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Abstract. Real-word intelligent agents must be able to detect sudden
and unexpected changes to their task environment and effectively re-
spond to those changes in order to function properly in the long term.
We thus isolate a set of perturbations that agents ought to address and
demonstrate how task-agnostic perturbation detection and mitigation
mechanisms can be integrated into a cognitive robotic architecture. We
present results from experimental evaluations of perturbation mitigation
strategies in a multi-robot system that show how intelligent systems can
achieve higher levels of autonomy by explicitly handling perturbations.
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1 Introduction

Resilience allows intelligent agents to accomplish their goals despite unexpected
degradation of their task environment, including their own operational platform.
When perturbations are possible or expected in a particular task setting, agents
are typically already designed with mechanisms to cope with them (e.g., the
wheels on the Mars Rovers were designed to work even when they had holes in
them as it was expected that holes would eventually emerge as a result of driving
over pointy rocks). While there is a large amount of literature on fault detection
and recovery through software in cases where the system has a model of its
operation, there are few proposals for task-general mechanisms for detecting,
classifying, and mitigating perturbations.

In this paper, we discuss six dimensions of perturbations and demonstrate
with a particular implementation of detection and mitigation mechanisms for
a class of perturbations (those of actuation failures) how changing roles within
its team allows an agent to adapt to a perturbation that cannot otherwise be
mitigated. Using experimental evaluations in a simulated space-station environ-
ment of the implemented mechanisms in a multi-robot repair team, we should
how detecting perturbations to a single agent’s effectors and mitigating them
by adapting the team member roles can enable significantly higher performance
than failing to address the perturbation.
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2 Motivation

Perturbations happen in the real world as real task environments are not al-
ways well-behaved. A robot tasked with searching a building might be plunged
into darkness when the building’s power fails, for example, making it impossible
to continue searching with its regular camera. The same robot’s camera might
fail half-way through the task, resulting in task failure. Perturbations are not
limited to the environment or the robot’s body, they can also occur inside the
robot’s computational system (e.g., an object detection algorithm could run out
of memory, or have a bug that causes a crash). Some perturbations are permanent
(e.g., the broken camera), while others are transient (e.g., short power outage).
Some perturbations might be harmless (a door closed that was supposed to be
open, that can be opened) and have no impact on the robot’s task performance,
or might be prohibitive (the door locked). Some could be anticipated by the
robot (a storm outside might make power outages likely), while others remain
unpredictable (the camera failing all of a sudden). Some perturbations can be
detected by the robot (i.e., sensed or inferred such as noticing a camera must
be broken because the image is frozen despite the robot’s motion), while others
remain undetectable (e.g., radiation that eventually destroys the computational
platform). Some perturbations are avoidable (e.g., running out of battery power
by charging the battery in time), while others cannot be avoided (e.g., eventu-
ally running out of memory due to increasing log files). And some perturbations
can be mitigated by the robot (e.g., unlocking the locked door), while others
cannot (e.g., no more memory can be added). We thus get the following six
dimensions characterizing perturbations: (1) transient/permanent, (2) impact-
less/impactful, (3) predictable/unpredictable, (4) detectable/undetectable, (5)
avoidable/unavoidable, and (6) mitigable/unmitigable.

Overall, which type of perturbation a robot encounters as part of its task
performance will depend on the environment, the task, the robot’s body and
computational capabilities (e.g., for detecting perturbations). We would like the
robot to be resilient to as many perturbations as possible, which requires it
to watch out for and ideally predict perturbations in an effort to avoid them.
If they are not predictable, the robot should at least detect and attempt to
mitigate them, leading to the following task-independent resilience policy:

1. predict a perturbation or detect its presence
2. classify the perturbation to determine the best response
3. enact the mitigation strategy (if available)

Different refinements of this policy are possible based on the exact nature of
the perturbation. For example, for a transient perturbation (e.g., light out for
a short time) the best policy might be to ignore the perturbation, whereas for
a permanent perturbation (e.g., camera sensor broken) the mitigation strategy
might involve finding alternative ways to perform the task (e.g., tactile investi-
gation of objects).

