
Integrating a Closed World Planner with an Open World Robot: A Case Study
Kartik Talamadupula† and J. Benton† and Paul Schermerhorn§ and

Subbarao Kambhampati† and Matthias Scheutz§

†Department of Computer Science
Arizona State University
Tempe, AZ 85287 USA

{krt,j.benton,rao} @ asu.edu

§Cognitive Science Program
Indiana University

Bloomington, IN 47406 USA
{pscherme,mscheutz} @ indiana.edu

Abstract

In this paper, we present an integrated planning and robotic
architecture that actively directs an agent engaged in an urban
search and rescue (USAR) scenario. We describe three salient
features that comprise the planning component of this system,
namely (1) the ability to plan in a world open with respect
to objects, (2) execution monitoring and replanning abilities,
and (3) handling soft goals, and detail the interaction of these
parts in representing and solving the USAR scenario at hand.
We show that though insufficient in an individual capacity,
the integration of this trio of features is sufficient to solve the
scenario that we present. We test our system with an example
problem that involves soft and hard goals, as well as goal
deadlines and action costs, and show via an included video
that the planner is capable of incorporating sensing actions
and execution monitoring in order to produce goal-fulfilling
plans that maximize the net benefit accrued.

Introduction
Consider the following problem: a human-robot team is ac-
tively engaged in an urban search and rescue (USAR) sce-
nario inside a building of interest. The robot is placed inside
this building, at the beginning of a long corridor; a sample
layout is presented in Figure 1. The human team member
has intimate knowledge of the building’s layout, but is re-
moved from the scene and can only interact with the robot
via on-board wireless audio communication. The corridor in
which the robot is located has doors leading off from either
side into rooms, a fact known to the robot. However, un-
known to the robot (and the human team member) is the pos-
sibility that these rooms may contain injured humans (vic-
tims). The robot is initially given a hard goal of reaching the
end of the corridor by a given deadline based on wall-clock
time. As the robot executes a plan to achieve that goal, the
team is given the (additional) information regarding victims
being in rooms. Also specified with this information is a
new soft goal, to report the location of victims.

It is natural to encode this soft goal as a quantified goal,
since it is expected that the planner will report the location
of as many victims as it can find given its time and cost con-
straints. The planner must reason about the net benefit of
attempting to find a victim, since it is a soft goal and can
be ignored if it is not worth the pursuit; it must then direct
the robot to sense for the information that it needs in order

to determine the presence of a victim in a particular loca-
tion. This can be modeled as a partial satisfaction planning
(PSP) problem, and solved using planners that can handle
PSP problems.

Unfortunately, the dynamic nature of the domain coupled
with the partial observability of the world precludes com-
plete a priori specification of the domain, and forces the
robot and its planner to handle incomplete and evolving do-
main models (Kambhampati 2007). This fact, coupled with
the fallibility of human experts in completely specifying in-
formation relevant to the given problem and goals up-front,
makes it quite likely that information crucial to achieving
some soft goals may be specified at some later stage during
the planning process. In our USAR scenario, for example,
the knowledge that victims are in rooms may be relayed to
the planner while it is engaged in planning for the executing
robot. In order to handle the specification of such statements
in the midst of an active planning process, and enable the use
of knowledge thus specified, we need to relax two other cru-
cial assumptions that most modern planners rely on. The
first is the closed world assumption with respect to the con-
stants (objects) in the problem—the planner can no longer
assume that the only objects in the scenario are those that
are mentioned in the initial state. The other modification re-
quires that we interleave planning with execution monitoring
and, if required, replanning in order to account for the new
information.

In this paper, we explore the issues involved in engineer-
ing an automated planner to guide a robot towards maximiz-
ing net benefit accompanied with goal achievement in such
scenarios. The planning problem that we face involves par-
tial satisfaction (in that the robot has to weigh the rewards of
the soft goals against the cost of achieving them); it also re-
quires replanning ability (in that the robot has to modify its
current plan based on new goals that are added). An addi-
tional (perhaps more severe) complication is that the planner
needs to handle goals involving objects whose existence is
not known in the initial state (e.g., the location of the hu-
mans to be rescued in our scenario). To handle these is-
sues, we introduce a new kind of goal known as the Open
World Quantified Goal (OWQG) that provides for the spec-
ification of information and creation of objects required to
take advantage of opportunities that are encountered during
plan execution. Using OWQGs, we can bias the heuristic’s



Figure 1: A map of a sample scenario; boxes are stand-ins for humans, where green indicates injured and blue indicates normal.

view of the search space towards finding plans that achieve
additional reward in an open world.

