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ABSTRACT

We propose unifiying representation and management of dialogue

actions and physical actions. This proposal improves planning and

reasoning about goals and goal failure. We use an introspectable

domain-specific language that allows greater online access to robotic

state via natural language. Finally, we can teach speech acts and

contextual salience of any act to the robot with this new system.
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1 INTRODUCTION

Human communication takes many forms. Language is a primary

vector [5], but gesture is also important [10]. Non-lexical language

is also meaningful. Speech timing can convey information [2], and

disfluencies can inform our shared mental models [7]. Each of these

vectors has its own type of information to convey, but each is still a

type of communication. In this proposal, we merge the representa-

tion, planning and execution of spoken and physical action. Then,

we discuss some advantages of this high-level abstraction.

Framing speech as action has a long tradition. Philosophers of

language have argued that language is action for decades [1, 20].

Roboticists have also made the link by coupling perception and

action [13].

In computer science, dialogue management systems have made

significant progress toward robust computer-human dialogues [4].

However, dialogue systems are limited in their scope, since their

only considerations are verbal.

On the other end of the spectrum, robotic architectures often

disregard dialogue completely, as language is not their focus. Many

robotic dialogue managers are not particularly complex. Some are

simple tree structures that assume atomic execution at the leaves.

Some robotic architectures have more intricate action managers,

allowing for parallel, durative actions with complex subactions.

These capabilities are rarely extended to dialogue management.

Cognitive architectures are caught in the middle. On the one

hand, dialogue is an important part of general cognition. On the

other hand, they don’t have the flexibility of most dialogue sys-

tems, since they make commitments to embodied action as well.

In our own DIARC architecture, the previous dialogue manager

was chiefly a user interface for the performace of other tasks. (See

Section 3 for information on DIARC.) This lesser status creates a

tension between the dialogue system versus planning and reason-

ing systems at large. Distinct representations made information

opaque and reasoning obtuse.

In this proposal, we describe our reasoning and early results

merging dialogue and action management. Both systems are now

handled by a single Goal Manager component (see Figure 4), which

operates on unified behavioral scripts. Thismerger eases the tension

between robotic architecture and dialogue manager detailed above.

In this paper, we provide several motivating examples, showing

aspects of dialogue that we aspire to handle. Next, we outline the

prior capabilities of the DIARC architecture that we leverage in our

behavior manager. In Section 4, we outline several main benefits we

are utilizing in our new dialogue management system, and finally

we show several promising areas for future research.

2 MOTIVATING EXAMPLES

To inform our decisions about dialogue management, we kept in

mind several aspirational examples. While these examples are still

goalposts rather than accomplishments, they serve to highlight

common features of dialogue on which we hope to improve. Exist-

ing systems, such as neural network-based chatbots or slot-filling

dialogue systems fall shorts in these examples [4]. So, these exam-

ples serve as a starting point in avoiding common obstacles, as well

as providing exploratory direction.

To make things concrete, consider the dialogue in Figure 1. Here,

a human asks a robot how it would respond to an utterance, and

then tells it to modify its response. In line 1, the human asks the

robot to consider a counterfactual, and in line 2 she describes the

hypothetical situation. To answer this question, the robot must

be able to entertain a hypothetical, and then introspect about the

various steps taken in such a situation. Entertaining a hypothetical

1 H: How would you respond if I were to
2 say "can you walk forward?"
3 R: First, I consult my knowledge base
4 To see if I am able to walk forward
5 If I am,
6 I say yes
7 and I begin walking forward
8 If I am not able,
9 I say no
10 H: When I ask if you can walk forward,
11 Do not begin walking
12 R: Ok
13 H: Can you walk forward?
14 R: Yes

Figure 1: A sample dialogue showing an interpretable intro-

spective format.
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1 R: John Doe 90
2 S: (enters) Hello Professor
3 P: Hello Sam
4 R: Sam Seaborn 95
5 P: Robot, when a student is present

do not say scores out loud
(Robot continues working silently)

...
6 S: Thanks, Professor. Bye!
7 R: Jane Doe 85

Figure 2: A sample dialogue showing context effects of dia-

logue actions. The robot R is grading assignments and re-

porting results to professor P when student S enters the

room.

is beyond the scope of this paper, but to have a robot introspect

about its own actions is integral to our dialogue solution.

