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Abstract 

Parallel Distributed Processing (PDP) models have been 
widely used for modeling cognitive tasks where accuracy or 
reaction time were the dependent performance measures. 
However, only few PDP models have attempted to model 
more brain-related data like event related potentials (ERPs). 
In this paper, we take a step towards using ERP data for 
model fitting by proposing a PDP model, which can 
successfully replicate various known ERP effects. 
Specifically, we introduce a PDP-equivalent of the N400 ERP 
measure and apply it to a simple PDP model of early bilingual 
word acquisition as bilingual word acquisition tasks provide 
several well-established N400 effects that can be used for 
model validation. We then analyze the dynamics of the 
network to show why and how the network can capture each 
of the targeted N400 effects. Furthermore, we qualitatively 
compare model-generated and empirical N400 peak values for 
L2 words. 

Keywords: PDP, bilingualism, L2 word acquisition, event 
related potential (ERP), N400  

Introduction 
In a recent paper, Laszlo & Plaut (2012) proposed a way to 
capture N400 ERP word reading data in a parallel 
distributed processing (PDP) connectionist network whose 
architecture was based on two neurally plausible 
characteristics: neurons can either be excitatory or 
inhibitory, but not both, and inhibitory connections can only 
occur within layers, but not between (as the range of 
inhibitory connections in the brain is shorter than that of 
excitatory connections). Given these two constraints, the 
model generated cycle-based time-course data that reflected 
the temporal evolution of the N400 response, replicating the 
“orthographic neighborhood size” effect that words with 
larger orthographic neighborhood size elicit larger N400s 
compared to words with smaller neighborhood size. 
However, it is currently unclear whether this model would 
also capture various other known N400 word effects such as 
those obtained in the context of bilingual word processing. 

In this paper, we propose a PDP architecture for a PDP 
model of bilingual word processing, which can successfully 
capture several known N400 effects in early bilingual word 
processing, including the “orthographic neighborhood size” 
effect in addition to other known effects such as the 
“pseudoword effect”. 

Background	   
Two important aspects of any bilingual processing model 
are the representations of lexical items in the first (L1) and 
second (L2) language and their requisite connections to 
concepts. Research on word processing during the early 
stages of L2 acquisition has revealed important constraints 
about storage and processing of conceptual and lexical 
information in the bilingual brain. Studies using speeded 
translation tasks, for example, show L2 learners are faster to 
translate from L2 to L1 (e.g., translating tenedor to fork in 
native English learners of Spanish) than from L1 to L2 
(translating fork to tenedor) (e.g., Kroll &Stewart, 1994). 
These behavioral results indicate that adult bilinguals appear 
to associate new L2 words with their L1 translation 
equivalents in order to facilitate semantic access to these 
new words. 

This bootstrapping of L2 into the already established L1 
language system involves an asymmetrical representation of 
the two languages, accounted for in Kroll & Stewart's 
Revised Hierarchical Model (RHM) (depicted in Figure 1).  

 

 
 

Figure 1: The RHM (Kroll & Stewart, 1994). Solid lines 
indicate strong connections and dashed lines indicate weak 

connections. 
 



The RHM assumes a separate lexicon for L1 and L2 with 
orthographic and phonological representations, each of 
which is connected to a single amodal conceptual store. In 
early second language learners, the L1 lexicon is assumed to 
be much larger than the L2 lexicon and evidence from 
picture naming tasks in bilinguals suggests that the strength 
of the links between the two lexicons and the conceptual 
store are also asymmetrical, with L1 having stronger 
connections to semantics than does L2 (e.g., Kroll & Peck, 
1998). Both the lexical level asymmetry and the concept-to-
lexicon asymmetry between L1 and L2 are modeled in the 
RHM by disproportionately weighted links (see Figure 1). 
Adhering to the behavioral data, the link from the L2 
lexicon to the L1 lexicon is much stronger than the link 
from L1 to L2, just as the link between the L1 lexicon and 
conceptual store is much stronger than the link between the 
L2 lexicon and the conceptual store. 

However, behavioral data is often insufficient for 
distinguishing between different processing mechanisms. 
Hence, electrophysiological measures such as event-related 
potentials (ERPs) with their fine-grained temporal 
resolution can uncover particular neural activity elicited 
during language tasks that might only be associated with a 
particular class of model architectures. In particular, the 
N400, which is a negative-going centroparietally distributed 
ERP component peaking around 400ms after stimulus onset, 
has been shown to index lexico-semantic integration during 
word processing. Hence, it provides a robust measure of 
changes in processing activity in the brain as language 
learning takes place and can thus be used to flesh out 
conceptual proposals like the RHM in computational 
architectures such as the PDP connectionist models. We 
will, in particular, focus on four aspects of monolingual and 
bilingual word processing for which N400 effects have been 
reported in the literature: (A1) L1/L2 words versus L1/L2 
pseudowords (i.e., pronounceable L1/L2 non-words that 
adhere to the orthographic rules of L1/L2); (A2) L1/L2 
word repetition effects; (A3) variations in L1/L2 word 
neighborhood size; and (A4) L1 vs. early L2 word 
processing differences. 