Architecture
The architecture used to control the robotic agent in the
above scenario (shown in Figure 2) is a subset of the dis-
tributed, integrated, affect, reflection and cognition archi-
tecture (DIARC) (Scheutz et al. 2007). DIARC is de-
signed with human-robot interaction in mind, using multi-
ple sensor modalities (e.g., cameras for visual processing,
microphones for speech recognition and sound localization,
laser range finders for object detection and identification) to
recognize and respond appropriately to user requests. DI-
ARC is implemented in the agent development environment
(ADE) (Scheutz 2006), a framework that allows developers
to create modular components and deploy them on multi-
ple hosts. Each functional component is implemented as a
server. A list of all active ADE servers, along with their
functionalities, is maintained in an ADE registry. The reg-
istry helps in resource location, security policy enforcement
and fault tolerance and error recovery. When an ADE server
requires functionality that is implemented by another com-
ponent, it requests a reference to that component from the
registry, which verifies that it has permission to access the
component and provides the information needed for the two
components to communicate directly.

The ADE goal manager is a goal-based action selection
and management system that allows multiple goals to be
pursued concurrently, so long as no resource conflicts arise.
When the actions being executed for one goal present a haz-
ard to the achievement of another goal, the goal manager
resolves the conflict in favor of the goal with the higher pri-
ority, as determined by the net benefit (reward minus cost)
of achieving the goals and the time urgency of each (based
on the time remaining within which to complete the goals).

The goal manager maintains a “library” of procedural
knowledge in the form of (1) action scripts which specify
the steps required to achieve a goal, and (2) action primitives
which typically interface with other ADE servers that pro-
vide functionality to the architecture (e.g., a motion server

could provide an interface to the robot’s wheel motors, al-
lowing other ADE servers to drive the robot). Scripts are con-
structed of calls to other scripts or action primitives. Aside
from this pre-defined procedural knowledge, however, the
goal manager has no problem-solving functionality built in.
Therefore, if there is no script available that achieves a spec-
ified goal, or actions are missing in a complex script, then
the action interpreter fails. The integration of the planning
system thus provides DIARC with the problem-solving ca-
pabilities of a standard planner in order to synthesize ac-
tion sequences to achieve goals for which no prior proce-
dural knowledge exists. The integration is accomplished by
running the planner in the context of a newly reated ADE
server, as detailed in (Schermerhorn et al. 2009). The plan-
ner server implements an interface that allows the goal man-
ager to submit goals and status updates. Plans are returned
to the goal manager as new ADE action scripts which can
then be executed in the same way as pre-defined scripts.

The planner’s ability to exploit opportunities (see below)
requires, of course, that it be informed of changes in the en-
vironment that signal when an opportunity arises. One ma-
jor issue for any robotic system operating in the real world
is how to determine which small fraction of the features of
the environment are of greatest salience to its goals. Re-
source limitations preclude a “watch out for anything” ap-
proach, necessitating some guidance with regard to how sen-
sory processing resources should be allocated. For example,
in a search and rescue scenario where victims are likely to
be located in rooms, the appearance of a doorway would be
of high relevance to the system’s goals.

In order to support perceptual monitoring for world fea-
tures that are relevant to the planner, the goal manager al-
lows other servers to specify which types of percepts (such
as doorways in the example above) should be monitored and
reported back to the server when detected. Hence, the plan-
ner server can specify which types of percepts are of interest
(i.e., could cause it to update the plan), which effectively fo-
cusses attention on those types by causing the goal manager
to instantiate monitoring processes that communicate with
other ADE servers such as the laser range finder server.



Figure 2: A schematic of the relevant parts of the DIARC architecture used in the experimental evaluation on the robot.

Specific to the planner are percept types that could prompt
opportunistic replanning via the detection of new objects, as
defined in (Schermerhorn et al. 2009). We maintain a list
of these percept types that the planner needs to be moni-
tored, known as an attend list. When the goal manager de-
tects, or is informed of, the presence of one of the percepts
in this attend list, a state update is constructed and sent to
the planning system. These updates may trigger the plan-
ner to replan in order to take advantage of opportunities thus
detected. Similarly, when a plan (i.e., script generated by
the planner) completes execution, the goal manager sends
an update of the exit status of the plan (i.e., the postcondi-
tions achieved, if any). If a percept triggers replanning, the
previously executing plan (and script) is discarded and a new
plan takes its place.

