proc = {CPU1,CPU2, . . . ,CPUn} a set of available processors (“pro-

cessor pool”). Then a split PC
Proc of C is a mapping P : C 7→ Proc–called entity-

processor assignment–of entities to processors CPUi in Proc.

Note that the entity-processor assignment does not have to be surjective as we might

not need all processors in the processor pool.

Corollary 7 A split PC
Proc induces a partitioning ΠC of a configuration C into i

disjoint subsets of entities ΠCi in C.

14

PROOF. It is straightforward to check that the sets ΠCi := {E|E ∈C∧PC
Proc(E) =

CPUi} for each CPUi ∈ Rng(PC
Proc) are a partition of C (they are disjoint and their

union is C).

Each ΠCi is itself a configuration and can thus be updated in the same way as C.

In the context of parallelizing a simulation, i.e., a sequence of configurations, we

can simply split the initial configuration C0 of a simulation among the processors in

Proc and then continue to update the entities on each processor CPUi independently

as long as the states of entities updated by CPUi do not depend on the states of

entities updated by other processors CPU j. If there is such a dependence, then there

are two options: (1) either the external state information has to be obtained before

the state of the local entities can be updated, or (2) both configurations are “merged”

before the update (we will consider both options below).

Hence, the critical aspect in parallelizing a spatial agent-based simulation is to de-

tect these dependencies automatically and communicate the necessary information

among processors. We will first formally define the notion of “update indepen-

dence”, and then propose a necessary condition for detecting it.

Definition 8 (Update Independence) An entity E1 is update-independent, UIC(E1,E2),

of another entity E2 in a configuration C (with E1,E2 ∈C), if the updated state of

E1 in the successor configuration C′ of C is the same as in the successor config-

uration (C−E2)′ of C−E2 (i.e., the configuration obtained from C by removing

entity E2). E1 is called update-dependent on E2 in C if ¬UIC(E1,E2). E1 and E2 are

called mutually update-independent in C if E1 is update-independent of E2 and vice

versa (see Figure 1). Two subconfigurations C1,C2 ⊆C of C are mutually update-

independent UIC(C1,C2) if ∀E1 ∈C1,E2 ∈C2[UIC1(E1,E2)∧UIC2(E2,E1)]. A set of

15

E1

E1

E2

E2

Configuration C

Configuration C’

Fig. 1. An illustration of update independence. Two entities E1 and E2 are both about to

move in different directions (as indicated by arrows) in a configuration C. Since their sen-

sory and actuator ranges (indicated by dashed circles) within which they can affect their

environment do not overlap, either agent can be removed in C and will end up in the same

position in C′ (on the right) if the reduced configuration is updated as when C is updated

with both agents. Hence, E1 and E2 are mutually update-independent.

subconfigurations C of C is update-independent if ∀C1,C2 ∈ CUIC(C1,C2). A split

PC
Proc is update-independent if the set of all ΠCi is update-independent.

In other words, the presence of the other entity Ei cannot have any effect on E

if its removal does not change the update of E. Note that update-independence

is not symmetric (that’s why we need the additional notion of “mutual update-

independence”): it is possible that one entity E1 is update-independent in C from

another entity E2, while the latter is not update-independent in C from the former

(e.g., consider E1 with maximum sensory and actuator ranges of 10 located in (0,0)

and E2 located in (0,50) with the same actuator range, but a circular sensory range

of 100 for one sensor; then E2 can sense E1 and might change its behavior based on

the perception, while E1 is oblivious to E2’s presence). Moreover, update indepen-

dence is not transitive either for obvious reasons, nor is it reflexive (e.g., an agent’s

16

behaviors might or might not be completely independent of its own state).

Most importantly in the present context, update-independent configurations have

the nice property that they can be directly “merged”, i.e., the union of two update-

independent configurations is itself a configuration with the following property:

Corollary 9 Let C be a configuration, C′ the successor configuration C′ = update(C),

and ΠC1 and ΠC2 update-independent configurations obtained by splitting C via

PC
Proc. Then C′ = update(ΠC1)∪update(ΠC2).

3.2 P-ABMG– A Generic Parallelization of ABMs

The fact that update-independent configurations can be directly merged suggests a

straightforward way to parallelize a given agent-based simulation with initial con-

figuration C0:

P-ABMG (C,Proc)

while notFinal(C) do

compute an update-independent split PC
Proc for Proc

distribute each subconfiguration ΠCi onto CPUi in Proc

compute (ΠCi)
′ := update(ΠCi)∪update(L) (L ∈ f irst LocM) on each CPUi

collect updates and merge into C′ :=
S

(ΠCi)
′ (do not merge L ∈ f irst LocM)

C := C′

Proc := update(Proc)

end while

The difference between entities and locations here is that entity updates are split,

while location updates are replicated on each node. The assumption underlying this

choice (e.g., as opposed to splitting locations as well) is that location updates are

17

typically very inexpensive compared to entity updates (e.g., the update of the “tem-

perature” of a location might consist only of a simple increment of its previous

temperature, while the update of an entity involves getting sensory readings, up-

dating controller and body, and applying actuator effects). It is certainly possible

to have simulations with complex updates of location properties, in which case it

might make sense to extend splits to locations (i.e., treat locations the same way

as entities). Similarly, updates of some entity types may be very cheap compared

to other ones (or compared to the communication overhead their synchronization

might cause), in which case it may be useful to replicate these entities in each par-

allel simulation, rather than treating them as part of the configuration that gets split

(e.g., see the second demonstration experiment in Section 4.3).

It is a direct consequence of merging at the end of each update that the algorithm 12

is “step-wise correct” in the following sense:

Definition 10 (Step-wise Correctness) Let A be a parallel algorithm for updating

a spatial agent-based simulation SC0 = 〈C0,C1,C2, . . . ,C f inal〉 of an S-ABM M . A is

stepwise correct if it produces a sequence of split configurations 〈ΠC0,ΠC1,ΠC2, . . . ,ΠC f inal〉

12 We would like to thank an anonymous reviewer for pointing out that it is not obvious that

P-ABMG is, in fact, an algorithm without showing that it is always possible to compute a

split. To see this, note that it is always possible to compute an update-independent split

in the following inefficient, but trivial way: choose a split (at random), run the simulation

in parallel for one step, and then compare the result to the simulation updated without a

split (i.e., run on a single CPU): if the simulation states are the same, then the split was

update-independent (repeat for all permutations). While this way of computing an update-

independent split obviously defeats the purpose of parallelizing a model in the first place

(as the whole simulation needs to be updated without being split), it shows that there is

always a way of computing it, hence P-ABMG is an algorithm.