In the context of a multi-robot system, a perturbation must be handled with
an escalating response based on the impact is has on the whole system, not just
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the individual agent. In simple cases, an agent might be able to cope with the
effects of the perturbation in a way that at most has a negligible impact on
task performance. However, in more complex cases, a perturbation affecting a
single agent might have major ramifications for the team and its organization,
preventing the agent from fulfilling a critical role in the team. In such a case,
the mitigation strategy cannot stop at the single agent, but must involve other
agents as well, e.g., redistributing the amount and type of work each agent does.

3 Related Work

Much work on introspection and behavior modeling has focused on fault detec-
tion, diagnosis and recovery [23, 13, 19] and system reconfiguration to accomplish
a high-level goal [7, 5]. Prerequisite to fault recovery is the ability to isolate a
fault and determine its severity [3]. Fault detection and diagnosis methods are
either analytic or data-driven (although this division becomes blurred by tech-
niques that automate the process of traditionally analytic methods [6]). Analytic
methods have a long successful history in the various engineering disciplines (e.g.,
the Livingstone system developed by NASA for use on Deep Space One [24]),
but they are limited to tasks in constrained environments with a small number
of well-understood states. Data-driven approaches employ various classification
algorithms (e.g., neural networks, Bayesian networks) to learn fault models from
past performance data, but this presumes the data is available (e.g., applications
in aerospace can build on decades of telemetry data [14]). Golombek et al. [10,
11] attempt to find structure in temporal patterns of communications among
architectural components and learn a model of normal and faulty operation by
clustering those patterns. This approach is similar to our own [2] except that
they can also utilize knowledge-based, top-down constraints for recovery policies.

For fault recovery (the “self-adjustment” phase in [1]), it is necessary to de-
velop policies for how to react to faults once they have been detected. The policy
can either be pre-defined or it can be learned. For example, in the Livingstone
system, a recovery mechanism based on conflict resolution in a feedback con-
troller was developed, where the control command was based on the analytic
model [24]. While (possibly optimal) policies can be pre-defined or learned from
existing labeled data for known faults, recovery policies for unknown faults will
have to be learned dynamically, especially for systems where fault models can
change during their operation.

The system employed here is able to detect anomalies faster and with less
required initialization by describing an agent’s actions in terms of logical prim-
itive pre- and post-conditions. When an action systematically fails to produce
its expected post-conditions it is considered to be under the effect of a pertur-
bation. In addition, these fault detection systems typically focus on single-agent
systems and so ignore the possible mitigation techniques that may be available
to multi-agent systems. As a consequence, role-switching, which our experiment
focuses on, has not been studied in the context of fault detection and recovery.
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Multi-agent systems that are robust to perturbations have been proposed
in the past. The ALLIANCE architecture designed for multi-agent fault toler-
ance, for example, used internal motivations and assessments to determine when
an agent was underperforming at a task (potentially due to a perturbation)
and should switch tasks [20, 12]. Other approaches, like Christensen et al. [4],
implement an exogenous approach to fault detection, whereby member of the
multi-agent group that are not perturbed can recognize reduced capabilities in
their collaborators. These approaches find success in replacing a poorly perform-
ing agent, but do not investigate whether that agent may still contribute to the
overall performance of the system by reassigning its role.

As we will show, role re-allocation can offer additional boosts in system
performance when the agent’s role explicitly depends on its dynamic capability.
By first detecting that an agent’s capability has changed and then assigning
the compromised agent to a role where it can still contribute to the system’s
performance allows the multi-agent system to achieve higher performance.

4 Resilience Mechanisms and Experimental Evaluation

We are interested in evaluating architectural mechanisms for increasing an
agent’s resilience that are task-general and can be integrated into different agent
architectures, based on the three aspects – perturbation detection, classifica-
tion, and mitigation, which form a task- and hardware-independent resilience
framework that cannot be found in other robotic architectures. Briefly, using
introspection, an agent should monitor its task performance and compare it to
expected outcomes, which allows it to recognize that action or task is system-
atically failing (e.g., based prior expectations of action outcomes, inferred post
conditions, or other unexpected changes in the system). Specifically, through
repeated monitoring and comparison of outcomes and other system states, the
agent will then be able detect whether unexpected outcomes or events are simply
sporadic or random, or are systematic and due to some kind of perturbation that
can potentially be addressed by the agent. The overall sequence of agent actions
then is: (1) model body, architectural and environmental states, as well as task
performance, (2) determine whether unexpected outcomes, states or behavior,
internal or external to the agent are likely noise or systematic, and in the latter
case, (3) attempt to classify the kind of perturbation in terms of whether it has
an impact on task performance, and if so, whether it can be mitigated. In the
former case, the agent might be able to ignore it, in the latter, based on the type
of perturbation, it needs to attempt to mitigate it using a number of strategies.
The agents might redirect cognitive resources, change its bodily configuration,
otherwise adapt to the new environment or elicit help from other agents in the
context of the team.