The following example illustrates the interaction be-
tween the goal manager, the planner server, and the plan-
ner. In this case, the robot is traversing a hallway from
hall-start to hall-end when it encounters a door-
way (previously added to the attend list). The goal man-
ager sends to the planner server a state update indicating
that a new doorway (door1) has been detected. The plan-
ner server generates an update to the planner that includes
the new door, but also updates the planner’s representation
of the environment; to begin with the planner knows only
of the two locations hall-start and hall-end and
the path between them (hall-start ↔ hall-end),
as it has a hard goal of going to the end of the hall-
way. When the new doorway is detected, a new room
(room1) is created and a new location outside-room1
is generated and linked into the path (hall-start ↔
outside-room1 ↔ hall-end). Similarly, the path
between the hallway and the newly-detected room is added
(room1 ↔ outside-room1). This allows the planner
to generate paths into and out of the room if it determines
that it is worth investigating the room (see below for details).
This update to the environment is sent to the planner by the
planner server, and if the update causes a plan update, the

resultant script is sent to the goal manager for execution.
The integration of the planner with the architecture also

provides another very important functionality: it allows DI-
ARC to perform opportunistic planning via the perceptual
monitoring process described above. To enable the use of
these opportunities, the planner is modified via the relax-
ation of assumptions relating to (1) the closed nature of the
world with respect to object creation; (2) the specification
of all goals as hard goals, in order to avail opportunities that
enable the achievement of goals previously considered un-
achievable; and (3) the separation of the planning and exe-
cution stages, to allow for execution monitoring and replan-
ning. These relaxations are described in greater detail in the
next section.

Planning in an Open World
The ADE planning server wraps around SapaReplan (Cush-
ing, Benton, and Kambhampati 2008), a forward state-space
planner based on SapaPS (Do and Kambhampati 2004). Sa-
paReplan adds the ability to handle updates to the state
through the use of a monitor process. We additionally in-
troduce a novel goal construct called an open world quanti-
fied goal (OWQG) that combines information about the open
world and partial satisfaction aspects of the problem.

Goals in an Open World
Our approach seeks to open the world by allowing state-
ments, called open world quantified goals, that label sections
of the domain as open with respect to objects. Using these,
the domain expert can furnish details about when new ob-
jects may be encountered through sensing and include goals
that relate directly to the sensed objects. This can be seen
as a complementary approach to handling open world envi-
ronments using local closed world (LCW) information pro-
duced by sensing actions (Etzioni, Golden, and Weld 1997).

An open world quantified goal (OWQG) is defined as a
tuple Q = 〈F,S,P, C,G〉. Here, F and S are typed vari-
ables that are part of the problem Π, where F belongs to



the object type that Q is quantified over, and S belongs to
the object type about which information is to be sensed. P
is a predicate which ensures sensing closure for every pair
〈f, s〉 such that f is of type F and s is of type S, and both
f and s belong to the set of objects in the problem, O ∈ Π;
for this reason, we term P a closure condition. C =

∧
i ci

is a conjunctive first-order formula where each ci is a state-
ment about the openness of the world with respect to the
variable S. For example, c = (in ?hu - human ?z -
zone) with S = ?hu - human means that c will hold for
new objects of the type ‘human’ that are sensed. Finally G
is a quantified goal on S.

Newly discovered objects may enable the achievement of
goals, granting the opportunity to pursue reward. For ex-
ample, detecting a victim in a room will allow the robot to
report the location of the victim (where reporting gives re-
ward). Note that reward in our case is for each reported
injured person. As such, there exists a quantified goal that
must be allowed partial satisfaction. In other words, the uni-
versal base (Weld 1994), or total grounding of the quantified
goal on the real world, may remain unsatisfied while its com-
ponent terms may be satisfied. To handle this, we use par-
tial satisfaction planning (PSP) (van den Briel et al. 2004),
where the objective is to maximize the difference between
the reward given to goals, and the cost of actions. Reward is
given for each term g ∈ G satisfied, u(G). Additionally each
term g is considered soft in that it may be “skipped over”
and remain unachieved.