18

such that Ck =
S

(ΠCk) for all 0 ≤ k < f inal.

Corollary 11 P-ABMG is step-wise correct.

Note that the above algorithm is adaptive because the set of available CPUs is

updated after every configuration update. Hence the algorithm can take the new set

of resources (e.g., a larger number of available CPUs) into account when the new

split is computed.

Aside from the question of how to compute an update-independent split, to which

we will return shortly, it is clear that a parallelization of a simulation according

to the above algorithm is only worthwhile if the cost of computing such a split,

distributing subconfigurations and merging them subsequently is low compared to

the cost of updating entities. At the same time, if updating an entity is very expen-

sive, splitting entities based on update-independence might not be the best option in

the first place. For example, if C consists of a large subconfiguration Ci of update-

dependent entities, this configuration will be updated on one processor and thus

incurs a computation cost linear in |Ci|, which is in the worst case O(|C|). In such

a case it is likely better to further split entities in |Ci|, distribute them over different

CPUs, and use a mechanism to request and transfer the states of update-dependent

entities in other subconfigurations as part of the update of an entity on the fly.

3.3 Towards Exploiting Properties of Spatial ABMs

As already mentioned, the important ingredient missing to be able to implement

parallel algorithms like the above is an efficient way to detect update-independence.

Detecting update-independence directly based on the definition of update-independence

clearly defeats the purpose; for a given pool of processors Proc this would require

19

repeated computation of a split, independent update of all subconfigurations, and

comparison of the merged updated subconfigurations to the update of the whole

configuration in order to determine whether the split was update-independent. This

means that the computational cost (in terms of space and time) of parallelizing and

updating the subconfigurations in parallel is higher than computing the update of

the whole configuration at once.

Fortunately, in spatial ABMs there is another criterion that is sufficient (but not

necessary) for detecting the update-independence of two entities: being within each

others’ sensory and/or actuator range. For, clearly, entities that are not within sen-

sory or actuator range of each other in a given configuration cannot possibly have

any effect on each other, and are thus mutually update-independent.

Proposition 12 Let E1 and E2 be two entities in a configuration C with loca-

tions Loc1 and Loc2, respectively, and let Rng1 = max{RngS|S ∈ SB∧SB ∈ BE1}. If

Loc2 6∈ Rng1, then E1 is update-independent of E2 in C. The converse is not neces-

sarily true.

Note that being outside of each other’s sensory range is a “conservative” esti-

mate for mutual update independence, because two entities can still be update-

independent even if they can sense each other (either because they do not take each

perceptions of each other into account or because their perceptions coincidentally

do not have any influence on the update in the particular context). In some cases, a

finer-grained distinction may be possible and desirable (e.g., when a type of entity

always ignores perceptions of its own kind). The general difficulty connected to

any better derivation of potential interactions is, however, how to determine them

automatically from the update functions, which may not be possible in a practical

implementation if their representations are not explicitly accessible.

20

3.4 The Event Horizon for Automatic Detection of Potential Interactions

One crude way to support the automatic detection of potential interactions among

entities across updates can be easily supported in metric environments, where the

change of locations of entities is locally determined between successive configu-

rations. For example, suppose the change in location in a metric spatial model is

given in terms of speed, and the maximum speed of entities of type E is known,

call it maxspdE . Then the set of locations that E j could influence or that could

influence E j at any cycle k after Ci+k (k ≥ 0) is given in terms of maxspdE · k +

max(RngE ,RngE∗) (the maximum sensory range of entities of type E and any other

entity type E∗), which in a continuous 2D Euclidean environment will be the radius

of an expanding circular region. Call this expanding subspace of the environment

that results from the motion of an entity starting in a given configuration Ci the

entity’s “event horizon”: 13

Definition 13 (Event Horizon) The event horizon EH (E,Ci,k) of an entity E start-

ing in configuration Ci is the set of all locations after k updates within maxspdE ·

k + max{RngS|S ∈ SBE} from its location in Ci, where maxspdE is the maximum

change in location in one update cycle.

13 The term event horizon has been previously used in a slightly different sense in the

domain of parallel simulation. E.g., “event horizon” in [17] refers to the set of events E

that can occur before the first consequent event E ′ generated by an event E ∈ E . Hence,

it is the set of events E that can be safely executed in parallel, because no effects of any

events in that set are seen during that time frame. This is similar to the way the term is

used above, however, our usage refers to the first cycle an agent could affect another agent,

rather than when it will.

21

E2 at k

E1 at k

E2 at k+4

Fig. 2. An illustration of the event horizon. Entity E2 moves from its position at cycle

k to the new position at cycle k + 4 (indicated by the arrow). The position of the entity

represented by proxy entity E1 at cycle k is known, but not thereafter. The dashed circles

indicate the increasing event horizon of that entity for subsequent cycles (including the

maximum of the two sensory ranges–sensory ranges are indicated by dotted circles). At

cycle k +4 E2 intersects with the event horizon of E1 indicating that the actual position of

E1 is required before the update of E2 can be computed.

Clearly, the event horizon of entities E in metric environments with maxspdE > 0

is monotonically increasing, hence if L 6∈EH (E,Ci,k+1), then L 6∈EH (E,Ci,k).

Moreover, it is symmetric, reflexive, but not transitive (which is important for com-

puting dependencies among entities). Figure 2 shows the expanding event horizon

in a 2D environment.

We can now refine the above algorithm for S-ABMs by merging only those sub-

configurations that have update-dependencies across updates. The others can con-

tinue to update without merging. To determine which subconfigurations need to be

merged and which can continue, we introduce the notion of a “proxy entity”, which

serves as a (local) placeholder in a subconfiguration for the last known state of an

entity updated in another subconfiguration (on another processor). The main differ-

ence between proxy agents and non-proxy agents is their update function, which

does not compute an update of the agent state (given that no information is avail-

22

able about the current state of the agent represented by the proxy agent), but rather

returns the event horizon of the proxy entity based on a set of locations:

Definition 14 (Proxy entity) A proxy entity E of an entity E (in the following al-

ways denoted by a bar) consists of the entity’s body and controller, but with a differ-

ent update function E = 〈BE ,CE ,UE〉, where UE : P (LocBE) 7→ P (f irst LocM). 14

Proxy entities have mere representational functions and cannot be updated like reg-

ular non-proxy entities (i.e., they cannot change their state across configurations).