We leverage the existing multi-agent simulation infrastructure in [8] together
with a multi-agent cognitive robotic architecture (described below) to implement
and evaluate a first set of perturbation detection, classification, and mitigation
mechanisms and to demonstrate the utility of automatic role switching as a
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possible mitigation policy in multi-robot team settings (as opposed to solely
individual-based mitigation mechanisms that in some cases will fail because in-
dividual mitigation of the perturbation is not possible).

4.1 Resilience Mechanisms in the DIARC Architecture

We used the Distributed Integrated Affect Reflection Cognition (DIARC) archi-
tecture [22] as the basis for all algorithm developments and integration. DIARC
is a component-based architecture scheme that can be instantiated for different
tasks and settings with different components present in the system. It is im-
plemented in the the “Agent Development Environment” ADE [16, 21], which,
different from other robotic infrastructures such as the Robot Operating System
(ROS) [?], was from the very beginning designed to be as secure and fault-tolerant
as possible.1 Hence, ADE provides the extensive architectural multi-level intro-
spection and notification mechanisms (e.g., see [18, 17]) that can be utilized to
detect and classify perturbation. System models for DIARC can either be learned
offline from logged information about system states (e.g., [2]) or online as part of
anomaly detection (e.g., [9]). DIARC’s fault detection and recovery mechanisms
have also been empirically evaluated in HRI studies (e.g., [15]). In the context of
multi-robot teams, DIARC can be configured to run with shared architectural
components that allow multiple agents to easily share information and imple-
ment distributed multi-agent architectures such as the blackboard architecture
or shared mental models (e.g., [8]). We utilize this component-sharing capability
to allow robots to write status and role updates to the share workspace called
“Belief component” in DIARC (as it stores the agents’ beliefs about themselves
and the world) which allows any team member to determine what role another
team member assumes and thus react to any role changes that might be necessi-
tated by perturbations. If agents keep track of all possible roles they can assume
in a team, then the Belief component could run a role assignment algorithm
every time a change to the set of possible roles for a team member occurs to
optimize role assignment and team performance.

In order to evaluate the effects of role-switching in response to perturbations
we developed a task using the components described in this section.

We examined the beneficial effects of perturbation detection and tested the
effectiveness of a multi-agent role switching mitigation strategy by performing a
repair task in a simulated environment with two Willow Garage PR2 robots. The
robots are simulated in ROS’s Gazebo simulator, their behavior and knowledge
states are governed by the DIARC architecture, and all visuals and environmen-
tal logic are controlled through Unity3D.

4.2 The Space Station Environment

We utilize an existing space station simulation environment [8] (see Fig. 1) which
was designed and implemented in Unity3D. The environment consisted of three

1 A detailed conceptual and empirical comparison of robotic infrastructures up to 2006
can be found in [16].
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wings extending away from a central hub. In each wing there are two rows of
12 fuel tubes. The wings are identical but for their name designations of Alpha,
Beta or Gamma. The two robots were responsible for the maintenance of fuel-
tubes in an orbiting space station. Fuel-tube failures occurs regularly due to
unpredictable and undetectable circumstances and all non-failing tubes have an
equal chance to fail at each interval. A failed fuel-tube’s condition will decay
until it breaks. Once a fuel-tube has broken it cannot be repaired or fixed in any
way. If enough fuel tubes break (15 for these experiments) the space station can
no longer operate and must perform an emergency landing.

Fig. 1. Space station layout. One central hub with three marked wings.

4.3 The Robots

The simulated robots are responsible for maintaining the space station. All of
the robots’ planning and motion dynamics are simulated in the ROS Gazebo
simulator to incorporate as realistic timing and dynamics effects on the task as
possible. Robots can repair failed fuel-tubes and can perform scans that deter-
mine the condition for every fuel-tube within the wing they currently occupy.