As an example, we present an illustration from our sce-
nario: the robot is directed to “report the location of all vic-
tims”. This goal can be classified as open world, since it ref-
erences objects that do not exist yet in the planner’s object
database O; and it is quantified, since the robot’s objective
is to report all victims that it can find. In our syntax:

1 (:open
2 (forall ?z - zone
3 (sense ?hu - human
4 (looked_for ?hu ?z)
5 (and (has_property ?hu injured)
6 (in ?hu ?z))
7 (:goal (reported ?hu injured ?z)
8 [100] - soft))))

In the example above, line 2 denotes F , the typed variable
that the goal is quantified over; line 3 contains the typed
variable S about which information is to be sensed. Line 4
is the unground predicate P known as the closure condition
(defined earlier). Lines 5 and 6 together describe the formula
C that will hold for all objects of type S that are sensed.
The quantified goal over S is defined in line 7, and line 8
indicates that it is a soft goal and has an associated reward
of 100 units.

Of the components that make up an open world quantified
goal Q, P is required1 and F and S must be non-empty,
while the others may be empty. If G is empty, i.e., there is

1If P were allowed to be empty, the planner could not gain
closure over the information it is sensing for, which will result in
it directing the robot to re-sense for information that has already
been sensed for.

no new goal to work on, the OWQG Q can be seen simply
as additional knowledge that might help in reasoning about
other goals.

Interleaving Planning and Execution
For most of the sensors on the robot, it is too expensive to
sense at every step, so knowing exactly when to engage in
perceptual monitoring is of critical importance. Low-level
sensing for navigation is handled through action scripts, but
for more expensive, high-level operations we use OWQGs.
Planning through an open world introduces the possibility
of dangerous faults or nonsensical actions. While in some
sense, this can be quantified with a risk measure (see (Gar-
land and Lesh 2002), for example), indicating the risk of a
plan does nothing to address those risks. A more robust ap-
proach in an online scenario involves planning to sense in
a goal-directed manner. When plans are output to the ADE
goal manager, they include all actions up to and including
any action that would result in closure (as specified by the
closure condition).

Problem Updates and Replanning Regardless of the
originating source, the monitor receives updates from the
ADE goal manager and correspondingly modifies the plan-
ner’s representation of the problem. Updates can include
new objects, timed events (i.e., an addition or deletion of a
fact at a particular time, or a change in a numeric value such
as action cost), the addition or modification (on the deadline
or reward) of a goal, and a time point to plan from.

As discussed in (Cushing and Kambhampati 2005), pro-
viding for updates to the planning problem allows us to look
at unexpected events in the open world as new information
rather than faults to be corrected. In our setup, problem
updates cause the monitor process to immediately stop the
planner (if it is running) and update its internal problem rep-
resentation. The planner is then signaled to replan on the
new problem. In the presence of reward and action cost2, the
replanning process also allows the planner to exploit new op-
portunities, potentially finding plans that may achieve better
net benefit than previous ones. For example, if a new door-
way is discovered, that immediately entails a room and the
potential opportunity to achieve more net benefit (by look-
ing for and perhaps finding an injured person). Similarly, if
a new hard goal arrives with a closely approaching deadline,
the planner can generate a new plan that directly achieves it,
ignoring soft goals. When a plan is found, it is announced to
the ADE goal manager, which then performs its analysis to
find conflicts that may occur in the control mechanisms of
the robot.

Implementation
One question that arises when planning in open world sce-
narios is how to direct actions in the presence of unknown
facts. To tackle this problem we use the conjunctive formula
from the OWQG in an optimistic manner, biasing the heuris-
tic’s model of the world into resolving uncertainty. Since

2In our scenario, the action costs are determined by a combina-
tion of the temporal and resource costs incurred by the robot.



the scenario calls for the planner to work toward achieving
higher net benefit, the system makes assumptions about facts
that can lead to rewarding goals. In other words, the plan-
ning system assumes that certain unknown facts are true to
achieve greater reward. This conceptual representation of
the potential search space is then used to generate plans.