Yet, they can be used to compute the event horizon of the entity in subsequent con-

figurations based on the last known configuration at which the proxy entity was

updated by repeatedly applying UE
k({LocBE

}) to the last known location LocBE .

That way, given the state of a proxy-entity E j (representing an entity E j in subcon-

figuration C j) it is is possible to determine the maximum possible subspace of the

environment on which an entity E j in configuration Ci could exert any influence in

subsequent updates of Ci and thus the number of updates of Ci (based on the known

states and state changes of entities in Ci) before any interaction between E j and any

Ei ∈Ci is possible.

We can now state an important lemma:

Lemma 15 (Interaction Lemma) Let C1 and C2 be two subconfigurations of a

configuration C containing only non-proxy entities and let C∗
1 and C∗

2 be the con-

figurations obtained from C1 and C2 by adding the proxy entities in Ent2 ∈ C2

and Ent1 ∈ C1 that represent the states of some non-proxy entities Ent2 ∈ C2 and

Ent1 ∈ C1, respectively. Moreover, let n be the largest number such that no non-

14 We will extend the bar notion of proxy entities to sets of proxy entities (e.g., if Ent is a

set of entities, then Ent is a set of proxy entities obtained from the entities in Ent).

23

proxy entity E1 ∈ C1 has LocE1 ∈ EH (E2,C1,n) for any E2 ∈ Ent2 and no non-

proxy entity E2 ∈ C2 has LocE2 ∈ EH (E1,C2,n) for any E1 ∈ Ent1. Then for all

k ≤ n, Un
M (C1)∪Un

M (C2) = Un
M (C1∪C2). Or put differently, C1 and C2 are mutu-

ally update-independent for at least the first n updates.

PROOF. Suppose there is a k ≤ n such that Uk
M (C1)∪Uk

M (C2) 6= Uk
M (C1 ∪C2),

i.e., C1 and C2 are not update-independent after k updates. Then by Def. 8, there

must be two entities E1 and E2 that are update-dependent. It follows by Prop. 12

that one of the two entities must be within sensory range of the other. Without loss

of generality, assume that E1 is within sensory range of E2 and that E1 ∈ C1 (the

case for E2 within sensory range of C1 and E2 ∈ C2 is analogous). Then E2 ∈ C2

(as otherwise updatek(C1)∪ updatek(C2) = updatek(C1∪C2)). Now consider the

proxy representation E2 of E2 in C1 (based on Def. 14). Since E1 is within sensory

range of E2 after k updates of C, E1 must be within the event horizon of E2 after k

updates by Def. 13. But, by assumption, there is no non-proxy entity E1 ∈C1 such

that LocE1 ∈EH (E2,C1,n) for any E2 ∈ Ent2, hence it cannot be in EH (E2,C1,k)

either. Contradiction.

3.5 P-ABMS– A Parallelization for Spatial ABMs

The Interaction Lemma confirms that two mutually update-independent subcon-

figurations C1 and C2 can be updated independently as long as none of the event

horizons of the proxy entities in either configuration contains a location of a non-

proxy entity in that configuration. When such a configuration is reached, the actual

state of the entity represented by the proxy entity needs to be obtained. Hence, we

can formulate the following refined version of P-ABMG for S-ABMs:

24

P-ABMS (C0,Proc)

oldProc := /0

k := 0

while notFinal(Ck) do

if oldProc 6= Proc then

compute an update-independent split PCk
Proc for Proc

distribute each configuration ΠCk,i onto CPUi in Proc

Π∗
Ck,i

:= {ΠCk, j |ΠCk, j ∈ PCk
Proc∧ i 6= j}∪{ΠCk,i}

oldProc := Proc

end if

compute all EH (ΠC j ,C,k) for the last known state from some configuration C

for proxy entity E j that has a non-proxy entity within EH (ΠC j ,Ck,k) do

get state of E j at k from CPU j and update E j

end for

compute (Π∗
Ck,i

)’ := update(Π∗
Ck,i

)∪update(L) (L ∈ f irst LocM) on each CPUi

update Proc

if oldProc 6= Proc then

merge all Ck+1 :=
S

UM (ΠCk,i)

end if

k := k +1

end while

The main difference between P-ABMS and P-ABMG is the potential for CPUs to

update asynchronously as long as the set of entities running on them is update-

independent of the rest. And even when there are potential interactions, as deter-

mined by the proxy entities’ event horizons, simulations do not have to be merged,

but only proxy entities need to be updated based on the communicated locations of

the non-local entities they represent. Consequently, it is not necessary to compute

25

new update-independent splits either before every update cycle. Simulations are,

however, still merged and splits are recomputed (as with P-ABMG) if the proces-

sor pool Proc changes, thus preserving the adaptiveness in P-ABMS.

We can now state the step-wise correctness of P-ABMS (for space reasons, we only

provide a proof sketch):

Theorem 16 P-ABMS is step-wise correct.

PROOF. [Sketch] By induction on the length n of the simulation. For n = 0, noth-

ing needs to be shown, the algorithm will return right away as the initial configura-

tion C0 = C f inal is also the final configuration.

Now suppose the algorithm is step-wise correct up for n updates. In particular, sup-

pose Cn =
S

(ΠCn). We need to show that Cn+1 =
S

(ΠCn+1). First observe that this

it trivially true if Cn = C f inal , so assume Cn 6= C f inal and suppose Cn+1 6=
S

(ΠCn+1).

Then there must be at least one non-proxy entity Eπ in one subconfiguration in

ΠCn+1 whose state differs from the state of the corresponding entity E in Cn+1.

Since their states were the same at cycle n by induction hypothesis, their percep-

tions at cycle n + 1 must have been different, giving rise to different states after

their update. The only entities with respect to which the perception of Eπ and E

can differ are proxy entities. Since P-ABMS computes the event horizons of all

proxy entities in all subconfigurations to check whether they contain locations of

non-proxy entities according to Lem. 15, it is not possible for E to have a new

interaction with some entity E j that was not detected by Eπ and would have even-

tually 15 led to an update of the location of the proxy entity E j reflecting the latest

15 Note that if two update-independent subconfigurations are updated asynchronously in

parallel on two CPUs, then it may be possible that CPUπ running Eπ either lags behind

26

state of E j (“for-loop”). Contradiction. Hence, Cn+1 =
S

(ΠCn+1).

