
The Limited Utility of Communication in Simple Organisms

Matthias Scheutz and Paul Schermerhorn
Cognitive Science Program and Complex Systems Group

College of Arts and Science and School of Informatics
Indiana University, Bloomington, IN 47406, USA

{mscheutz,pscherme}@indiana.edu

Abstract

Many forms of communication have evolved in the animal
kingdom for different purposes. In this paper we investigate
the limits of communication for simple reactive organisms
and show that communication has only limited benefits in bi-
ologically inspired foraging tasks and can even have detri-
mental effects in certain environments. Based on these re-
sults, we argue that simple agents with simple architectures
need very special environmental conditions for communica-
tion to benefit them and thus to evolve.

Introduction
Various forms of communication have evolved in the ani-
mal kingdom, ranging from broadcasting simple signals, to
the complex linguistic exchanges of humans. Much work
in ALife has attempted to demonstrate that, when and how
communication can evolve, but paid little attention to cases
where communication did not or will not evolve. Yet, we
believe that a full appreciation of the utility of communica-
tion for natural and artificial agents is not possible without
understanding both its potential and limitations.

In this paper we attempt to delineate the kinds of circum-
stances that would limit the evolution of communication for
biologically inspired tasks. We start with a few methodolog-
ical points about the notion of “communication” and lay out
the argument structure we will use here for investigating the
limitations of communication. Then we define a biologi-
cally inspired task called t-MATES (for “timed Multi-Agent
Territory Exploration Task with Satiation”) and introduce
various agent models for that task. Simulation results will
paint a surprising picture, showing that communication is of
very little utility for t-MATES tasks. We discuss implica-
tions of the results for the evolution of communication and
relate them to previous findings in the literature, concluding
with a brief summary and suggestions for future work.

Communication and Mechanism
Biological agents have evolved different forms of communi-
cation for different purposes, ranging from signaling danger
(e.g., danger caws of lookout crows), to indicating readiness

for mating (e.g., mating calls of frogs), to reporting loca-
tions of food (e.g., food dances of honey bees), to initiating
joint action (e.g., dogs’ bows to initiate social play), and to
sharing mental states (e.g., human reports of their beliefs).

These different forms of communication require different
functional capabilities of the agents’ architectures. Process-
ing simple signals emitted from another agent that only in-
dicate the agent’s presence in some location does not re-
quire much more than a perceptual system that can pick
up those signals as such and determine the direction from
which they originated (e.g., female frogs can determine the
signal strength and direction of male callers in a swamp;
similarly, ants can sense the gradient of pheromones left in
the environment by other ants). In fact, simple signals indi-
cating a particular state of affairs as perceived by an agent
can be construed as indexicals (in the Peircian sense), i.e.,
a food call effectively communicates indexical information
of the form “I see food here now”, see also Perconti (2002).
Note that this message containing three indexicals is differ-
ent from the message “Agent A sees food at location X at
time t” even if the content of the message is the same (i.e.,
the variables A, X , and t are replaced by the respective names
so that agent, location and time agree with the utterance of
the indexical message). For messages of the latter sort can
realistically not be encoded in simple indexical signals (un-
less one has a large number of distinct signals for all occa-
sions of interest at hand, which is practically almost never
feasible). Hence, representational devices are needed to rep-
resent agents, places, and times in the second case. Those
representational devices, in turn, require a systematic en-
coding (i.e., representations with formal rules defining well-
formed expressions) and mechanisms that can encode and
decode information (i.e., parsers). Moreover, to determine
times, locations, and agents (as in the above case), agreed-
upon scales (e.g., clocks, maps, and naming conventions) are
required together with “measuring devices” (i.e., algorithms
and possibly tools) to determine that determine where in-
stances fall on the scale (i.e., what time it is, where in the
map an item is located, and who the speaker is). All of this,
in turn, requires much more sophisticated functional capa-



bilities in agent architectures that allow agents to determine
what to communicate and how to use the communicated in-
formation. Processing expressions that can encode and thus
communicate mental states like beliefs, for example, might
require representational capabilities such as those used in
modal or (fragments of) first order logic (e.g., to represent
the belief that at least one member of a group has already
had dinner).