The methodology involves grounding the problem into the
closed world using a process similar to Skolemization. More
specifically, we generate runtime objects from the sensed
variable S that explicitly represent the potential existence
of an object to be sensed. These objects are represented
with a suffixed exclamation mark on the object type, fol-
lowed by a number (e.g., human!1). Given an OWQG
Q = 〈F,S,P, C,G〉, one can look at S as a Skolem func-
tion of F , and runtime objects as Skolem entities that substi-
tute for the function. Runtime objects are then added to the
problem and ground into the closure condition P , the con-
junctive formula C, and the open world quantified goal G. In
other words, runtime objects substitute for the existence of S
dependent upon the variable F . The facts generated by fol-
lowing this process over C are included in the set of facts in
the problem through the problem update process. The goals
generated by G are similarly added. This process is repeated
for every new object that F may instantiate.

We treat P as an optimistic closure condition, meaning a
particular state is considered closed once the ground closure
condition is true. On every update the ground closure con-
ditions are checked and if true the facts in the corresponding
ground values from C and G are removed from the problem.

By planning over this representation, we provide a heuris-
tic plan that is executable given the planning system’s cur-
rent representation of the world until new information can be
discovered (via a sensing action returning the closure condi-
tion). The idea is that the system is interleaving planning
and execution in a manner that moves towards rewarding
goals by generating an optimistic view of the true state of
the world. 3

As an example, consider the scenario at hand and its
open world quantified goal. Given two known zones,
zone1 and zone2, the process would generate a runtime
object human!1. Subsequently, the facts (has property
human!1 injured) and (in human!1 zone1) and the
goal (report human!1 injured zone1) (with reward
100) would be generated and added to the problem. A
closure condition (looked for human!1 zone1) would
also be created. Similarly, a runtime object human!2 would
be generated and the facts (has property human!2
injured) and (in human!2 zone2) and goal (report
human!2 injured zone2) added to the problem, and the
closure condition (looked for human!2 zone2) would
be created. When the planning system receives an up-
date including (looked for human!1 zone1), it will up-
date the problem by deleting the facts (has property

3This approach is reminiscent of the probablistic planner FF-
Replan (Yoon, Fern, and Givan 2007), winner of the International
Probablistic Planning Competition in 2004, which solves an opti-
mistic determinization of a given probablistic planning problem at
each state it encounters.

human!1 zone1) and (in human!1 zone1) and the
goal (report human!1 injured zone1) at the ap-
prioriate time point. Similar actions are taken when
(looked for human!2 zone2) is received. The planner
must only output a plan up to (and including) an action that
will make the closure condition true, since the idea behind
the closure condition is that after it becomes true we can ex-
pect closure on certain aspects of the world. Therefore once
the condition becomes true, the truth values of the facts in C
are known.

Evaluation
We evaluted the planner’s integration with the robotic ar-
chitecture in the the USAR task scenario introduced ear-
lier: the robot is required to deliver supplies to a location
at the end of a corridor, but may also encounter doorways
to rooms in which victims might be found. When the robot
encounters a doorway, it must weigh (via the planner) the
action costs and goal deadline (on the hard delivery goal)
in deciding whether to conduct a search through the door-
way. The estimated duration d(traverse hallway) is 50
seconds, while d(search) = 35. The hard goal deadline on
delivery, dl(delivery), is varied for purposes of evaluation,
while the utility and cost u(delivery) and c(delivery) are
fixed at 1000 and 50, respectively.

In the experiments described here, the victims are rep-
resented by green boxes; whenever the robot enters a
room and identifies a green box, it accrues the utility
u(report victim) (fixed at 100 for these evaluations). The
experimental setup used in these evaluations has a green
box (victim) in the first room encountered, a blue box (non-
victim) in the second room, and no box in the third room.
After the third room is passed, the delivery destination ref-
erenced in the hard goal is reached. Initially the planner
is given information only regarding its initial location (the
beginning of the hallway), goal location (the end of the hall-
way) and connectivity between the two locations. When the
robot discovers doorways, it sends an update regarding a
new hallway location (i.e., in front of doorway), a new room
location and updates connectivity accordingly.

The scenario was tested with search costs c(search)
equal to 50 and 100. Table 1 presents the outcomes of the
evaluation runs. An update is sent to the planner whenever
a doorway is discovered, and the planner subsequently re-
plans to determine whether to enter the doorway. Without
handling open world quantified goals, the robot would skip
entering all doorways—there would be no way for the plan-
ner to know that reward may be gained by entering the door-
ways. However, with these new constructs, the planner is
able to reason about entering doors. When there is insuffi-
cient time to achieve the delivery goal (i.e, dl(delivery) =
30), the planner returns no plan, so the robot does not act. As
c(search) = 50 is maintained constant and the hard dead-
line increases, the number of rooms the robot can afford to
explore also increases. After each search, the closure condi-
tion is satisfied (i.e., P , that we have looked for a box), mak-
ing searching for boxes at that location superfluous (given
the assumption of a closed world in the room via the closure
condition).



