
A Framework for Comparing Agent Architectures

Aaron Sloman
School of Computer Science
University of Birmingham

Birmingham
B15 2TT. England

a.sloman@cs.bham.ac.uk

Matthias Scheutz
Department of Computer Science and Engineering

351 Fitzpatrick Hall
University of Notre Dame

Notre Dame, IN 46556, USA
mscheutz@cse.nd.edu

Abstract

Research on algorithms and representations
once dominated AI. Recently the importance of
architectures has been acknowledged, but re-
searchers have different objectives, presuppo-
sitions and conceptual frameworks, and this,
can lead to confused terminology, argumenta-
tion at cross purposes, re-invention of wheels
and fragmentation of the research. We pro-
pose a methodological framework: develop a
representation of a general class of architec-
tures within which different architectures can
be compared and contrasted. This should fa-
cilitate communication and integration across
sub-fields of and approaches to AI, as well
providing a framework for evaluating alterna-
tive architectures. As a first-draft example we
present the CogAff architecture schema, and
show how it provides a draft framework. But
there is much still to be done.

1 Introduction

AI has always been concerned with algorithms and
representations, but we also need to understand how
to put various parts together into complete working
systems, within anarchitecture. It is now common
in AI and Cognitive Science to think of humans
and other animals, and also many intelligent robots
and software agents, as having a virtual machine
information processing architecture which includes
different layers, and which, in the case of animals,
evolved at different stages. But many different
architectures are proposed, and there is no clear
framework for comparing and evaluating them.

Explicit or implicit theories of mental architecture
are not new. Early empiricist philosophers thought
of the mind as a collection of ‘ideas’ floating
around in a sort of spiritual soup and forming
attachments to one another. Kant (1781) proposed a
richer architecture with powerful innate mechanisms
that enable experiences and learning to get off the
ground, along with mathematical reasoning and other
capabilities. Freud’s theories directed attention to
a large subconscious component in the architecture.

Later Craik (1943) proposed that animals build
‘models’ of reality in order to explore possible actions
safely without actually performing them. Popper
(in his 1976 and earlier works) advocated similar
mechanisms allowing our mistaken hypotheses to
‘die’ instead of us. Recent work has added more
detail. Albus (1981, p.184) depicts MacLean’s idea
of a ‘triune’ brain with three layers: one reptilian
with one old and one new mammalian layer. A
neuropsychiatrist, Barkley, has recently begun to
develop a sophisticated architectural model, partly
inspired by J. Bronowski, to account for similarities
and differences between normal human capabilities
and sufferers from attention disorders [2], though most
psychologists and neuroscientists find it very difficult
to think about virtual machine architectures. Shallice
and Cooper are among the exceptions [4].

In the meantime, AI researchers have been
exploring many sorts of architectures. See Nilsson’s
(1998, Ch 25) account oftriple tower and triple
layer models. Architectures like SOAR, ACT-R,
and Minsky’s Society of Mindhave inspired many
researchers, but there is no general overview of the
space of interesting or important architectures, or the
different types of requirements against which they can
be evaluated, though Dennett makes a good start. In
short, there are no adequate surveys of ‘design space’
and ‘niche space’ and their relationships [24]. As a
partial remedy, we offer the CogAff schema depicted
in figures 1(a), (b) and 2(a), (b), and described below.

2 Conceptual confusions

A problem surrounding the study of architectures is
the diversity of high level aims of AI researchers.
Some are merely trying to solve engineering problems
and care only whether their solutions work well.
Others are explicitly attempting to understand and
model humans, or other animals. A few are
attempting to focus only on general principles equally
applicable to natural and artificial systems. An
effect of all this is that there is much confusion
surrounding the description of what instances of the
proposed architectures are supposed to be able to
do. For instance, someone who describes a system
as ‘learning’ may merely mean that it adaptively
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The CogAff architecture schema combines cognitive and affective components. Nilsson’s ‘triple tower’ model, with
information flowing (mainly) through perceptual, central, and motor towers, is superimposed on his ‘triple layer’ model,
where different layers, performing tasks of varying abstractness, use different mechanisms and representations. In (a)
the two views are superimposed. Components in different boxes have functions defined by their relationships with other
parts of the system. In (b) a fast (but possibly stupid) alarm system receives inputs from many components and can send
control signals to many components. An insect’s architecture might include only the bottom layer. Some animals may
have reactive and deliberative layers. Humans seem to have all three. See the text and fig. 2 for details. The diagrams
leave out some components (e.g. motive generators) and some information pathways, e.g. ‘diagonal’ routes.

solves an engineering problem. Another may be
attempting to model human learning, perhaps without
being aware of the huge variety of types of learning.
An engineer may describe a program as using ‘vision’
simply because it makes use of TV cameras to obtain
information, which is analysed in a highly specialised
way to solve some practical problem, ignoring the fact
that animal vision has many other aspects, for instance
detecting ‘affordances’ [8, 22, 26].