Robots may assume one of two roles: Repair agent or Sensor agent. Repair
agents move around the environment sensing and fixing failing fuel-tubes. Sensor
agents cannot repair tubes, but can continue to scan wings of the space station
and report their findings to the multi-agent system. The algorithms that govern
these roles are described in Section 4.5.
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4.4 The Search-and-Repair Task

Within this environment, two agents perform a search-and-repair task in order
to keep the space installation running. Each agent initially assumes both roles
of Repair and Sensor which leads to the highest task performance. We then
introduce a perturbation in the form of a broken repair tool in one robot, but
give the robot no way to directly sense that this perturbation has occurred.
While the robot cannot determine exactly what happened, after a few failed
repair attempts the goal monitoring system within DIARC architecture can infer
that the error is systematic and determine that the robot can no longer repair
fuel tubes. Within the DIARC action execution subsystem this means that the
repair(tube) action no longer produces the expected post-condition of a tube in
perfect (repaired) condition.

Without the ability to repair tubes, the agent’s ability set has changed and
it can no longer fulfill the role of Repair agent. It checks whether there is a role
its ability set can still satisfy and switches to that role, in this case becoming a
sole Sensor agent. The Sensor agent communicates this role change to DIARC’s
knowledge base and the functioning Repair agent may now use the Sensor agent’s
information to make better decisions for which tubes to repair (where “better
decisions” in this context are heuristically implemented to keep the space station
operational for longer).

4.5 Experimental Design and Procedure

Right rrom the beginning both robots patrol the space station and under normal
operating conditions (i.e., both robots hold both Repair and Sensor roles) follow
a basic algorithm:

1. Move to an unoccupied wing
2. Scan the wing for damaged tubes
3. Repair all damaged tubes in the currently occupied wing
4. Update the Knowledge Base

The task ends once fifteen fuel tubes have been destroyed or eighteen fuel
tubes have been repaired. A maximum of eighteen is to give a hard stopping
point for the case with two fully functional agents, which under ideal conditions
can keep the space station operational indefinitely.

Conditions Our base condition includes two fully functioning agents who re-
main in perfect condition over the course of the trial. They work independently
with minimal communication2 They follow the simple algorithm described above
without modification, and are expected to maintain the space station the longest.

Our two experimental conditions include one fully functioning agent and one
agent with a broken welding implement, rendering the agent unable to repair

2 Agents avoid occupying the same area of the space station.
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tubes. The broken implement is a permanent, unpredictable, unavoidable, but
detectable perturbation that impacts the performance of the multi-agent team.
Our first experimental condition, silent-failure, uses an agent that is unable to
detect this perturbation and continues following the simple algorithm above.

Algorithm 1: Introspective Repair Agent Role

Move to unoccupied wing;
Get list of damaged tubes within wing;
otherAgentIsDamaged = Check Knowledge Base for state of other agent;
if otherAgentIsDamaged and heuristic() then

Move to damaged Sensor agent wing;
while damagedTubesInWing() do

Go to nearest damaged tube in wing;
Repair nearest damaged tube;
if fixed(tube) then

Update Knowledge Base about tube status;
else if amDamaged() then

Change role to Sensor agent role;
Update Knowledge Base about own status;
break;

end

Our second experimental condition, role-switching, uses an agent that can
detect the existence of perturbation through its own reduced performance. Once
this detection occurs the multi-agent team can adopt a new operating regime
wherein the damaged agent drops its repair role and maintains only its role
as a mobile sensor. The functioning robot, when deciding which wing of the
station it should care about, can use the non-functioning robot to increase its
understanding of the context and make a better decision about which action to
take next. The role-switching team follows a new algorithm.

Algorithm 2: Introspective Sensor Agent Role

Move to unoccupied wing;
roles = Check Knowledge Base for own roles;
Scan wing for damaged tubes;
Update Knowledge Base about state of wing;
if !role.contains(Repair) then

while absent(Repair Robot) do
wait;
Scan wing for damaged tubes;
Update Knowledge Base about state of wing;

end
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The base condition and role-switching conditions can be described by role
algorithms 1 and 2.

The agents in the base case successfully perform the Repair and Sensor roles
for the duration of the task. They can scan the wing they’re in and repair every
damaged tube in that wing before moving on. They never enter the perturbation
mitigating blocks of code because in the Repair case (1) their partner is not
damaged and (2) they are not damaged, and in the Sensor case they can always
hold the Repair role.