Green Box Green Box Blue Box Blue Box No Box No Box
Row No. Cost Time limit Room 1 Reported Room 2 Reported Room 3 Reported Status Net Benefit

1 50 30 - - - - - - Failure 0
2 50 60 Pass - Pass - Pass - Success 950
3 50 90 Enter Yes Pass - Pass - Success 1000
4 50 120 Enter Yes Enter No Pass - Success 950
5 50 160 Enter Yes Enter No Enter No Success 900
6 100 30 - - - - - - Failure 0
7 100 160 Pass - Pass - Pass - Success 950

Table 1: Results of trial runs with various search costs and time limits.

Figure 3: A Pioneer P3-AT on which the planner integration
was verified.

The results presented in this paper were generated on a Pi-
oneer P3-AT robot (see Figure 3) as it navigated the scenario
presented previously. The goal of the planner in guiding the
robot was to achieve the hard goal of getting to the end of
the corridor, while trying to accrue the maximum net ben-
efit possible from the additional soft goal of reporting the
location of injured humans. A video of the robot performing
these tasks can be viewed via the following link:
http://hri.cogs.indiana.edu/videos/USAR.avi

Discussion
It has been a regrettable reality in planning ranks that as the
time required to generate a complete plan has decreased,
so too has the ability to encode interesting details about
the world. This has led to a situation where state-of-the-
art planners can only deal with a subset of the features
necessary to encode any domain of interest with a real
world perspective. To be sure, there do exist planners that
can handle the expressivity required to model some or all
of the problems that delineate our USAR scenario from
existing planning benchmarks (Penberthy and Weld 1992;
Golden, Etzioni, and Weld 1994); unfortunately, none of
these planners combine all the features necessary to solve

our problem in the real world. Planning technologies and
systems have been analyzed previously (Smith 2003) in or-
der to move these techniques closer to being able to step up
and perform in the real world (albeit other-worldly) domains
used at NASA.

We took a similar approach towards our problem—we
first considered the assumptions we would need to relax
in order for a state-of-the-art planner to be able to reason
about and solve our problem. In doing so, we found that
these assumptions—about the closed world, the separation
of planning and execution stages, and all goals being hard—
had a direct correspondence to the features that we wished
to model. We also discovered the lack of a planner that com-
bines solutions to these problems in one integrated system.

The first (and in some ways most important) assumption
we had to relax was one that most modern day planners have
come to take for granted—the assumption that the world is
closed with respect to facts, objects and operators. Since our
scenario involved the specification of new knowledge con-
cerning the world at any stage during the robot’s progress,
we had to allow for the possibility that there may be objects
in the world that are not specified to the robot initially. We
retained the closed nature of the world with respect to op-
erator templates, since it is only reasonable that the robot is
made aware of its capabilities initially and does not gain any
additional powers on the way.

In order to deal with objects that the robot may either dis-
cover or attempt to discover to achieve some reward, it is
essential that the planner not close its possibilities with re-
gard to objects in the world. To enable this, we introduced
the open world quantified goals defined in the previous sec-
tion and equipped the planner with a mechanism to parse
and use the information specified within these goals.

The issue of planning with an open versus closed world
representation has been dealt with before, notably in the
work of Etzioni et al. (Etzioni, Golden, and Weld 1997) via
the specification of local closed world (LCW) statements.
However, there exists at least one major difference between
their work and this attempt. We note that the representation
used in that work, of closing a world that is open otherwise
via the LCW statements, is complementary to our represen-
tation. Since our interest in providing support for open world
quantified goals is to relax our planner’s assumption of a
world closed with respect to object creation, we are opening
parts of a completely closed world with the aid of OWQGs.

However, the ability to recognize and represent new ob-
jects that appear during execution in the world means noth-



ing if the planner cannot actively use these objects in order to
output new plans that improve the quality metric (be it time,
cost or net -benefit). To support this requirement, we had to
endow our planning system with the capability to interleave
planning and execution monitoring, so that changes to the
world could be transmitted to the planner in the form of up-
dates and subsequently parsed into the planner’s database,
as outlined in the previous section. This kind of online plan-
ning seems to be a case-restrictive yet simple solution to the
complex problem of dealing with sensing actions. Specifi-
cally, this approach seems to be restricted to problems that
contain simple reward models where it is reasonable to take
a greedy approach.