Study of emotion has recently become very
fashionable in psychology and AI, often ignoring the
vast amount of conceptual confusion surrounding the
term ‘emotion’, so that it is not clear what people
mean when they say that their systems have emotions
or model emotions or use affective states [28, 27, 16]
Social scientists tend to define ‘emotion’ so as to
focus on social phenomena, such as embarrassment,
attachments, guilt or pride, whereas a brain scientist
might define it to refer to brain processes and
widespread animal behaviours. It has dozens of
definitions in the psychological and philosophical
literature, because different authors attend to different
subsets of emotional phenomena.

McDermott’s (1981) critique of AI researchers
who use mentalistic labels on the basis of shallow
analogies has been forgotten. We offer the CogAff
schema as a first-draft framework for describing
and comparing architectures and the kinds of states
and processes they support. We can then see
how definitions of mental phenomena often focus
on special cases all of which the schema can
accommodate, e.g. as we have shown elsewhere in

the case of emotions and vision [25, 22, 26].

2.1 Architecture-based concepts

Understanding the variety of information processing
architectures helps to clarify confused concepts,
because different architectures support different sets
of capabilities, states and processes, and these
different clusters characterise different concepts. For
instance, the fullest instantiations of the CogAff
schema account for at least three classes of
emotions: primary, secondary and tertiary emotions,
extending previous classifications. [6, 14, 23, 28].
Likewise, different concepts of ‘seeing’ relate to
visual pathways through different subsystems in a
larger architecture. ‘Blindsight’ [31] is explained
by damage to connections between meta-management
and intermediate high level perceptual buffers, while
lower level pathways remain intact.

Architectures differ not only between species,
but also while an individual develops, and after
various kinds of brain damage or disease. The
resulting diversity requires even more conceptual
differentiation. ‘What it is like to be a bat’ [12] may
be no more obscure to us than ‘What it is like to be a
baby’, or an Altzheimer’s sufferer.

2.2 Cluster concepts

Many of our mental concepts are ‘cluster concepts’:
they refer to ill-defined subsets of a cluster of
properties. E.g. if an architecture supports capabilities



of types C1, . . . Ck, then boolean combinations
of those capabilities can define a wide variety of
concepts. Our pre-theoretical cluster concepts lack
that kind of precision; so, for a given mental
concept M, there may be some combinations of
Cs that definitely imply presence of M, and others
which definitely imply absence of M, without any
well-defined boundary between instances and non-
instances. Cluster concepts may have clear cases
at extremes and total indeterminacy in a wide range
of intermediate cases, because there has never been
any need, nor any basis, for labelling them. Worse,
we may be unaware of the full range Ci relevant to
clarifying the concept.

When we have a clear view of the space
of architectures we can consider the families of
capabilities supported by each type of architecture,
and define new more precise concepts as we have
defined primary, secondary and tertiary emotions in
terms of reactive, deliberative and meta-management
mechanisms e.g. [25].

Some architectures may support all the mental
concepts we normally apply to humans. Others
may support only simplified forms e.g. ‘sensing’,
but not all of our notions of ‘pain’, ‘emotion’,
‘consciousness’, etc. An insect has some sort of
awareness of its environment even if it is not aware
that it is aware, because there is no meta-management.

If we had a clear idea of the information
processing architecture of a foetus at different stages
of development, then for each stage we could specify
concepts that are relevant. New-born infants, like
insects, are limited by their architecture: e.g. they
may be incapable of puzzlement about infinite sets or
the mind-body problem. Likewise, when describing
AI systems, we need to be careful not to over-describe
simplified architectures.

If we have a well defined space of possible
architectures, and can investigate precisely which
concepts are applicable to which subsets, we can
develop agreed terminology for describing agents.