More complex architectures that can handle the added so-
phistication of more complex messages (such as their syn-
tax and semantics) comes at a price, however: the cost of
building/growing and maintaining it.1 In contrast, simple
signals like “I see food here now” might not require much
additional processing at all: the receiving agent could just
move towards the perceived signal if it needs food, or ignore
it otherwise.

Aside from the computational/architectural costs, the
costs of communicating can also be substantive. An agent
that continuously sends broadcast signals (like alarm, food,
or mate calls) might use up a significant portion of its en-
ergy, possibly without any benefit if no other agent can hear
the signal (the calls of male treefrogs, for example, are much
more expensive than navigation, limiting them to participate
in the calling chorus during mating season for only a few
days out of several weeks, e.g., see Fellers (1979)).

From all of the above it is clear then that claims about
the evolvability of communication or about the likelihood of
communication evolving need to be very specific with re-
spect to the form of communication they target, as all the
above differences (with respect to communication schemes,
functional, representational and computational capabilities
of agent architectures, and the various costs) are typically
subsumed under the general term “communication”.

For example, only social insects seem to have evolved dif-
ferent ways to communicate information about food sources
in partly non-indexical ways among their respective groups
(from annotating the environment by leaving marks like ants
do with pheromone trails, to using intricate dances like those
of honey bees that encode direction and distance to food
sources as well as food quality), despite the large number of
different species of insects. For most other forms of insects,
indexical mate signaling is the most that has been described
(but see Cocroft (2005) for an example of food signaling in
treehoppers).

We will in the following investigate two forms of commu-
nication about food: the simplest form of indexicals signal-
ing “I see food here now”, and a more complex form of “I
see food in location X now”, which removes one of the three
indexicals and replaces it with an explicit value (namely the
location of the food item). Since we are interested in deter-
mining the limits of communication, we will have to follow

1In humans, for example, the brain consumes up to 25% of the
body’s energy, in infants even up to 75%, e.g., see Cunnane (2006).

a different strategy from most work on the evolution of com-
munication, which we will describe next.

Method
Most research on the evolution of communication (see the
Related Work section below) attempts to demonstrate that
communication is beneficial and thus can evolve in some
agent in some given task. The logical form of these “evolv-
ability claims” is typically an existence claim: for a given
agent type and task there exists an initial distribution and
an evolutionary trajectory from this distribution that leads to
communication in those agents. The existential quantifiers
here are often the result of a common strategy to establish
claims about the evolvability of communication by exam-
ining the outcomes of runs of genetic algorithms or simi-
lar evolutionary computational tools. It is, however, impor-
tant to note that the existential quantifiers critically limit the
scope of the claim: it only says that for some initial condi-
tions there are trajectories that lead to communication be-
ing beneficial. This leaves open whether communication
could have or would have evolved for all trajectories, or the
vast majority of trajectories, and thus whether it was likely
for communication to evolve. For the likelihood of a prop-
erty evolving in a task, we need to determine the conditional
probability of communication evolving given as set of initial
conditions. The conditional probability formulation can then
be used both to confirm and disconfirm that a property P
such as communication is likely to evolve in a set of agents
by comparing the performance of agents with P and without
P for each initial condition. If there is no absolute perfor-
mance difference, then there will likely be no evolutionary
trajectory resulting in agents with P , for having and using
P would at best incur an additional cost without yielding
any gain in task performance. If there is no relative perfor-
mance difference between agents with and without P in the
given task (i.e., when the cost of having and using P is taken
into account in the performance measure), then the answer
to the question whether there is an evolutionary trajectory
leading to P will depend on additional information about in-
termediary stages of the trajectories, e.g., what evolutionary
operations are used and how frequently they are employed,
whether these operations can produce viable architectures at
any point along the trajectory, etc. Typically, it is difficult (if
not infeasible) to obtain this kind of information.