4 Implementation of P-ABMS and Experimental Results

We implemented P-ABMS in our agent-based SWAGES environment to be able

to test its effectiveness for automatically parallelizing (spatial) agent-based simu-

lations. To demonstrate the performance of P-ABMS, we employed two tasks, a

simple swarm task (agents are based on previous work [16,2]), in which all swarm

agents must locate checkpoints in their environment and gather at them as quickly

as possible, and a more complex environmental traversal task, where agents must

traverse an obstacle environment with moving obstacles as quickly as possible with-

out collisions (agents are again based on previous work [18,19]). The two tasks

are intended to illustrate two different kinds of scenarios, where (automatic) par-

allelizations of S-ABM runs can pay off. We first give a very brief overview of

the implementation of P-ABMS in SWAGES, followed by short summaries of the

employed agent models, their tasks, and performance results from simulation runs

with P-ABMS compared to the sequential version. The discussion concluding this

section then points to the time savings one can expect from employing P-ABMS

based on the employed agents in S-ABMs.

CPU j running E j in terms of completed update cycles k or is ahead. In the former case,

CPUπ will have to wait in order to update E j, in the latter it can update E j right away as

no interaction of any of its entities could have occurred before k, see Section 4.1 for an

example.

27

4.1 Implementation of P-ABMS in SWAGES

SWAGES is an agent-based simulation and experimentation environment intended

for any kind of computing environment (e.g., from homogeneous Beowulf clusters

to heterogeneous computers connected only via the Internet). 16 It consists of sev-

eral distributed components that cooperate closely to achieve maximum resource

utilization in a heterogeneous dynamically changing computing environment. For

the present context, two components are most relevant: the simulation environ-

ment SIMWORLD, and the GRID SERVER scheduling and monitoring the execu-

tion of simulations. SIMWORLD is an agent-based simulation environment imple-

mented on top of the SIMAGENT toolkit [20] and has been used for many different

agent-based models with a variety of agent ranging from very simple reactive (e.g.,

[10]) to fairly complex deliberative agents (e.g., [19]). The GRID SERVER provides

the communication infrastructure to start, run, and supervise simulations in SIM-

WORLD, gather the results and store them in an easily accessible way for statistical

analysis. The server can schedule sets of simulation experiments (e.g., simulations

with a variety of different initial conditions) and ensure their timely completion by

monitoring their performance and detecting problems with the execution (e.g., be-

cause the load on a host is too high, or the simulation crashed), in which case it can

take any number of recovery actions (from resuming a simulation on a different host

if its state was saved, to restarting it anew if no state information was available).

Each SIMWORLD instance can run on its own host and has its own representation

16 SWAGES can run on any computer for which the poplog environment

http://www.poplog.org/ has been compiled, i.e., typically Linux and Solaris

machines. It can be used on any host on which the experimenter has an account with-

out any pre-installed software or daemons other than the standard ssh daemon, see

http://www.nd.edu/~airolab/software/.

28

in the server in the form of a SIMCLIENT that entertains a socket connection to

its SIMWORLD instance for all communication purposes (e.g., information about

the current simulation cycle, simulation parameters, etc. will be delivered on this

connection).

To implement P-ABMS in SWAGES, both SIMCLIENT and SIMWORLD had to

be modified to accommodate proxy entities and to update their states. Specifically,

the server representations of each SIMWORLD instance needed to be augmented

by tables to store the state information of their proxy entities as well as synchro-

nization primitives to allow them to access and update the tables in a coordinated

fashion. Effectively, each SIMWORLD instance computes at the beginning of each

update cycle the event horizons of all proxy entities to determine if there are po-

tential interactions, at which point a request is sent for each required proxy en-

tity’s update to the GRID SERVERvia the SIMCLIENT socket (the “FOR”-loop in

P-ABMS). With the request for update, the current state information of non-proxy

agents is sent as well, which gets stored in a table shared by all SIMCLIENT in-

stances of a distributed simulation. Each SIMCLIENT then blocks on its specific

requests and is awakened whenever updates are delivered by clients running the re-

spective non-proxy entities. Each update consists of an ID of the non-proxy agent

(which is unique across all SIMWORLD instances), the status information and the

cycle at which it was obtained. If the cycle of the updated information is before the

requested one, a SIMCLIENT will block again waiting for later information. Other-

wise it will use the information with the future cycle number closest to its current

cycle.

At first glance, this may seem incorrect–why should it be sufficient for entity15

in SIMWORLD instance 4 requiring the update of its proxy representation proxy-

entity64 (of entity64 in SIMWORLD instance 7) at cycle 321 to use its state at cycle

29

598, for example, which is the closest available future state in the shared table?

The reason is that all SIMWORLD instances perform checks for both proxy and

non-proxy agents. Hence, instance 7 will perform the “reverse check” of the check

performed by instance 4, namely whether entity64 is within the event horizon of

proxy-entity15 and determine that this is the case only at cycle 598. By the Inter-

action Lemma, it follows that for any cycle between 321 and 598 entity64 was not

in the event horizon of proxy-entity15, hence, by symmetry, it could not have been

within sensory range of entity15 until then either (because the event horizon of an

entity is the maximum possible sphere of influence of that entity). The fact that

instance 4 requires that information earlier simply means that entity15 was within

the event horizon of proxy-entity64 at cycle 321 based on the last information in

instance 4 about the location of entity64, but obviously entity64 in instance 7 must

have moved in a different direction that did not require an update of proxy-entity15

until cycle 598. Hence, instance 4 will update the location of proxy-entity64 with

the location of entity64 at cycle 598 and consequently ignore proxy-entity64 for

all update cycles up to cycle 598 (as no interactions with it could have occurred

before).

4.2 The Swarm Gathering Task

In this task, agents must locate checkpoints in their environment and gather at the

nearest checkpoint as quickly as possible.

4.2.1 Agent Model

All agents have sensors to detect checkpoints within a 360◦ radius, whose range

was set to 400 units in the experiments described below. The agent update function

30

(in the entity type definition) is described as follows (see [16] for a more formal

description):

Rule 1: if no checkpoint is sensed, perform a random walk (described below)

Rule 2: if some checkpoints are sensed, go directly towards the closest checkpoint

Rule 3: if some checkpoint is within gathering range, do not move

When agents are in random walk mode, they move in one direction for 200 cycles

(unless a checkpoint comes within sensory range), then turn randomly between

-45 and 45 degrees and continue for another 200 cycles, and so on. The update

algorithm for reactive agents is as follows:

Reactive(agent, checkpointList)

closest :=infinitely-far-checkpoint

for all C ∈ checkpointList do

if distance(agent,C) < distance(agent,closest) then

closest := C

end if

end for

if closest ==infinitely-far-checkpoint then

randomWalk(agent)

else

moveToward(agent,closest)

end if

4.2.2 Simulated Environment

The environment used in the experiments consists of a continuous 2D plane, in

which 16 clusters are placed regularly on a grid within a 32000 x 32000 square

unit area (for comparison, agents have a circular body of diameter 5). Each cluster

31

 0

 200

 400

 600

 800

 1000

168421

Pe
rfo

rm
an

ce
 (A

ve
ra

ge
 T

im
e

to
 C

om
ple

tio
n

(s
ec

.)