3 What sorts of architectures?

We cannot (yet) hope for a complete survey of possible
information processing architectures since we are
so ignorant about many cases, e.g. animal visual
systems. Perhaps evolution, like human designers,
has implicitly relied on modularity and re-usability
in order to achieve a robust and effective collection
of biological information processing architectures.
Figure 1 depicts a biologically-inspired framework
covering a variety of architectures, with different
subsets of components. It makes a three-fold
division between perception, central processing, and
action, and contrasts three levels of processing, which
probably evolved at different times. (More fine-
grained divisions are also possible.) Slow central

mechanisms and fast environments may generate
a need for fast (but possibly stupid) relatively
global ‘alarm’ mechanisms. The need for speed in
detecting urgent opportunities and dangers rules out
use of elaborate inferencing mechanisms in an alarm
mechanism, though they may exist in a deliberative
layer. Alarm mechanisms are therefore likely to be
pattern-based, and to make ‘mistakes’ at times, though
they may be trainable.

Different subsets of the CogAff schema can be
used in different architectures. A conjectured human-
like schema H-CogAff,1 is depicted crudely in fig. 2.
Much simpler instances are also accommodated. E.g.
insects probably have only the bottom (reactive) layer
(possibly with alarms), and much early AI work
was concerned only with the middle portion of the
middle (deliberative) layer. HACKER [30] combined
portions of the top two layers. SOAR’s ‘impasse
detection’ is a type of meta-management. Brooks
(1991) subsumption architectures include multiple
control levels all within the reactive layer, and nothing
in the other layers.

3.1 Layered architectures

The idea of hierarchic control is very old both in
connection with analog feedback control and more
recently in AI systems. There are many proposals for
architectures with two, three or more layers, including
those described by Albus and Nilsson mentioned
previously, subsumption architectures [3], the ideas
in Johnson-Laird’s discussion (1993) of consciousness
as depending on a high level ‘operating system’, and
Minsky’s notion of A, B and C brains.

On closer inspection, the layering means different
things to different researchers. This, and other
ambiguities, may be reduced if people proposing
architectures can at least agree on a broad framework
specifying a class of architectures and terminology for
describing and comparing them, as illustrated in the
next section.

3.2 Dimensions of architectural variation

We present a first draft list of dimensions in which
architectures can be compared.
1. Pipelinedvsconcurrently active layers
Often [13] the layers have a sequential processing
function: sensory information comes in via low level
sensors (‘bottom left’), gets abstracted as it goes up

1: Our terminology is provisional. We refer to CogAff
as a schema rather than anarchitecture because not
every component specified in it must be present in every
architecture to which it is relevant: e.g. it is intended
to cover purely reactive agents and software agents which
merely contain deliberative and meta-management layers.
H-CogAff is schematic in a different sense: it is a
conjectured architecture for human-like minds where many
components are incomplete or under-specified.
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Figure 2: (a) (b)
The ‘Human-like’ sub-schema H-Cogaff. (a) lists some components supporting motive processing and ‘what if ’
reasoning in deliberative and meta-management layers. Humans seem to have all those mechanisms, perhaps organised
as in (b), where the alarm system might correspond to the brain’s limbic system. An interrupt filter partly protects
resource-limited deliberative and reflective processes from excessive diversion and redirection, using a dynamically
varying penetration threshold, dependent on the urgency and importance of current tasks – soldiers in battle and
footballers don’t notice some injuries. Different ‘personae’ can control processing at different times, e.g. when at
home with family, driving a car, interacting with subordinates, in the pub with friends, etc. Such an architecture has
various kinds of information stores, and diverse information routes through the system, only a subset of which are shown.

through higher central layers, until action options are
proposed near the top, where some decision is taken
(by ‘the will’!), and control information flows down
through the layers and out to the motors (‘bottom
right’). We call this an ‘Omega’ architecture because
the pattern of information flow is shaped like an

. Many models in AI and psychology have this
style e.g. [1]. The ‘contention scheduling’ model
[4] is a variant in which the upward information
flow activates a collection of competing units where
winners are selected by a high level mechanism. The
CogAff schema accommodates such pipelines, but
also permits alternatives where the different layers
are all concurrently active, and various kinds of
information constantly flow within and between them
in both directions, as in fig. 2(b).