Hence, we will aim at establishing that there is no abso-
lute performance difference between agents with and with-
out communication. While it is impossible to do this ex-
haustively for the sheer size of the set of initial conditions
(even in our limited experimental setup), it is possible for
a small, but representative subset of initial conditions ran-
domly drawn from the set of all initial conditions. Statistical
significance tests can then be used to reject the null hypothe-
sis that there is an absolute performance difference between
communicating and non-communicating agents. And the p-



value of the significance test can be taken as an upper bound
on the conditional probability that communication evolves in
environments of the given type (a more detailed exposition
of the employed experimental methodology can be found in
Scheutz and Schermerhorn (2005)).

Task and Agent Models
To be true to the question about when and why communi-
cation evolved in nature, we define a generic biologically
plausible territory exploration task that is intended to mea-
sure the efficiency with which agents can negotiate their en-
vironment (e.g., how they determine where to go in their
environment based on their survival goals such as finding
food).

Definition t-MATES: A timed multi-agent territory ex-
ploration task with satiation (t-MATES) T (t,C,A,R,D,S)
requires a group of identical agents A each with sensory
range R to visit as many checkpoints in C as possible in
a 2D environment within the allotted time t, where agents
and checkpoints are placed according to a probability distri-
bution D and each agent can visit up to S checkpoints (the
“satiation level”).

D is typically unknown to the agents, hence it cannot be a
priori exploited by them. Agents neither know their own
locations in the environment nor those of the checkpoints.
Rather they can only detect relative locations of checkpoints
based on their perceptions (e.g., the location of a check-
point relative to the agent’s heading). All checkpoints are
marked so agents can perceive them when they are within
sensory range. Whenever a checkpoint is visited by an agent,
the agent removes the mark, thus effectively removing the
checkpoint from the environment.

One way to conceptualize t-MATES tasks is to think
of them as “foraging episodes” (of duration t) taken from
an ongoing evolution of populations of biological agents:
checkpoints can be viewed as food sources, and visiting
can be taken to be consuming them, with the satiation level
determining the maximum food intake an agent can have
within the foraging period t. Performance of different agent
types during t reflects the agent types’ foraging efficiency
(i.e., the efficiency with which agents can find food), which
in turn is a fitness measure of their performance in the larger
evolutionary context of survival and procreation. That is,
if an agent kind K1 has a higher foraging efficiency than an-
other agent kind K2 as measured in the t-MATES task, where
foraging efficiency is given in terms of “average number of
visited items per time unit”, then one would expect K1, on
average, to perform better than K2 in t-MATES tasks in an
evolutionary setting.2

2The qualifier “on average” is critical here as there can always
be special circumstances that punish normally fitter agents and can
even lead to their extinction.

Next, we define a simple reactive, yet biologically plausi-
ble non-communicating base agent model (e.g., at the level
of insect behavior) that meets the minimum requirements for
the t-MATES task of being able to move about the environ-
ment, detect a checkpoint within the given sensory range R
and move towards it. For simplicity’s sake, we do not em-
ploy a particular sensory model (e.g., sonar or visual sen-
sors), which would introduce complicating perceptual ef-
fects such as interference or visual occlusions, but rather
assume that agents can detect any number of checkpoints
within the circular Area of radius R around them. Given
that checkpoints have an extension in space (1 square unit),
the maximum number of detectable non-overlapping check-
points is limited by Area = R2 ·π.

The behavior of a non-communicating agent is then de-
termined solely by its sensory information (which is limited
to checkpoints, other agents are not perceived) based on the
following three rules:

Rule 1: if no checkpoint is sensed, perform a random walk
RW (rwd,β) (i.e., move in the direction of the current
heading θ for rwd cycles, then change heading randomly
to some value in [θ−β,θ+β])

Rule 2: if some checkpoints are sensed and are not within
visiting range (i.e., they are not within the extension of
the agent’s body of 8 units), go directly towards the clos-
est checkpoint (the direction is given by α such that
min

d
{〈d,α〉|〈d,α〉 is within sensory range)

Rule 3: if some checkpoints are sensed, at least one check-
point C is within visiting range, and the agent’s count of
checkpoints visited c is less than its satiation level S, re-
move the mark(s) of up to S− c of the checkpoints (if it
is/they are still there)

When an agent achieves satiation, it continues to execute the
rules above (i.e., it will search for another checkpoint and
move to it, but upon arrival will simply remain there until
the checkpoint is removed by another agent).