It may be argued that XII, the planning system used by
Etzioni et al. (Etzioni, Golden, and Weld 1997) handles the
twin problems of an open world and interleaving planning
and execution monitoring described above. However, these
two features alone are not sufficient to model the USAR sce-
nario. As described in earlier sections, we wanted the robot
(and the planner that creates plans for it to execute) to look at
tasks like reporting the presence of victims in rooms as op-
portunities, rather than as hard goals that must be achieved.
That is to say, we wanted the robot to do its utmost to satisfy
the quantification implied in the open world quantified goal,
and to report the location of all victims; however, we did not
want the pursuit of this objective to cloud the primary goal,
which remained getting to the end of the corridor.

To handle this problem, we needed to consider a third
relaxation—one that allowed for some goals to be specified
as soft goals. We used ideas from the field of Partial Satisfac-
tion Planning (PSP) (Smith 2004) and the planner SapaPS
(Benton, Do, and Kambhampati 2009) to include support for
reasoning about soft goals and net benefit, as specified in the
previous section. Enabling the usage of soft goals mitigates
some of the more difficult problems in fully open worlds—
in the USAR scenario, when certain rooms are completely
undiscoverable, it is infeasible to expect complete satisfac-
tion of certain quantified goals.

Limitations and Future Work
A major limitation of our approach as it currently stands is
the lack of support for uncertainty in the world. This un-
certainty may be one of two types: it could be (1) uncer-
tainty about the effects of the robot’s actions in the world,
and (2) uncertainty about whether certain facts hold in the
world. We abstract the first kind of uncertainty away by
coupling the actions available to the planner with only those
scripts that the robotic platform (DIARC) supports, as de-
scribed in the Architecture section. The second kind of un-
certainty, though harder to handle, can actually be benefi-
cial to the synthesis of better quality plans. An immediate
line of work for the future is to enhance our system to deal
with the probability of additional knowledge or facts about
the world holding in a given world state, so that the heuris-
tic may grade the search space to be more conducive to the
generation of plans reaching goals whose achievement will
garner additional net benefit.

As it stands, the problem of new knowledge about the
world is dealt with by sending this information to the plan-

ner in the form of state updates. These state updates are
picked up by the planning system’s execution monitor and
incorporated into the planner’s database as described in the
previous section. However, in a suitably dynamic world, this
could potentially lead to the problem of thrashing, sending
the planning system into a never-ending loop of update pro-
cessing and replanning. One possible way to mitigate this
problem, while at the same time making use of any prob-
abilistic information that is available in order to produce a
heuristic that biases the search space better, is to use antic-
ipatory planning (Hubbe et al. 2008) in order to enable the
planner to anticipate the arrival of new information about
facts that are relevant to the goals at hand. The availability
of distributions that can model the probability of this ad-
ditional information in the world should significantly im-
prove the performance of such an extension. Additionally,
the probabilistic information thus available may be used to
implement a hindsight optimization approach similar to the
one taken by (Yoon et al. 2008), rather than an optimistic
approach (á la FF-Replan).

In the system’s current incarnation, we do not handle
the problem of mapping the world and localizing the robot
within it completely. The planner is able to localize it-
self within the environment to some degree with the aid of
connectivity constraints that are encoded into the domain
and problem specification in the form of boolean fluents;
thus our system uses an implicit map to some degree. The
problem of simultaneous localization and mapping (SLAM)
(Dissanayake et al. 2001) is not a new one, and has been
given extensive coverage in robotics communities. It would
be interesting to integrate such approaches with our plan-
ner to see if it would improve real world performance while
simultaneously decreasing the load on the domain modeler.

A harder limitation to overcome, though, may be the prob-
lem of what information from the robot’s perception stream
the planner should concern itself with. Currently, this prob-
lem is handled at the architecture level by specifying an at-
tend list of percepts that may be of interest to the planner.
However, a strong case can be made for the planner to use
its faculties of reason in deciding which percepts among all
those available to it from the world need to be monitored.
Such reasoning might involve among other things a process
known as backcasting, which involves assuming a certain
(desirable) future and working backwards to identify a plan
that will connect that future to the current state of the world.
Identifying the extensions needed to the planner in order to
implement such reasoning, as well as recognizing the draw-
backs involved, is another promising direction for future re-
search.