2. Dominancevs functional differentiation
In some designs, higher levels completelydominate
lower levels, as in a rigid subsumption architecture,
where higher levels can turn lower level behaviour on
or off, or modulate it. Such hierarchical control is
familiar in engineering, and CogAff allows, but does
not require, it. In the H-CogAff ‘human-like’ sub-
schema (fig. 2), higher levels partially control lower
levels but sometimes lose control, e.g. to reactive
alarm mechanisms or because other influences divert
attention, such as sensory input with high salience
(loud noises, bright flashes) or newly generated

motives with high ‘insistence’ (e.g. hunger, sitting
on a hard chair, etc.). In animalsmost lower level
reactive mechanisms cannot be directly controlled by
deliberative and meta-management mechanisms.

3. Direct controlvs trainability
Even if higher levels cannot directly control lower
levels, they may be capable of re-training them, as
happens in the case of many human skills. Repeated
performance of certain sequences of actions carefully
controlled by the deliberative layer may cause a
reactive layer to develop new chained behaviour
sequences, which can later be performed without
supervision from higher layers. Fluent readers, expert
car drivers, skilled athletes, musical sight-readers, all
make use of this.

4. Processing mechanismsvs processing functions
Some instances of CogAff may use the same kinds of
processing mechanisms (e.g. neural nets) in different
layers which perform different functions, and operate
at different levels of abstraction. Alternatively, diverse
functions may be implemented in diverse mechanisms,
e.g. neural nets, chemical controls, symbolic
reactive rulesystems, and sophisticated deliberative
mechanisms with ‘what if’ reasoning capabilities,
using formalisms with compositional semantics. The
latter might be used to represent possible future
actions and consequences of actions, to categorise
them, evaluate them, and make selections. This



could support planning, explanation of past events,
mathematical reasoning, and general counterfactual
reasoning. Such deliberative mechanisms require
temporary workspace containing changing structures.
These are not needed for most reactive systems.

Of course, the deliberative mechanisms which go
beyond reactive mechanisms in explicitly representing
alternative actions prior to selection might themselves
be implementedin reactive mechanisms, which in
turn are implemented in various kinds of lower level
mechanisms, including chemical, neural and symbolic
information processing engines, and it is possible
that the reliance on these is different at different
levels in the architecture. Some kinds of high level
global control may use chemical mechanisms (e.g.
hormones) which would be unsuitable for intricate
problem solving. If it ever turns out that animal brains
require quantum computational mechanisms, e.g. to
reduce time complexity. then these mechanisms could
also be accommodated.

5. Varieties of representation
Distinctions between different sorts of representations,
e.g. logical, qualitative, diagrammatic, procedural,
neural etc. are all relevant, since different components
of a complex architecture may have different
requirements.

6. Varieties of learning
There is much research in AI and psychology on
learning and individual development. CogAff is
compatible with many kinds of learning mechanisms
in different parts of the system, including neural
nets, trainable reactive systems, extendable knowledge
stores, changeable motive generators and motive
comparators (see below), extendable forms of
representation and ontologies, etc. More subtle types
of learning and development can include forming
new connections between parts of the architecture,
e.g. linking new visual patterns to either reactive
behaviours as in athletic training, or to abstract
concepts, as in learning to read a foreign language or
detect a style of painting.2

In humans the meta-management layer is not a
fixed system: not only does it develop from very
limited capabilities in infancy, but even in a normal
adult it is as if there are different personalities ‘in
charge’ at different times and in different contexts.
Learning can extend the variety.

7. Springs of action, and arbitration mechanisms
Architectures can support ‘intrinsic’ and ‘derivative’
motives, where the latter are sub-goals of intrinsic
or other derivative motives. Architectures differ in
the varieties of motives they can generate and act
on and how they are generated, and whether they
are represented explicitly or only implicitly in control
states. They can also differ in how conflicts are
detected and resolved. To illustrate, we mention
several contrasts.

Some architectures generate all motives in
one mechanism receiving information from other
components (e.g. near the ‘top’ of an Omega
architecture) whereas other architectures support
distributed motive generation, including reactive and
deliberative triggering (fig. 2(b)). In some of the latter,
motives generated in different places cannot be acted
on unless processed by some central system, whereas
others (e.g. H-CogAff) allow distributed concurrent
motive activation and behaviour activation. In some
reactive systems all reactively generated goals are
processed only in the reactive layer, whereas in others
a subset of reactive goals can be transmitted to a
deliberative layer for evaluation, adoption or rejection,
and possibly planning and execution.