Note that the basic model is parameterized by RW (rwd,β)
and R, hence its performance will critically depend on those
parameters. In a sense, RW (rwd,β) is an agent-internal pa-
rameter that should be chosen so as to maximize an agent’s
performance with a given sensory range in a given envi-
ronment if we want to investigate the utility of communi-
cation. However, to be able to choose the best values for
RW (rwd,β), we need to understand how the random walk
interacts with other parameters such as the agent’s sensory
range, the number of participating agents in the task, and
the structure of the checkpoints in the environment (e.g.,
a random distribution). Hence, we conducted a large set
of calibration experiments to determine the best random
walk distance (rwd) for base agents for each sensory range
R∈ {25 ·n|1≤ n < 10}∪{300+50 ·n|0≤ n≤ 6} and group



size |A| ∈ {2,3,4,5}, in both random and clustered environ-
ments.3

We extend the base agent model in two different ways
to allow for two kinds of communication: purely indexical
communication – call it signaling agent – and partly “repre-
sentational” communication – call it messaging agent. We
also allow for two reactions to signals: a typical approach
behavior (e.g., like those exhibited by Toque Macaques
when they hear a food signal Dittus (1984)) and, for con-
trast, an avoidance behavior that will cause agents to walk
away from the direction of the food signal. The effect of
the avoid behavior should contrast to potential clustering ef-
fects engendered by the approach behavior, potentially lead-
ing to better agent distribution, particularly in random envi-
ronments. Thus, we will define four different types of com-
municating agents.

For the signaling agent we add the following two rules:

Sending: whenever a checkpoint is sensed, the agent turns
on its “checkpoint” signal

Receiving: whenever no checkpoint is sensed but one or
more checkpoint signals are sensed, the agent either ap-
proaches or moves away from the direction of the closest
signal.

Similarly, we add two rules for the messaging agents:

Sending: whenever a checkpoint is sensed, the location of
the checkpoint is communicated as the 〈d,α〉 of distances
d ∈ [0,R] and angles α ∈ [0,2π] relative to the sending
agent’s position

Receiving: whenever no checkpoint is sensed but one or
more checkpoint messages are received, the agent either
approaches or moves away from the closest checkpoint4

Note that messaging agents will at any given time know
the locations of all checkpoints that are perceived by any
agent within communication range, while signaling agents
will only know the locations of checkpoints they themselves
perceive, even though they will know where other agents are
that perceive checkpoints. Satiated agents will continue to

3For space reasons we omit a detailed description of the results.
4The details of exactly how agents extract the exact location

of a checkpoint relative to an agent’s own heading from another
agent’s message are not straightforward; they usually involve addi-
tional communicated parameters such as heading of agents relative
to each other or relative to a fixed coordinate system (e.g., as mea-
sured by a compass, etc.). Here we simply assume that the agent
can compute the angle and distance to the communicated check-
points based on where the message came from, and that they some-
how have access to the source location. For it will turn out that mes-
saging agents do in general not have better absolute performance
than signaling agents, hence the details of the control architecture
and the buried complexities and costs do not have to be considered
explicitly (as would typically be the case for conditions where mes-
saging agents performed absolutely better than signaling agents).

send and receive according to the communication rules for
their agent type.

Because we are interested in determining the limitations
of communication, we will consider two different commu-
nication ranges: an (unrealistic) unlimited communication
range (as a control condition) and a biologically plausible
limited communication range that is the same as the agent’s
sensory range.

We thus arrive at nine different agents, which we will la-
bel from 0 to 8 for ease of presentation. Agents of type
0 do not use communication, while odd-numbered agents
use messaging and even-numbered agents use signaling.
Agents types 1 through 4 use unlimited communication,
while agents types 5 through 8 use limited communication.
Finally, agents types 1, 2, 5, and 6 use approach behavior,
while agents types 3, 4, 7, and 8 use avoidance behavior.