Regarding (A1), it is well-known that L1 pseudowords 
elicit larger N400s than L1 words (e.g., Holcomb & Neville, 
1990). Moreover, L2 learners showed larger N400s to L2 
pseudowords than to L2 words after only 14 hours of 
classroom learning, mimicking L1 pseudoword effects (e.g., 
McLaughlin et al., 2004; however, note that McLaughlin 
and colleagues did not find any behavioral evidence of L2 
words and pseudoword discrimination, thus supporting the 
use of ERPs over behavioral measures for adjudicating 
model architectures). 

Regarding (A2), repeated words reliably elicit smaller 
N400 amplitudes than their first presentation (e.g., Rugg, 
1985). This attenuation of the N400 reflects the increased 
ease of lexico-semantic integration upon the second and 
subsequent presentations of a word (possibly due to residual 
activation of the lexical item and/or facilitatory feedback 
from the activated concept). 

Regarding (A3), words with large numbers of 
orthographic neighbors (e.g., words that differ from the 
target by only one letter) elicit larger N400s than words with 
smaller neighborhood size (e.g., Holcomb et al., 2002). 
Notably, the effect occurs within as well as across 
languages, i.e., L1 influencing L2 and vice versa (Midgley 
et al., 2008). 

And finally (A4), N400s can be used as a measure of how 
closely L2 processing matches that of L1 processing. For 
example, Midgley and colleagues found that both English-
French and French-English bilinguals who had intermediate 
L2 experience displayed smaller N400s to L2 words than to 
L1 words (2009). Balanced bilinguals did not show any 
N400 differences between L1 and L2 word processing. This 
result might be in part explained by (A3). Given that the L1 
lexicon contains more word forms than the L2 lexicon, L1 
words generally have larger neighborhood sizes than L2 
words. The larger neighborhood sizes of L1 items in 
comparison to L2 items may contribute to larger N400 
amplitudes for L1 words over L2 words. 

Model Description  
We start with four hypotheses, (H1) through (H4), about the 
possible principles responsible for each corresponding N400 
effect (i.e., (A1), (A2), (A3), and (A4)) in the context of a 
RHM-like PDP architecture and then add connections 
within and between layers of the network based on the 
hypothesized mechanisms. 
 
Hypotheses:  
(H1) Pseudowords have no word-level representations and 
thus no connections to concept nodes or nodes within the 
lexical layer.  
 
(H2) Concept nodes keep a residual activation between 
repeated word presentations and can thus be activated faster 
in subsequent presentations of the same word compared to 
the first presentation.  
 
(H3) Lexical inputs with more orthographic neighbors 
should activate more concepts early on. This should lead to 
increased competition among concepts and thus to reduced 
overall activations later on, which can be facilitated via 
inhibitory connections in the concept layer.  
 
(H4) After some training (when fairly strong, direct L2 
lexical-to-concept connections are in place), L2 words 
should elicit a larger initial target concept activation than L1 
words. This can be accomplished via L2-to-L1 word 
connections that are stronger than those from L1-to-L2 
words. 

 
Based on the RHM framework, we developed a PDP 

model with bidirectional excitatory lexical-to-concept 
connections, top-down inhibitory concept-to-lexical 
connections and inhibitory concept-to-concept connections 
(see Figure 2). As in the (Laszlo & Plaut, 2012) model, we 



use IAC units (with standard parameter values for min=-.2, 
max=1, and rest=-.1 activation levels as well as decay 
rate=.1). For simplicity, we limit input words to 5 letters, 
thus requiring 5 clusters of 26 input letters per word (for the 
English alphabet). All letters in each cluster i have 
excitatory connections to words that contain them in the i-th 
slot and inhibitory connections to all words with a different 
letter in the i-th position.  

 

 
 

Figure 2: Model architecture. The thickness of links 
indicates the strength of connections. 

 
L1 versus L2. To account for larger L1 vs. L2 word 
neighborhoods, we include more L1 words with a larger 
neighborhood size in the model compared to L2 words. 

 
Pseudowords versus words. Pseudowords have no 
representation at the lexical or semantic layer. 