Architectures also differ regarding the locus
and mechanisms of conflict resolution and motive
integration. In centralised decision-making all
conflicts are detected and resolved in one sub-
mechanism, whereas in others, some conflicts might
be detected and resolved centrally in the reactive layer,
some might be detected and resolved using symbolic
reasoning in the reactive or meta-management layer,
and some might be resolved using highly trained
motor sub-systems. Deciding whether to help granny
or go to a concert, deciding whether to finish an
unfinished sentence or to stop and breathe, deciding
whether to use placatory or abusive vocabulary when
angry, might all be handled by different parts of the
system. In some architectures loci of integration never
vary, while others change through learning.

Some architectures use ‘numerical’ conflict reso-
lution, e.g. voting mechanisms, others rule-based or
problem-solving decision systems capable of creative
compromises, and some hybrid mixtures.

8. ‘Peephole’vs ‘multi-window’ perception
Perceptual architectures vary. A ‘peephole’ model
uses a fixed entry locus (using simple transducers
or more complex sensory analysers) into the central
mechanisms, after which information may or may
not be passed up a processing hierarchy, as in the
Omega model. In a ‘multi-window’ model [22, 28]
perceptual processing is itself layered, concurrently
producing different kinds of perceptual information
to feed directly into different central layers, e.g.
delivering more abstract and more large scale percepts
for higher layers, while fine control of movement
uses precise and continuously varying input fed into
the reactive system or directly to motor subsystems
(fig. 2(b)). Perceptual systems also vary according
to whether they are purely data-driven or partly
knowledge-based, and whether they can be affected by
current goals. Differential effects of different kinds

2: H-CogAff with its many components and many
links also makes possible multiple forms of damage and
degradation including changes within components and
changes to connections.



of brain damage seem to support the multi-window
multi-pathway model for humans.

9. Motor pathways
Connections from central to motor mechanisms may
use either the ‘peephole’ model, with all motor signals
going through a narrow channel from the central
system (e.g. bottom right as in the Omega model),
or a ‘multi-window’ architecture where different sorts
of instructions from different central layers can go to
a layered, hierarchical motor system, which performs
the necessary decomposition to low level motor
signals along with integration as needed, as in [1] and
fig. 2(b). The latter seems to be required for skilled
performance of complex hierarchical actions.

10. Specialised ‘boxes’vs emergence
Some architecture diagrams have a box labelled
‘emotions’. In others, emotions, like ‘thrashing’ in an
operating system. are treated as emergent properties
of interactions between functional components such
as alarm mechanisms, motive generators and attention
filters, [32, 25]. An architecture like fig. 2(b)
can explain at least three different classes of
emergent emotions involving disturbances caused
by or affecting different layers of the architecture.
Whether a capability needs a component, or emergent
interactions between components is not always clear.
The attention filter in fig. 2(b) could use either a
special mechanism (easier to implement and control)
or the effects of interactions between competing
components (more general and flexible) although the
trad-eoffs depend on the particular architecture. The
latter approach is found in the contention scheduling
model.

11. Dependence on external language
Some models postulate a close link between high
level internal processes and an external language.
For instance, some claim that mechanisms like meta-
management require a public language and social
system, and some regard language as essential for
human-like minds [7]. Others [19] regard internal
mechanisms and formalisms for deliberation and high
level self-evaluation as pre-cursors to the development
of human language as we know it. (Compare Barkley
1997). It appears from the capabilities of many
animals, that rich and complex information processing
mechanisms evolved long before external human-like
languages, and probably still underpin them. In that
sense the use of ‘language’ to think with is prior to
its use in external communication, though we are not
denying the impact of external language.

12. Internalvs partly external implementation
Most AI design work focuses on internal processing.
However, Simon (1969) pointed out that animals often
use the environment as a short term memory: so
their implementation extends beyond their bodies.
Human examples include trail-blazing and calculating

on paper. Strawson (1959) pointed out that what is
within an individual cannotsufficeto determine that
some internal representation or thought refers to the
Eiffel tower, as opposed to an exactly similar object
on a ‘twin earth’. Unique reference depends in part
on the causal and spatial relationships to the thing
referred to. So notall aspects of human-like thought
can be fully implemented internally: some depend on
external relations [20, 21].

13. Self-bootstrapped ontologies
We have been arguing that when we have specified
an architecture we shall understand what sorts of
processes can occur in it, and will be able to define an
appropriate set of concepts for describing its ‘mental’
states.