Experiments and Results
All simulation experiments were conducted in the artificial
life simulator SWAGES, which is a distributed agent-based
artificial life simulation environment that consists of the par-
allelizable SIMWORLD simulator and an experiment grid-
server used to schedule experiments on heterogeneous clus-
ters of computers, automatically parallelize and distribute
simulations over multiple hosts, collect statistics, and per-
form preliminary data analysis (Scheutz and Schermerhorn,
2006; Scheutz et al., 2006).

One simulation experiment consists of 100 experimental
runs, each using different randomly generated initial condi-
tions from a given distribution D (of initial conditions) in
a continuous 2D world, which is limited to an 800 by 800
square region (in comparison, each agent occupies a circular
region of diameter 8).5 Two different distributions of check-
points are used: random and cluster. In the random distri-
bution, checkpoints are placed at random locations within
the whole environment, while in the cluster distribution all
checkpoints are placed according to a Gaussian distribution
(with a radius of 150 units and a standard deviation of 75
units) centered in one 200 by 200 quadrant (with all check-
points contained within the quadrant). We consider two dif-
ferent numbers of checkpoints, |C| = 10 and |C| = 40, and
four group sizes of agents, |A| = 2 to |A| = 5 to investigate
the possible effects of food density and group size on the
utility of communication. Moreover, we fix the agents’ sati-
ation thresholds at S = 10, but vary their sensory ranges from
25 to 600. The same set of 100 initial conditions of check-
point and agent placements is used for all variations of group
size and sensory/communication range for a given number
of checkpoints and checkpoint distribution to allow for a

5Whenever an agent reaches the boundary of the environment,
it will “bounce” off (similar to a billiard ball bouncing off the cush-
ion) with some very small random error (this is to make sure that
agents will not be able to leave the area within which checkpoints
are located).



C = 10 C = 40
Random Cluster Random Cluster

0 6.93 (2.62) 8.07 (3.13) 20.80 (7.55) 20.69 (10.74)
1 6.65 (2.71) 8.41 (2.99) 20.32 (7.95) 25.22 (10.48)
2 6.62 (2.70) 8.37 (2.99) 20.29 (7.93) 24.89 (10.44)
3 6.60 (2.70) 7.82 (3.13) 19.98 (7.99) 18.57 (10.90)
4 6.60 (2.71) 7.81 (3.20) 19.99 (8.03) 18.58 (10.90)
5 6.90 (2.63) 8.08 (3.14) 20.74 (7.58) 21.11 (10.87)
6 6.89 (2.62) 8.07 (3.13) 20.72 (7.58) 21.08 (10.86)
7 6.95 (2.62) 8.05 (3.13) 20.85 (7.55) 20.36 (10.61)
8 6.95 (2.62) 8.05 (3.13) 20.86 (7.55) 20.36 (10.61)

Table 1: Average performance of all nine agent types across
all sensory ranges (from 25 to 600) in both types of envi-
ronments (random and cluster) with both numbers of check-
points (10 and 40) for all four group sizes (from 2 to 5).

10 Checkpoints
Random Cluster

Df F p F p
Type 8 59.00 < .001 55.07 < .001
Range 16 5167.12 < .001 3390.00 < .001
Type:Range 128 3.93 < .001 3.24 < .001
Error 61047

40 Checkpoints
Random Cluster

Df F p F p
Type 8 25.17 < .001 499.00 < .001
Range 16 2610.12 < .001 1756.89 < .001
Type:Range 128 3.82 < .001 15.13 < .001
Error 61047

Table 2: Two-way 9×16 Analysis of variance in perfor-
mance with the independent variables agent type and sen-
sory range and the dependent variable checkpoints visited.

direct performance comparison among the different agent
kinds and parameters. We use the number of checkpoints
visited within t as performance measure and fix t = 500,
which turned out to be long enough to highlight foraging
differences among agent types.