Nodes

 0

 1000

 2000

 3000

 4000

 5000

168421

Pe
rfo

rm
an

ce
 (A

ve
ra

ge
 T

im
e

to
 C

om
ple

tio
n

(s
ec

.)

Nodes

Fig. 3. Average time to completion for 1, 2, 4, 8, and 16 nodes for the swarm task, where er-

ror bars denote confidence intervals for α = 0.05 (left) and the cluster setup of the obstacle

avoidance task (right).

contains 128 agents randomly placed in within a radius of 400 around the center,

and 16 checkpoints randomly placed within a radius of 200 around the center. To

test the gain in parallelizing simulations in a scenario that plays to the strengths

of the algorithm, the clusters were separated by enough distance so that the event

horizons of agents across clusters do not intersect in the course of a given simula-

tion of 100 cycles. Moreover, the setup is such that update-independent splits can

be computed (in this case the split has to be computed only once at the beginning)

and large subsets of update-independent agents can be run on separate CPUs.

4.2.3 Simulation Results

The results reported are averages over 20 simulation runs of 100 cycles each. Each

of the 20 initial conditions was simulated using 1, 2, 4, 8, and 16 nodes in a dedi-

cated Linux cluster of dual 2.4GHz Xeons with 1GB RAM (the simulations require

less than 100MB of memory). The times reported include all overhead of starting

and finishing SWAGES, as well as distributing the simulations when more than

32

one node is used.

Figure 3 presents the performance results. Initially, increasing parallelism is very

effective; doubling the nodes available cuts the total time nearly in half. As the

number of nodes increases, however, we find decreasing benefit. The difference

between 8 nodes and 16 nodes is not nearly half, indicating that the overhead of

parallelization is nearing the computation being performed on each CPU. In fact,

the initial split for the 16-node configuration is not complete until roughly 30 sec-

onds have elapsed, a sizable portion of the 112.5 average. Still, the results show

that the time savings of the parallel algorithm in well-suited scenarios scales al-

most linearly with the number of employed CPUs, a scaling factor one would hope

for.

4.3 The Dynamic Obstacle Avoidance Task

In this task, agents must locate the checkpoint in their environment and move to it

as quickly as possible. Unlike the previous task, however, there is a hazard added to

the environment: moving obstacles. Contact with these obstacles is fatal for agents,

so they must traverse the environment while avoiding the obstacles. With station-

ary obstacles, simple reactive agents (such as the ones in the previous task) perform

fairly well, although not as well as deliberative agents that can plan a route [19].

Moving obstacles make the environment very difficult for the reactive agents, mak-

ing deliberative agents a better choice for the dynamic obstacle avoidance task.

33

4.3.1 Agent Model

The deliberative agents used here are extensions of the reactive agents. Their sen-

sors have a range of 1600 units, which covers the whole environment to force the

algorithm to update the state of proxy agents before each cycle. Moreover, agents

have a simple route planning mechanism which allows them to find a route to the

nearest checkpoint, avoiding obstacles. The planner is based on a simplified ver-

sion of the A∗ε algorithm [14]. A∗ε is a variant of A∗ in which the cost of the solution

returned is guaranteed to be no greater than 1 + ε times the cost of the optimal so-

lution. A∗ε is a good compromise for a route planning agent between quality of the

route and computation time in dynamic environments, as good rather than optimal

plans are often sufficient. Deliberative agents also maintain memory components

in which they store information about the locations of checkpoints and obstacles.

The relative positions of entities in memory are updated as the agent moves, and

a “coherence mechanism” checks whether entities within sensory range are in the

same locations as recalled stored entities. Once an agent has made a plan to reach

a checkpoint while avoiding obstacles, it follows the plan to the checkpoint unless

there is a change in the locations of the obstacles. For the dynamic obstacle avoid-

ance task, this means that agents will require frequent re-planning (depending on

the speed of the moving obstacles).

The agent update function for deliberative agents is similar to reactive agents:

Rule 1: if some checkpoint is within gathering distance, do nothing

Rule 2: if no checkpoint is sensed, perform a random walk

Rule 3: if there is no plan, plan a route to the nearest checkpoint

Rule 4: if sensed obstacles do not match memory or a nearer checkpoint is de-

tected, delete the current plan

34

Rule 5: if there is a valid plan, execute the next step in the plan

The update algorithm for deliberative agents is as follows:

Deliberative(agent, checkpointList, obstList)

if distance(agent,agent.planTarget) > gatheringDist then

agent.memory := updateMemory(oldLoc,agent,agent.memory)

rePlan := f alse

for all E ∈ obstList do

f ound := f alse

for all M ∈ agent.memory do

if distance(E,M) < ε then

f ound := true

end if

end for

if f ound == f alse then

insert(E,agent.memory)

rePlan := true

end if

end for

for all C ∈ checkpointList do

if distance(agent,C) < distance(agent,agent.planTarget) then

rePlan := true

agent.planTarget := C

end if

end for

if agent.plan == NULL then

if agent.planTarget == NULL then

randomWalk(agent)

else

35

agent.plan := makePlan(agent,agent.planTarget)

end if

else

if rePlan == true then

agent.plan == NULL

else

executePlanStep(agent,agent.plan)

end if

end if

end if

4.3.2 Simulated Environment

The environment used in these experiments consists of a continuous 2D plane of

size 1600 x 1600 units. There are 40 moving obstacles randomly placed throughout

the environment. These obstacles are initialized with random headings, and move

in a straight line unless they are at the boundary of the environment, in which case,

they “bounce off.” There are two experimental setups: clustered and random. In

the clustered setup, there is a single checkpoint located at (750,0), and a group

of 16 agents tightly clustered at (-750, 0). These agents have very similar views

of the environment, so, given the control algorithm above, they are likely to plan

similar routes at the same time. Thus, when any agent plans during a cycle, typically

all other agents plan during that cycle as well. In the random setup, agents are

instead placed randomly in the left half of the environment (see Figure 4). These

agents have rather different views of the environment, so they will frequently plan

at different cycles. In both clustered and random setups, the agents’ event horizons

extend to the entire environment (given the sensory range of the agents). Hence,

36

 0

 2000

 4000

 6000

 8000

 10000

168421

Pe
rfo

rm
an

ce
 (A

ve
ra

ge
 T

im
e

to
 C

om
ple

tio
n

(s
ec

.)