Algorithm 3: Basic Repair Agent Role

Move to unoccupied wing;
Get list of damaged tubes within wing;
while damagedTubesInWing() do

Go to nearest damaged tube in wing;
Repair nearest damaged tube;
Update Knowledge Base about tube status;

end

The agents in silent-failure behave exactly like the base-condition agents,
but to worse effect. In their case, the damaged agent has no mechanism to check
whether its performance is impacted by a perturbation. Their less introspective
roles can be described by algorithms 3 and 4.

Algorithm 4: Basic Sensor Agent Role

Move to unoccupied wing;
Scan wing for damaged tubes;
Update Knowledge Base about state of wing;

These basic roles perform well in the absence of perturbations, but have no
ability to handle problems. We expect the multi-agent team that can role-switch
to perform worse than the fully functioning team, because only one robot can
repair tubes, but better than the silent-failure team, because it will cause the
agent with the perturbation to attempt to repair the same tube over and over
again.

4.6 Results

We ran the two robots with their respective role algorithms for n = 17 trials
in Search-and-Repair Task. As expected, the robots in the baseline condition
with no perturbation are able to keep the space station operational indefinitely
as indicated by their exact average of 18 with zero standard deviation (recall,
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the simulation was terminated when 18 tubes were repaired). Robots in the two
perturbation conditions never made it to 18 repaired tubes (rather, 12 repaired
tubes was the maximum in the role-switching condition). A two-sided Welch
t-test (adjusting of unequal variances) shows a significant difference (t(31.32) =
3.245, p = .0027) between the silent-failure condition (µ = 7.58 repaired tubes
on average, SD = 1.46) and the resilience condition (µ = 9.35 repaired tubes
on average, SD = 1.69), as hypothesized, demonstrating that the team with
perturbation detection and mitigation is able to last longer. The results thus
demonstrate the utility of the introspective failure detection mechanisms that
causes the agent encountering repeated action failures to give up on roles that
require it to perform the failed action successfully.

5 Discussion

The multi-agent team that is able to detect the presence of a perturbation and
switch roles in response outperforms the multi-agent team that can not. Role-
switching sees numeric improvement over silent-failure. In certain cases the two
conditions have comparable performances because the nature of this task makes
the gains from a Sensor agent highly dependent on the order that the fuel-tubes
break. The Sensor agent is most useful when the information it provides leads
the Repair agent to a wing of the space station that it would otherwise not give
immediate attention to. If this situation doesn’t arise, and the Repair agent is
already going to the wing most in need, then the damaged multi-agent team
performs equally well with and without the role-switching mitigation strategy.
However, we see from the data that this situation does arise often enough to
justify the additional computational load required for the mitigation strategy.

Note that while both conditions perform significantly worse that the base-
line condition where no perturbation occurs – as mentioned above we set the
frequency of tubes breaking in such a way that two fully functional robots could
about keep up with the repairs – there are cases where the resilient robots will be
able to maintain an operational station while the silent failure condition will not
(as a single robot will not be able to keep up with the repairs). And while this
proof-of-concept evaluation is only a first indication of the utility of resilience
mechanisms that adapt the agent policies in teams (to compensate for unavoid-
able, unrecoverable perturbations), there are many more architectural reasoning
mechanisms and mitigation policies to be explored that will significantly improve
the resilience of multi- agent teams.

6 Conclusion

In this paper we showed the downstream benefits of a system that can perform
task-agnostic detection of perturbations and task-specific mitigation strategies
to address the loss of performance associated with a given perturbation. We use
a cognitive architecture, DIARC, to determine when an agent is experiencing
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a systematic perturbation by detecting when an action is systematically fail-
ing to produce its expected post-conditions. Detecting the perturbation is itself
extremely significant because it enables the system to respond.

We experimentally demonstrate how a multi-agent system can respond to
the detected perturbation of one agent. Once an agent is damaged and cannot
fulfill the repair role, the system responds by reassigning the agent to the role in
which it can still contribute. The system performs better when it can perform
task-specific adaptation, which it can only do because of its ability to perform
task-independent perturbations detection. The ability to detect and mitigate
perturbations is a requirement for an intelligent system to achieve higher levels
of autonomy than what is currently possible.
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