The overall performance results for the nine agent types
in the four environmental conditions averaged over all sen-
sory ranges and group sizes are shown in Table 1, the results
of ANOVAs for each environmental condition are shown in
Table 2, and the statistically significant performance differ-
ences are shown in Table 3. The results in Table 2 show that
the differences in average performance between agent types
are significant (as is the effect of sensory range on perfor-
mance, unsurprisingly). The interaction between agent type
and sensory range is due to performance differences between
types found in medium sensory ranges; when sensory range
is very low, agents have a very hard time locating check-
points about which to communicate, whereas when sensory
range is high, shared information is seldom novel.

The results in Table 3 demonstrate that in random en-
vironments, regardless of the food density, communication
does not pay off, not even in the simplest form of signaling

10 Checkpoints
Unlimited Communication Range Limited Communication Range

Approach Avoid Approach Avoid
0 1 2 3 4 5 6 7 8

0 +++ +++ +++ +++
1 - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - -
5 +++ +++ +++ +++
6 +++ +++ +++ +++
7 +++ +++ +++ +++
8 +++ +++ +++ +++
0 - - - - - - +++ +++
1 +++ +++ +++ +++ +++ +++ +++
2 +++ +++ +++ +++ +++ +++ +++
3 - - - - - - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - +++ +++
6 - - - - - - +++ +++
7 - - - - - - +++ +++
8 - - - - - - +++ +++

40 Checkpoints
Unlimited Communication Range Limited Communication Range

Approach Avoid Approach Avoid
0 1 2 3 4 5 6 7 8

0 +++ +++ +++ +++
1 - - - + + - - - - - - - - - -
2 - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - -
5 ++ +++ +++ +++
6 ++ +++ +++ +++
7 +++ +++ +++ +++
8 +++ +++ +++ +++
0 - - - - - - +++ +++
1 +++ +++ +++ +++ +++ +++ +++
2 +++ +++ +++ +++ +++ +++ +++
3 - - - - - - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - +++ +++
6 - - - - - - +++ +++
7 - - - - - - +++ +++
8 - - - - - - +++ +++

Table 3: Comparison of the nine agent kinds in 10 check-
point (top two tables) and 40 checkpoint (bottom two ta-
bles). Within each checkpoint condition, the upper table is
in random and the lower table is in cluster environments.
“+” and “-” denote significant performance differences (be-
tween mean performance of the agent type in the row minus
mean performance of the agent type in the column), where
the number of symbols indicates the significance level based
on Tukey’s honestly significant difference (HSD) multicom-
parison post-hoc test: one symbol for p < .05, two symbols
for p < .01, and three for p < .001.

(as demonstrated by the lack of minus symbols in the row
with agent type 0). Quite to the contrary, unlimited commu-
nication can significantly hurt agent performance (see the
plus symbols in the 0 agent row). In cluster environments,
there is some benefit to communication: agents with unlim-
ited communication range using approach behavior perform
better than non-communicating agents (see the minus sym-
bols in the first two columns of the 0 agent row), but not
if they use avoid behavior, as expected (see the plus sym-
bols in the third and fourth columns of the 0 agent row).
Note that there was no performance difference between the
two forms of communication. Messaging agents with unlim-
ited communication range using approach behavior in ran-



dom high density environments do, however, have a slight
advantage over those using avoid behavior (see the single
plus symbol in columns 3 and 4 of the 1 agent row). Over-
all, there is no statistically significant performance differ-
ence in any of the four environmental conditions between
non-communicating and communicating agents with limited
communication range (as evidenced by the lack of any sym-
bols in columns 5 through 8 in the 0 agent row).