Nodes

Fig. 4. Average time to completion for 1, 2, 4, 8, and 16 nodes (left)– error bars denote con-

fidence intervals for α = 0.05). A screen shot of the random setup of the obstacle avoidance

task, where circles with names indicate deliberative agents, the green circle without a name

indicates the target location, and squares indicate moving obstacles (right).

each agent requires updates of all other agents at each cycle. Note that obstacles

are treated as “replicated entities” in both setups due to the low computational cost

of their update.

4.3.3 Simulation Results

The details of the obstacle avoidance experiments are the same as for the swarm

task: performance results represent the average over 20 simulation runs of 100

cycles each. Results are reported for 1, 2, 4, 8, and 16 nodes in the dedicated

Linux cluster described above, and include the overhead of starting and finishing

SWAGES and distributing the simulations.

The performance results for clustered setups on the dynamic obstacle avoidance

task are presented in Figure 3. Here we find that increasing parallelism is con-

sistently effective all the way up to 16 nodes (i.e., one agent per node). In each

37

case, doubling the number of CPUs cuts the average task completion time roughly

in half. In contrast to the swarm task, the computation for the deliberative agents

greatly outstrips the communication overhead, even though the agents are moving

in lockstep, requiring updates from every agent at every cycle.

Random setups do not perform as well, however. Figure 4 shows that parallelization

is not very effective and that the situation gets worse as the number of CPUs in-

creases. Like the clustered setup, these agents require updates from all other agents

every cycle, but unlike the cluster setup they do not all plan at the same time. Hence,

it frequently happens that several agents are only executing plan steps, while a few

others (in the worst case just one) need to plan. Because the updated positions of

all agents are needed at the beginning of all cycles, agents executing plan steps will

still have to wait for the planning agents to finish their plan. In such setups, the

sum of the durations of update cycles in which at least one agent needs to plan is

a theoretical lower bound on the shortest overall runtime. Hence, the small gains

obtained by parallelizing such simulations (compared to single CPU runs) might

not be worth the cost of tying up too many CPUs. We will make this point more

precise in the next section.

4.4 Performance of P-ABMS

Overall, P-ABMS demonstrates good performance in both types of tasks–asynchronous

updates with many simple agents and synchronous update with complex agents–

when the computation times required to compute the update functions of all enti-

ties is about the same. With strongly heterogeneous update times (as in the random

setup), savings are only marginal. Hence, the question arises what savings in com-

putation time we can in general expect in P-ABMS (or any parallel algorithm for

38

spatial agent-based models, for that matter).

The cost of updating a configuration Ck given Proc in P-ABMS (assuming the split

has been computed and the entities are already distributed accordingly to the CPUs

in Proc) is given by:

max{τk(ΠCk,i)|ΠCk,i ∈ PCk
Proc}+{τk(o)|replicate(o)∨ proxy(o)∨ location(o)}

where the first factor is the update time of subset of entities on one CPU that takes

longest, the second is the cost of updating replicated entities, proxy entities, and

locations (τ(x) denotes the update time of an entity x or set of entities x). We can

compare this to the cost of updating on a single CPU, which is given by:

∑
e
{τk(e)|e ∈Ck}+{τk(o)|replicate(o)∨ proxy(o)∨ location(o)}

It is clear that the longest entity update determines the overall performance of P-

ABMS. E.g., in the above random setup of deliberative agents, one agent that needs

to compute a complex plan, while all the other ones just execute their respective

plans, exclusively determines the overall cost of updating a configuration, given

that the sum of the respective plan execution times is only a small fraction of the

computation of a new plan. Hence, there are effectively only marginal savings in

parallelizing simulations in principle when a single agent dominates the computa-

tional cost of updating a given configuration. 17

17 If the dominating agent does not stay the same through a sequence of updates, then it

may be possible to obtain some savings by speculative updates of configurations that do not

contain the dominating agent and backtracking later if it turns out that these configurations

39

On the other hand, if the update times of single agents are more or less balanced

from configuration to configuration (e.g., as with the reactive agents in the swarm

task or the cluster setup for the deliberative agents), then the longest parallel update

will be approximately 1/|Proc| (plus the overhead for synchronizing proxy agents

and possibly for re-computing splits) compared to the single update. Hence, the

savings will be approximately linear in |Proc| in the best case (e.g., with little com-

munication overhead and no additional splits). Moreover, P-ABMS (and even P-

ABMG) will be able to reduce the overall runtime of simulations whenever the cost

of updating entities is larger than the cost of communication and synchronization

across nodes (e.g., as in the case of the traversal task, where agents synchronized

after each update due to intersecting even horizons).

In sum, the nature of the agents and the computational costs of their update func-

tions in different environmental situations will essentially determine the perfor-

mance of the parallelization, from the worst-case scenario with single agents dom-

inating the cost of a whole ABM run, to the best case scenarios of agents whose

updates require about the same computational cost from configuration to configu-

ration (as demonstrated above).

5 Related Work

While many different ABM simulation environments have been proposed, most of

which are targeted at specific types of agent-based models (e.g., economic, Alife,

swarms, etc.), only a few of them support the distribution of simulations over mul-

tiple hosts. To our knowledge, all ABM simulation environments capable of dis-

were not update-independent of the configuration containing the dominating agent. The

exact details and savings of this approach will have to be left for future investigations.

40

tributed simulation implement some form of stepwise synchronization mechanism

similar to P-ABMG, but without support for the automatic and dynamic distribution

of agent-based models. None of these simulation environments utilize the spatial

information present in S-ABMs.

Som and Sargent present a load balancing algorithm based on strong groups [21].

A strong group is a collection of logical processes that frequently interact with each

other, but infrequently interact with logical processes in other strong groups. This

is similar to the notion of distributing agents based on update-independence, as

described above. Som and Sargent point out that load balancing algorithms based

on utilization can be problematic in some cases. Strong groups, by definition, do

not interact often, so it may take a while to detect when an interaction requires a

rollback, leading to wasted time. At times, it is better to balance the load such that

a fast-executing strong group is slowed down, so that it does not get too far ahead;

the resources can then be used productively by some other strong group. 18

Wang et al. introduce the Interaction Resolver to enforce mutual exclusion in dis-

tributed simulations [22]. The Interaction Resolver is a middle-ware component

that ensures consistency throughout the simulation by protecting access to shared

state. When an interaction occurs between agents, the agent with the highest pri-

ority is allowed to make its change to the state, and the losers are required to roll

back to previous states. Interaction detection is performed each cycle, thus requir-

ing agents to execute in lockstep.