 
Repetition. We model repetition effects by performing the 
following sequence r times: input word i is presented for n 
cycles (where n should be large enough to allow the N400 
signal, to be defined below, to reach its peak). Then the 
input is removed and the network is updated for d cycles to 
let all node activations decay, after which point the whole 
process is repeated, but without resetting any activation 
values. We thus have three critical modeling parameters that 
need to be set appropriately: r, n, and d. 
 
Filtering word length artifacts. Assuming that each 
constituent letter contributes equally to a word's activation 
level, all connection weights from each letter in a word have 
the same strength. However, because words have different 
lengths, the overall incoming activation would be different 
if we were to use the same connection weights for all letter-
to-word connections as longer words would get a higher 
activation than shorter words, everything else being equal.  
To avoid this effect, we scale the letter-to- word connection 
weight c by the length |W| of the word W: wL, W = c/|W|. 
We also needed to make sure that the input letters 

corresponding to a given target lexical item will only 
activate the orthographic neighbors and not the other words 
that differ from the target word in more than one letter. In 
order to do so, we made the strength of inhibitory and 
excitatory letter-to-word connections the same, so that if a 
word is different from the target word in more than one 
letter (for four-letter words), it receives zero or less than 
zero netinput from the letter nodes. In addition, none of the 
five-letter/three-letter words were similar to a four-letter 
word in 3 or more slots.  

Definition of PDP N400 Measure 
Based on the semantic interpretation of the N400 signal 
(Laszlo & Fedemeier, 2011), we define the network-
equivalent of the N400 as the magnitude of overall 
activation change (differential) in positively activated 
(potential) concept nodes (potential).  Specifically, we 
calculate the sum of all positive concept activations at each 
cycle and compute the change between two consecutive 
cycles as the N400 (the discrete equivalent to the derivative 
of the potential given by the summed concept node 
activations).  

Experimental Bilingual ERP Data  
We collected ERP measures from 14 native English 
speakers who were enrolled in a first semester “Introductory 
Spanish” class at Tufts University (9 females, mean age 
18.4). Participants viewed Spanish words (e.g., HOLA, 
GATO) and Spanish pseudowords (e.g., SERO, AGOL) one 
at a time as part of a lexical decision task. The Spanish 
words were a set of non-cognates taken from the textbook 
used in class. Factors of length, English bi-gram frequency, 
and English neighborhood size were balanced between the 
words and pseudowords used in the study. Averaged ERPs 
were computed for all word and pseudoword stimuli for 
each participant at 29 scalp sites. Single item ERPs were 
formed by averaging to time-locked stimuli across 
participants. The mean amplitude averaged across a subset 
of centroparietal electrodes (including: Cz, Pz, C3, CP5, 
CP1, P3, C4, CP6, CP2, P4) between 300-500 ms was used 
to quantify the N400 effect. The mean amplitude between 
300-500 ms was used to quantify the N400 effect. 
Additionally, N400 measures for single items were 
calculated using the mean amplitude between item-specific 
temporal windows, ranging from 250ms to 500ms. 

Modeling Results  
We selected a subset of 14 four-letter L2 words from all L2 
words used in the ERP experiment and included all their L1 
translations as well as their L1 neighbors to be able to 
account for the cross-language orthographic neighborhood 
size effects. Since some of the L1 words were 5 letters in 
length, we included 5 clusters of letters in the model.  

 



 

 
 

Figure 3: Sum of semantic activation (top row) and the 
N400 amplitude (bottom row), over 75 update cycles in 

response to three words: “son” (L1 word in black), “azul” 
(L2 word in blue), and “sero” (L2 pseudoword in red). 

 
Figure 3 shows the shape of the N400 signal generated by 

the model along with the time-course of the summed 
concept nodes’ activations during the whole word exposure. 
Note that the change in total concept activation is 
proportional to the maximum value of the N400 generated. 

The right column in Figure 3 reveals three distinct phases 
in the dynamic of the overall semantic activation in our 
network: (a) charge (positive overall change), (b) discharge 
(negative overall change), and (c) stabilization. 
Furthermore, since inhibitory connections only originate 
from concept nodes, any significant flow of inhibition can 
only come after an initial flow of activation, i.e., until 
concept nodes have reached sufficiently strong activations. 

 
Charge. The activation of the target concept and concepts 
associated with orthographic neighbors or its associated 
word-level node initially start to increase, followed by the 
feedback from excitatory and inhibitory connections to 
word-level nodes causing the activation of the target word to 

gradually increase and the activations of its orthographic 
neighbors to decrease. 

 
Discharge. The overall semantic activation decreases as a 
result of inhibition exerted by significantly activated 
concept nodes. 
 
Stabilization. Eventually, the overall activation levels of 
the network stabilize.  