Conclusion
In this paper, we presented a novel approach to reconcile a
planner’s closed world representation with the open world
that a robot has to typically execute it. To enable this ap-
proach, we presented the integration of techniques that com-
bined are sufficient to represent and solve the scenario de-
scribed. We showed that we could handle information about
new objects in the world using open world quantified goals,
and that our replanning and execution monitoring system is



able to handle the new information specified by these goals
in order to produce plans that achieve a higher net benefit.
We also detailed that our system could support soft goals,
thus ensuring that opportunities retain their bonus nature,
and do not metamorphise into additional hard goals that may
constrain existing hard goals. All novel algorithms were im-
plemented and evaluated on a robot. Some lessons from our
approach were then presented, along with the limitations of
the approach and future work.

Acknowledgements
We thank William Cushing for helpful discussions and the
generation of SapaReplan. This research is supported in part
by the ONR grants N00014-09-1-0017 and N00014-07-1-
1049.

References
Benton, J.; Do, M.; and Kambhampati, S. 2009. Anytime
heuristic search for partial satisfaction planning. AIJ 178(5-
6).
Cushing, W., and Kambhampati, S. 2005. Replanning: A
new perspective. In Proceedings of ICAPS.
Cushing, W.; Benton, J.; and Kambhampati, S. 2008. Re-
planning as a Deliberative Re-selection of Objectives. Ari-
zona State University, CSE department.
Dissanayake, M.; Newman, P.; Clark, S.; Durrant-Whyte,
H.; and Csorba, M. 2001. A solution to the simultane-
ous localization and map building (SLAM) problem. IEEE
Transactions on Robotics and Automation 17(3):229–241.
Do, M., and Kambhampati, S. 2004. Partial satisfaction
(over-subscription) planning as heuristic search. Proceed-
ings of KBCS-04.
Etzioni, O.; Golden, K.; and Weld, D. S. 1997. Sound and
efficient closed-world reasoning for planning. AIJ 89(1-
2):113–148.
Garland, A., and Lesh, N. 2002. Plan evaluation with
incomplete action descriptions. In Proceedings of the
National Conference on Artificial Intelligence, 461–467.
Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999.
Golden, K.; Etzioni, O.; and Weld, D. 1994. XII: Plan-
ning with universal quantification and incomplete informa-
tion. In Proceedings of the 4th International Conference
on Principles of Knowledge Representation and Reason-
ing, KR, volume 94. Citeseer.
Hubbe, A.; Ruml, W.; Yoon, S.; Benton, J.; and Do, M.
2008. On-line Anticipatory Planning. In Workshop on a
Reality Check for Planning and Scheduling under Uncer-
tainty, ICAPS 2008.
Kambhampati, S. 2007. Model-lite planning for the web
age masses: The challenges of planning with incomplete
and evolving domain theories. Proceedings of AAAI 2007.
Penberthy, J., and Weld, D. 1992. UCPOP: A sound, com-
plete, partial order planner for ADL.

Schermerhorn, P.; Benton, J.; Scheutz, M.; Talamadupula,
K.; and Kambhampati, S. 2009. Finding and exploit-
ing goal opportunities in real-time during plan execution.
In 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems.
Scheutz, M.; Schermerhorn, P.; Kramer, J.; and Anderson,
D. 2007. First steps toward natural human-like HRI. Au-
tonomous Robots 22(4):411–423.
Scheutz, M. 2006. ADE - steps towards a distributed de-
velopment and runtime environment for complex robotic
agent architectures. Applied AI 20(4-5):275–304.
Smith, D. 2003. The Next Challenges for AI Planning.
Lecture given at the Planet International Summer School.
Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling, 393–
401.
van den Briel, M.; Sanchez, R.; Do, M.; and Kambham-
pati, S. 2004. Effective approaches for partial satisfac-
tion (over-subscription) planning. In Proceedings of the
National Conference on Artificial Intelligence, 562–569.
Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999.
Weld, D. 1994. An introduction to least commitment plan-
ning. AI magazine 15(4):27–61.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S.
2008. Probabilistic planning via determinization in hind-
sight. In Proceedings of Conference on Artificial Intelli-
gence (AAAI).
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan:
A baseline for probabilistic planning. In 17th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-07), 352–359.