The Syncer [23] system was used to implement a distributed version of Swarm [24]

(one of the major toolkits for SWARM-based ABMs). A syncer component con-

18 We are investigating ways to incorporate this idea into our algorithms to improve dy-

namic split computations.

41

trols the advancement of time in a simulator or another syncer. Thus, the system

allows hierarchical systems of distributed simulations. The syncer sends its sub-

ordinates messages indicating that they may begin execution, and at what point

they must stop. The simulation informs the syncer when it is done with those cy-

cles, and can send time synchronized information (TSI) messages to other simula-

tions. A new class SyncerSwarmImpl that Swarm models must extend instead of

SwarmImpl acts as an interface to the rest of the Syncer hierarchy, receiving the

start and sending the done messages, as well as forwarding TSI messages. Re-

mote objects are represented by proxies, sharing the same interface and forwarding

requests to the remote object via TSIs. Syncer includes facilities that allow simu-

lations to update asynchronously, however, it is unclear whether they are used in

the Swarm implementation. In any case, dynamic distribution is not possible with

Syncer/Swarm.

MACE3J is a Java-based distributed simulation environment [25]. It is not com-

mitted to any particular simulation environment, but strives to be a general-use

testbed for multi-agent simulations. MACE3J provides services, such as registra-

tion, scheduling, and messaging to ActivationGroups, which consist of ActiveOb-

jects, the representation of agents in the system. The goal of the project is to provide

a flexible testbed for simulation research. Multiple event-control mechanisms are

supported, data-gathering hooks are built into the system, and reusable ActiveOb-

jects components, and importers for components from other systems are provided.

Other work on parallel agent-based simulations is based on HLA, the High Level

Architecture framework for simulator reuse and interoperability developed by the

US DoD’s Defense Modeling and Simulation Office. HLA groups simulations to-

gether into a federation, which consists of the simulations (the federates), the Fed-

eration Object Model (FOM), which defines the interfaces between simulations,

42

and the Runtime Infrastructure (RTI), through which federates communicate.

HLA REPAST [26] uses HLA to distribute simulations based on the RePast toolkit

[27]. RePast models must implement a discrete event scheduling engine that defines

the execution of events in the model. The RePast “executive” executes events in this

scheduler to run the simulation. HLA REPAST extends the executive to include

two schedulers, one for the local objects, and one for the remote objects. Each of

these can affect the local model’s state. The external scheduler receives input from

the RTI, and the local scheduler sends output to the RTI. HLA REPAST simulations

also proceed in lockstep, requiring the local scheduler to wait for all events with

earlier timestamps to arrive from the RTI before executing a local event, and there

is no facility for dynamic distribution of simulations.

The model closest to our SWAGES environment in terms of the implementation

platform is HLA AGENT [28], an implementation of the SIM AGENT toolkit [20]

that allows SIM AGENT simulations to be distributed. SIM AGENT is extended to

include information about the FOM, the agents to be executed in the current feder-

ate, and proxies for agents executing in remote federates. The scheduler is modified

such that only local agents are run. Object creation and deletion are achieved via

wrappers that register new objects with the RTI and allow calls for agent destruc-

tion, also via the RTI. Federates can “subscribe” to the external attributes of an

agent, so that they are notified when they change. The simulations proceed in lock-

step, synchronizing at the beginning of each cycle. This is a major difference with

the work described here, where the semantics of the event horizon are relied upon

to ensure that updates occur only as needed. Also, HLA AGENT does not support

dynamic distribution of simulations.

Logan and Theodorpoulos introduce the notion of a sphere of influence [29]. An

43

event’s sphere of influence is the set of shared variables immediately affected by

the event. The calculated spheres of influence can be used to derive a decomposi-

tion of the simulation into logical processes that can be executed in parallel. When

the spheres of logical processes overlap, information is shared via separate commu-

nication logical processes, which host shared state variables in a hierarchical tree

structure. Communication processes can split as the load increases, and simulation

logical processes can “migrate” to another communication process if more of its

sphere of influence is hosted there. While these spheres of influence are similar to

the event horizons described above, there is an important difference: whereas the

sphere of influence represents the actual effect of an action (from the privileged per-

spective of the process in which the event took place), the event horizon represents

the possibility of an effect from the perspective of another process. This allows dis-

tributed processes to postpone updating shared state until there is the potential for

interaction.

6 Conclusion

We have proposed a formal framework for describing agent-based models, in par-

ticular, spatial agent-based models and presented two algorithms for the automatic

and adaptive distribution of agent-based simulations specified in the framework

over multiple CPUs. The first algorithm P-ABMG works for any agent-based sim-

ulation specifiable in our formalism, the second algorithm P-ABMS utilizes the

additional information available about the sphere of influence of agents or enti-

ties in spatial agent-based models such as SWARMS, ANTS, and many others. We

showed that it is possible to exploit this information to allow for asynchronous up-

dates of distributed simulation instances, which only have to synchronize whenever

44

a non-local entity could potentially influence a local entity and vice versa as mea-

sured in terms of the maximum sphere of influence of an entity over time (i.e., its

event horizon). We showed that the algorithm is correct in that it yields the ex-

act same results as the non-parallel version for all simulations. We also reported

results from a preliminary implementation of the algorithm in our SWAGES en-

vironment that demonstrate the utility of the algorithm for swarm-like simulations

as well as simulations with complex agents, where the update function for each

agent takes up a significant amount of computation time. It is worth noting that

we achieved the significant gains in execution time in our empirical evaluations

despite the very inefficient preliminary implementation of P-ABMS, which is cur-

rently only a “proof-of-concept” implementation and thus not optimized at all (e.g.,

all updates are stored in the GRID SERVER, which creates a communication bottle-

neck; ideally, all updates and request would take place via peer-to-peer connections

of the SIMWORLD instances). We expect an optimized implementation of the pro-

cess synchronization mechanism to reduce the communication overhead substan-

tially.