 
We searched for values for the various connections that 
would allow the model to capture the N400 effects: concept-
to-L1=(.6,-2), concept-to-L2=(.8,-.2), concept-to-
concept=(0,-.6), L1-to-concept=1, L2-to-concept=.8, L1-to-
L2=.1, L2-to-L1=1, letter-to-(3letterWord)=(.8,-.8), letter-
to-(4letterWord)=(.6,-.6), letter-to-(5letterWord)=(.48,-.48) 
(the first element of each tuple is the excitatory weight value 
between related items, and the second element is the 
inhibitory weight value between the unrelated items).  

For all simulations, we took the maximum peak value as 
the measure for comparing N400 signals to the empirical 
data. Furthermore, since several factors can influence the 
N400 value, we investigated only one factor at a time while 
keeping the others fixed.  

 
 

Figure 4: N400 data for repetitions of “son” using first: 
r=3, n=30, d=30, second: r=1, n=30, d=70, and then n=30 

(see text for details). 
 

Figure 4 shows that the model replicates the repetition 
effect (A2), i.e., maximum N400 values (peaks) after the 
first exposure are all smaller than the first peak. 

Figure 5 shows that the model is able to replicate the 
neighborhood size effect regardless of lexical type: L1, L2, 
and pseudowords. 

Figure 6 shows the replication of (A4) – in all cases – and 
the replication of (A1) – in all cases except for (a) and (b). 
Furthermore, Figure 4 suggests that the replication of (A1) 
and (A4) is dependent on neighborhood size: as the 
neighborhood size increases, the network replicates (A1) 
more strongly, while showing weaker replication of (A4). 
The network best replicates (A4) for L2 words of nSize=0. 



 

 

 
 

Figure 5: Neighborhood size effects within three 
categories: in order L1, L2, Pseudowords, shown by mean 
N400s of words with n orthographic neighbors: 0=black, 

1=blue, 2=green, 3=cyan, 4=red, 
5=yellow, 6=magenta, & 10=black stars. 

 

 

 
 

Figure 6: Mean N400 signals for words sharing the same 
neighborhood size (nSize): a) nSize=0, b) nSize=1, c) 
nSize=2, d) nSize=3, e) nSize=5, f) nSize=6, in three 

categories: L1 words in black, L2 words in blue, and L2 
pseudowords in red. Note that there was no L2 word of 
nSize=1 , no pseudoword of nSize=2, and no L1 word of 

nSize=3. 



Note that the correlation value (corr=.2135) between the 
maximum N400 values (for L2 words) generated by the 
model and those collected in the experiments shows that the 
model does not yet quantitatively fit the empirically 
obtained ERP values, despite qualitatively replicating ERP 
effects. 

Discussion  
The model succeeded in capturing qualitatively all four ERP 
effects.  Furthermore, the results confirm that the (A1) and 
(A4) effects are dependent on neighborhood size as 
suggested in (Midgley et al, 2008 and Holcomb & Neville, 
1990).  However, the model allows for a different 
explanation from that of Midgley et al. who hypothesized 
that the overall lower N400 for L2 words compared to L1 
words might be caused by the smaller neighborhood size of 
L2 words compared to L1 words, everything else being 
equal.  Specifically, the model shows that this difference can 
also be obtained with identical neighborhood sizes based on 
the generally higher initial activation induced at the target 
concept in response to an L2 input word (compared to that 
of an L1 input word).  This higher initial activation tends to 
suppress the other concept nodes, thus leading to an overall 
lower ERP and thus lower N400.   Hence, it is likely that 
both neighborhood size and difference of initial target 
concept activation via L1 or L2 words contribute to the 
smaller N400 for L2 words (compared to L1 words). 

Note that all simulation results where obtained by 
considering N400 peak values only, but other measures are 
certainly possible (e.g., the integral of the N400 signal over 
the 300-500msec time frame or the average value over the 
same period). This is left for future work. 

Conclusion  
We have developed a PDP model based on Kroll & 
Stewart’s Revised Hierarchical Model (RHM) of bilingual 
word processing and tested it against well-established N400 
effects. The model succeeded in qualitatively replicating 
language, neighborhood size, pseudoword, and repetition 
effects. However, the model did not quite replicate the N400 
results from our empirical experiments, as shown by a fairly 
low correlation between the ERPs of the model and 
empirical data. Future work will focus on exploring the 
model's parameter space to determine if better model fits are 
possible with the given model architecture. In addition, we 
will investigate simpler model architectures and the extent 
to which they may succeed in replicating some of the N400 
effects. We will also investigate alternative definitions of 
N400 (e.g., including the lexical level activations) as well as 
exploring the use of average N400 amplitudes rather than 
peak values. 
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