Discussion
The above results make a strong case for the limited utility
of communication for simple insect-like agents in t-MATES
tasks, especially since there was no statistically significant
performance difference between non-communicating and
communicating agents with limited communication range.
With unlimited communication range, the question about
the utility of communication becomes surprisingly depen-
dent on the type of environment: in random environments,
performance actually decreases due to agents wasting cy-
cles pursuing checkpoints that will likely have been vis-
ited by other agents before them, while in cluster environ-
ments performance increases due to agents being attracted
to the cluster quickly as soon as one agent has discovered
it. The performance difference between communicating and
non-communicating agents is particularly pronounced in the
high density condition (of 40 checkpoints), where the sati-
ation level limits agents to 10 visits (thus 4 agents are re-
quired to visit all checkpoints in the cluster; in the non-
communication conditions this means that the cluster needs
to be discovered independently at least four times, which can
take a while). The performance improvement is less pro-
nounced in the 10 checkpoint cluster (given that one agent
could visit them all). In the random condition, the trend is in
the opposite direction: the performance decrease is higher in
the low density condition than in the high density condition,
again for the reason that agents will chase checkpoints that
other agents are likely to get first.

Note that the above results are based on absolute perfor-
mance differences, as communicating agents are not charged
any penalties for their communication mechanism (includ-
ing processing and representational resources and computa-
tion time, additional sensors and effectors, etc.). The costs
involved in communication, especially the cost for sensitive
sensors with large sensory ranges (as is required for com-
munication to be beneficial) can be quite expensive (e.g.,
see (Schermerhorn and Scheutz, 2006, 2007b) for compari-
son of the various tradeoffs). Hence, whether communica-
tion based on large communication ranges will evolve for
high density cluster environments is an open question, but
we can already say that if it evolves then it will use signal-
ing and not messaging, given that there was no performance
difference between signaling and messaging, but messaging
requires and incurs much greater costs.

It is curious, then, that a small number of insect species –

the social insects – did evolve messaging communication to
communicate the locations of resources to their peers. This
could be because these agents depart from and return to a
common location which makes a difference in their foraging
patterns that could favor communication. Moreover, honey
bees (Capaldi and Dyer, 1999; Menzel et al., 1998) could not
use the signaling mechanism for food employed in this study
when they are at the hive. Interestingly, Dornhaus and Chit-
tka (2004) provide evidence that bees can survive just fine
without communication (i.e., when their ability to commu-
nicate is suppressed) depending on the food distribution and
food quality in their environment. Hence, we would expect
to observe this contingency of communication being benefi-
cial depending on the distribution of food in the environment
in modified t-MATES tasks if the additional constraint of al-
ways having to return to a common “base checkpoint” after
visiting a “field checkpoint” is taken into account; and in
fact Schermerhorn and Scheutz (2005) provides preliminary
evidence from a related task that suggests that this might in-
deed be the case.

Related Work
Several authors have investigated the utility of communi-
cation or signaling in various tasks. There are, for exam-
ple, purely game-theoretic studies that explore the role of
communication in coordination games and show that non-
binding, pre-play communication can can increase the prob-
ability of playing the Pareto-dominant strategy (e.g., Cooper
et al. (1992)). Arkin et al. find that communication can
aid coordination in robotic retrieval tasks (Arkin and Hobbs,
1992; Wagner and Arkin, 2004). Conversely, Werger et al.
(Werger and Mataric, 2001) and Quinn et al. (2003) found
communication to be unnecessary to achieve task formation
in a system which uses behavior-based mechanisms to gen-
erate cooperative behaviors. However, the employed tasks
are sometimes very different from t-MATES tasks making it
difficult to compare the outcomes.

MacLennan found that communication will evolve in a
task requiring coordinated behavior when agents are re-
warded for agreeing on the meaning of a signal (MacLen-
nan, 2002). However, this rewards agents directly for com-
munication rather than demonstrating that communication
can be beneficial to performance of a separate task. Simi-
larly, Levin (1995), using a genetic algorithm approach with
a fitness function that explicitly favors the evolution of com-
munication, found it possible to progressively improve the
ability of agents to correctly interpret other agents’ commu-
nications. Noble and Cliff (1996) extend MacLennan’s work
to show that a structured language will evolve based on the
benefits of communication.

Quinn (2001) describes experiments in which artificial
agents evolve a signaling mechanism in the absence of pre-
determined communication channels. Pairs of simulated
robotic agents starting within sensor range of one another are



given the task of moving in their environment while staying
within sensor range. Here, a signaling system evolved which
was not part of the fitness function, but rather measured ab-
solute task performance and behavior coordination.