In addition to improving the inefficiencies of the current implementation, future

work will investigate the performance of the proposed algorithms with dynamically

changing pools of available CPUs (which will include a study of the effect of merg-

ing subconfigurations and recomputing update-independent splits). Moreover, we

plan to explore different methods for obtaining better estimates of the event hori-

zons based on reflective inspections of the agents’ sensory update functions (i.e., by

deriving from the agent model the exact context in which agents can interact). We

expect this to lead to significant improvements in cases where interactions within

sensory range only occur in a limited subset of agent states. Finally, it will be worth

investigating speculative execution in the context of P-ABMS, which could lead to

45

improved performance given the conservative estimates of possible intersections of

event horizons as long as the cost of saving the subconfigurations (and rolling back

to them when a speculative execution failed) is not too expensive.

References

[1] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, Computer

Graphics 21 (4) (1987) 25–34.

[2] M. Scheutz, P. Schermerhorn, Many is more but not too many: Dimensions of

cooperation of agents with and without predictive capabilities, in: Proceedings of

IEEE/WIC IAT-2003, IEEE Computer Society Press, 2003.

[3] V. Trianni, T. H. Labella, M. Dorigo, Evolution of direct communication for a swarm-

bot performing hole avoidance, in: Proceedings of the 4th Intl. Workshop on Ant

Colony Optimization and Swarm Intelligence, 2004, pp. 131–142.

[4] P. Schermerhorn, M. Scheutz, The effect of environmental structure on the utility of

communication in hive-based swarms, in: IEEE Swarm Intelligence Symposium 2005,

2005.

[5] P. Schermerhorn, M. Scheutz, The utility of heterogeneous swarms of simple uavs with

limited sensory capacity in detection and tracking tasks, in: IEEE Swarm Intelligence

Symposium 2005, 2005.

[6] S. S. Andrews, D. Bray, Stochastic simulation of chemical reactions with spatial

resolution and single molecule detail, Physical Biology 1 (137-151).

[7] T. S. Shimizu, The spatial organisation of cell signalling pathways - a computer-based

study, Ph.D. thesis, University of Cambridge (2002).

[8] V. Grimm, Ten years of individual-based modelling in ecology: what have we learned

46

and what could we learn in the future?, Ecological Modelling 115 (2-3) (1999) 129–

148.

[9] S. F. Railsback, B. C. Harvey, R. H. Lamberson, D. E. Lee, N. J. Claasen, S. Yoshihara,

Population-level analysis and validation of an individual-based cutthroat trout model,

Natuaral Resource Modeling 15 (1) (2002) 83–110.

[10] M. Scheutz, P. Schermerhorn, Predicting population dynamics and evolutionary

trajectories based on performance evaluations in alife simulations, in: Proceedings of

GECCO 2005, 2005.

[11] B. J. L. Berry, L. D. Kiel, E. Elliot, Adaptive agents, intelligence, and emergent human

organization: Capturing complexity through agent-based modeling, Proceedings of the

National Academy of Science 99 (2002) 7187–7188.

[12] R. Conte, Agent-based modeling for understanding social intelligence, Proceedings of

the National Academy of Science 99 (2002) 7189–7190.

[13] P. Schermerhorn, M. Scheutz, Implicit cooperation in conflict resolution for simple

agents, in: Agent 2003, 2003.

[14] J. Pearl, A∗
ε—an algorithm using search effort estimates, in: IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 4, 1982, pp. 392–399.

[15] M. Scheutz, G. Madey, S. Boyd, tMANS–the multi-scale agent-based networked

simulation for the study of multi-scale, multi-level biological and social phenomena,

in: Proceedings of Spring Simulation Multiconference (SMC 05), Agent-Directed

Simulation Symposium, 2005.

[16] M. Scheutz, P. Schermerhorn, Many is more: The utility of simple reactive agents

with predictive mechanisms in multiagent object collection tasks, Web Intelligence

and Agent Systems (in Press) 3 (1).

[17] J. S. Steinman, Discrete-event simulation and the event horizon, in: PADS ’94:

47

Proceedings of the eighth workshop on Parallel and distributed simulation, ACM

Press, New York, NY, USA, 1994, pp. 39–49.

[18] M. Scheutz, B. Logan, Affective versus deliberative agent control, in: S. Colton

(Ed.), Proceedings of the AISB’01 Symposium on Emotion, Cognition and Affective

Computing, Society for the Study of Artificial Intelligence and the Simulation of

Behaviour, York, 2001, pp. 1–10.

[19] M. Scheutz, P. Schermerhorn, Steps towards a theory of possible trajectories from

reactive to deliberative control systems, in: R. Standish (Ed.), Proceedings of the 8th

Conference of Artificial Life, MIT Press, 2002.

[20] A. Sloman, B. Logan, Cognition and affect: Architectures and tools, in: Proceedings

of the Second International Conference on Autonomous Agents (Agents ’98), ACM

Press, 1998, pp. 471–472.

[21] T. K. Som, R. G. Sargent, Model structure and load balancing in optimistic parallel

discrete event simulation, in: Proceedings of the fourteenth workshop on Parallel and

distributed simulation, 2000, pp. 147–154.

[22] L. Wang, S. J. Turner, , F. Wang, Resolving mutually exclusive interactions in

agent based distributed simulations, in: Proceedings of the 2004 Winter Simulation

Conference, 2004, pp. 783–791.

[23] J. Goic, J. A. Sauter, T. Toth-Fejel, Syncer: Distributed simulations using swarm, in:

SwarmFest 2001, Santa Fe, NM, 2001.

[24] N. Minar, R. Burkhart, C. Langton, M. Askenazi, The Swarm simulation system, a

toolkit for building multi-agent simulations,

http://www.santafe.edu/projects/swarm/overview/overview.html. (1996).

URL citeseer.nj.nec.com/minar96swarm.html

[25] L. Gasser, K. Kakugawa, Mace3j: Fast flexible distributed simulation of large, large-

grain multi-agent systems, in: Proceedings of AAMAS 2002, 2002, pp. 745–752.

48

[26] R. Minson, G. Theodoropoulos, Distributing repast agent based simulations with

HLA, in: Proceedings of the 2004 European Simulation Interoperability Workshop,

Edinburgh, UK, 2004.

[27] N. Collier, RePast: An extensible framework for agent simulation,

http://www.econ.iastate.edu/tesfatsi/RepastTutorial.Collier.pdf (2003).

[28] M. Lees, B. Logan, T. Oguara, , G. Theodoropoulos, Simulating agent-based systems

with HLA: The case of SIM AGENT part ii, in: Proceedings of the 2003 European

Simulation Interoperability Workshop, Stockholm, Sweden, 2003.

[29] B. Logan, G. Theodoropoulos, The distributed simulation of multi-agent systems,

Proceedings of the IEEE 89 (2) (2001) 174–186.

49