However, some learning mechanisms can develop
their own ways of clustering phenomena according to
what they have been exposed to and their successes
and failures. In a robot with the architecture in
fig. 2(b) the meta-management layer might develop
a collection of concepts for categorising its own
internal states and processes that nobody else can
understand intuitively because nobody else has been
through that particular history of learning processes.
Subsequent effects of using those ‘personal’ concepts
may exacerbate the complexity and idiosyncratic
character of the robot’s internal processing. (Compare
the difficulty of understanding what a complex
neural network is doing, after it has been trained.)
Partial understanding ‘from outside’ might come from
analysing the history and its effects on the architecture.
For systems with that degree of sophistication and
reflective capability, scientific understanding of their
processing may forever be limited to very coarse-
grained categorisations and generalisations.

4 Discussion

We have tried to show (albeit with much missing
detail, on account of space limitations) that a general
formulation of a wide class of architectures can
facilitate comparative analysis of different proposed
architectures, by providing a common vocabulary
for describing structure and function. Our CogAff
schema is a first-draft example that accommodates a
wide range of architectures (though possibly not all,
especially totally unstructured architectures). We have
tried to bring out some of the options that may need
to be considered when trying to design, compare and
evaluate architectures, though we have said nothing
here about the even larger variety of multi-agent
architectures.

After specifying a particular case of the schema,
we can analyse the types of capabilities, states and
processes enabled within that special case. This
provides a basis for refining vague or indeterminate
cluster concepts of ordinary language (e.g. ‘emotion’,



‘believe’, ‘intention’, ‘learning’) so that they become
more precise and clear criteria for deciding which
animals or robots exemplify them can replace endless
debates.

Different architectures will support different
collections of concepts, and care is required if familiar
human mental concepts are being used: they may not
always be applicable to some of the simpler artificial
systems, illustrating McDermott’s argument.

A schema such as CogAff also provides a basis
for developing an enriched theory of learning where
varieties of learning and development that are possible
depend not only on the mechanisms that are present
within components of the architecture, but also on the
scope for the architecture to extend itself with new
components or new links. Because so many types
of change are possible in more complex systems, we
can expect to have to replace our ordinary concepts of
‘learning’ and ‘development’ with a family of more
precise architecture-based concepts. (There is no
space here for a full analysis.)

We can use the schema to explore some of
the varieties of evolutionary trajectories. In some
recent experiments [17] it appears that for simple
sorts of reactive agents and a range of environments,
adding simple affective mechanisms is more beneficial
(for survival over many generations) than adding
(simplified) deliberative capabilities. Because a
schema like CogAff invites us to consider ways of
extending an architecture which does not already have
all possible links and components, we can use it to
define ‘neighbourhoods’ in design space. We can
then explore those neighbourhoods analytically or by
doing computational experiments, or by looking for
paleontological evidence.

Further investigation might help us understand
better why the vast majority of the earth’s biomass
consists of relatively unintelligent organisms, with
only reactive components. Part of the answer may
be requirements of food chains needed to support
animals with more complex brains! However, there
may be more general reasons why sometimes large
numbers of relatively stupid, but inexpensive and
expendable individuals (with affective control states)
are more effective than smaller numbers of larger,
more expensive and more intelligent organisms.

In later stages of evolution, the architecture might
support new types of interaction and the development
of a culture. For instance if the meta-management
layer, which monitors, categorises, evaluates and
to some extent controls or redirects other parts of
the system, absorbs many of its categories and its
strategies from the culture, then the same concepts can
be used for self-description and for other-description:
a form of social control.

The third layer also provides the ability to attend
to and reflect on one’s own mental states, which could
cause intelligent robots to discover qualia, and wonder

whether humans have them.
We can use our framework to clarify some

scientific concepts. The common reference to
‘executive function’ by psychologists and brain
scientists seems to conflate aspects of the deliberative
layer and aspects of the meta-management layer.
That they are different is shown by the existence
of AI systems with sophisticated planning and
problem solving and plan-execution capabilities, but
without meta-management (reflective) capabilities. A
symptom would be a planner that doesn’t notice an
obvious type of redundancy in the plan it produces, or
subtle looping behaviour. After developing these ideas
we found that the neuropsychiatrist Barkley (1997)
had reached closely related conclusions starting from
empirical data.

Study of a general schema for a wide class of
architectures should help AI researchers designing and
comparing agent architectures, and also philosophers,
brain scientists, social scientists, ethologists and
evolutionary biologists. CogAff seems to be a useful
first draft, though much remains to be done.
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