Marocco et al. (2003) and Cangelosi et al. (2004) describe
experiments with simulated robots which are required to rec-
ognize a sphere and a cube in order to maximize contact with
the sphere and minimize contact with the cube. Once agents
identify an object, they can communicate that information to
other agents, allowing them, for example, to avoid contact
with the cube without using first-hand proprioceptive infor-
mation. Communication between parents and offspring was
found to evolve.

Ackley and Littman (1991) note that models in which
the speaker as well as the listener benefits from communi-
cation produces an unrealistic environment in which many
observed phenomena related to communication do not make
sense. In their model, agents can share information about
nearby food and predators. They found that, in some condi-
tions, communication can improve performance on the sur-
vival task (i.e., locating food and avoiding predators).

Noble (1999) examines various communication games to
determine under what circumstances communication will
evolve. Agents have the opportunity to communicate during
encounters between a signaler and a receiver, and they are
rewarded when the receiver responds appropriately to the
signal. In this study, communication was found to evolve
when the signaler receives a net reward. However, when
signalers are not rewarded for receivers’ successes, commu-
nication did not evolve.

Grim et al. (2002) examine the benefit of communication
in a survival task requiring agents to consume food when
present and hide from predators. Agents can share informa-
tion about food and predators with neighboring agents. They
find that communication will evolve in the absence of a cost
for signalling, but that adding such a cost, even just to the
level of 2% of the benefit of eating or the cost of predation,
affects the viability of communication.

Reggia et al. (2001) found similar results to those pre-
sented above with regard to the effect of checkpoint (food)
distribution. Their study examines only indexical signalling,
and they do not examine the effect of sensory range or
communication range. However, different from our study,
their model includes predators, an important risk factor that
should further decrease the utility of communication.

Conclusion
We investigated the limitation of communication for im-
proving the performance of simple agents in timed multi-
agent territory exploration tasks with satiation. Different
from most work on the evolution of communication, our
results paint a nuanced picture of the utility of communi-
cation. In environments with no structure communicating
agents with limited communication range do not perform

better than non-communicating agents, and unlimited com-
munication range can result in a significant performance
drop. In cluster environments, only communication with
unlimited communication range (that covers the whole en-
vironment) leads to better performance (which may or may
not be biologically plausible depending on the type of envi-
ronment and type of sensory modality). More importantly,
there was no significant performance difference between
signalling and messaging agents suggesting that if commu-
nication were to evolve, then it would be of the simplest pos-
sible form using only indexical broadcast signals rather than
non-indexical messages.

While the above results might seem largely negative from
the perspective of someone arguing for the utility of com-
munication and the likelihood of it evolving for biologically
plausible foraging tasks, the results about the utility and high
level of performance of simple agents with at best simple
means of signalling in t-MATES tasks is highly relevant for
and might find direct applications in a variety of engineering
tasks where low-cost solutions or solutions with a high (if
not the best) relative performance are of major interest (for
example, in energy-efficient mobile rovers that explore the
surfaces of planets, expandable autonomous mine-sweeping
robots that search an area for mines and explode with the
mine by driving over it, or unmanned surveillance vehicles
that need to check various locations in an environment as
they are dynamically reported as quickly as possible).

In addition to the already mentioned constraint of impos-
ing a hive-like home base for foragers, we see at least two
promising directions for further investigating the benefits
and limits of communication in t-MATES tasks. The first
concerns the idea of “structure in the environment” and the
degree to which communication can benefit from it. Specif-
ically, it would be interesting to define a measure of “struc-
ture” (ideally information-theoretic) for environments that
gets at the kinds of distributions of checkpoints that would
favor communication.

Another direction concerns the coordination of agent be-
havior, in which communication could play an facilitatory
role. The idea here is to impose additional task constraints
on the t-MATES task such as requiring multiple agents to
visit the same checkpoint at the same time (as would be re-
quired for mating) to isolate scenarios where coordination
can be significantly improved via communication (Scher-
merhorn and Scheutz (2007a) already started an exploration
of these tradeoffs in a related task).
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