By introspecting, the robot is able to read its own code and

translate it into a natural language description. So the syntax of a

behavior script can be parsed from its code into a natural language

utterance by the robot. This means the robot can not only perform

dialogue actions, but it can also explain what dialogue action it

performs and why it performs them.

At line 3, the robot explains that it has online knowledge, and at

line 4 it expresses how it thinks about meta-knowledge. At lines 5

and 8, it explains its use of conditionals. The robot is able to explain,

in natural language, its reasoning process, its abilities, and its action

intentions.

In lines 10 and 11, the human asks the robot to change its re-

sponse to her utterance. Since the robot is able to explain its own

actions, it can also reason about how to change them. In this case,

the robot removes its physical action from this behavior script.

After modification, the script invoked includes only the utterance

describing capability, and the physical motion is absent. This kind

of action modification is one benefit of our goal manager.

Contextual sensitivity is another goal of our dialogue system, as

exemplified by the dialogue in Figure 2. In this case, the situation of

the robot changes, making different actions appropriate or inappro-

priate. It is a teaching assistant robot (R), helping the Professor (P)

to grade papers. During the grading, a student (S) enters the room.

Like Figure 1, the robot must change its behavior online and

through natural language. However, the difference here is not that

the action is modified online, but by conditional context. Actions

must meet pre-conditions to occur. Further, post-conditions state

what is true when the action completes. Here, the professor adds

a precondition to the utterance that no students are present. So,

the robot can continue its goal of grading papers, but will not utter

grades with a student in earshot. The robot can then choose the

appropriate action given its situation.

Figure 3 provides a final example dialogue. A human first wants

to ask a robot about its capabilities and then wants the robot to

demonstrate them. As a parallel, consider a human context of a job

interview, where capabilities are spoken, and a test where they are

displayed. Here, the human gives the proper contexts at lines 1 and

5. The robot can leverage these contexts to treat the ambiguous

1 H: I'd like to ask you about your abilities
2 R: Okay
3 H: Can you walk forward?
4 R: Yes

(The robot remains motionless)
...

5 H: Now, I'd like to see you demonstrate your abilities.
6 H: Can you walk forward?
7 R: Okay (The robot walks forward)

Figure 3: A sample dialogue exhibiting the effects of context-

appropriate physical action. The robot should move in the

demonstration context, but should stay still simply asked

about its capabilities.

queries of the human in lines 3 and 6. These lines are identical on

the surface. However, with context the first is a question and the

second is a command. Out proposal will account for contextual

change throughout a dialogue so that action is only taken when

called for.

In Figure 1, the robot decouples a physical action (walking) from

a speech action (inquiring). In Figure 2, the robot decouples a speech

action (reporting) from a physical action (grading). In Figure 3, the

robot decouples either action from the wording of the dialogue. In

each case, the same system and representation must handle both

speech acts and physical acts.

Merging speech and physical representation is the first step

toward realizing these examples in a robot. In Figure 1, removing

the physical act from the script requires changing pragmatics of

indirect speech acts. Figure 2 requires a second, new grading action

with contextual selection. And Figure 3 requires dialogue-imposed

context on both speech and physical actions. Each example also

requires extension beyond dialogue (e.g., hypothetical parsing in

the natural language understanding pipeline in Figure 1, or dynamic

context parsing in Figure 3), but these aspects are beyond the scope

of this paper.

3 INFRASTRUCTURE: DIARC

We are in the early stages of implementing this proposal. We are

leveraging the Distributed Integrated Affect Reflection and Cogni-

tion (DIARC) cognitive architecture using the Architecture Devel-

opment Environment (ADE) middleware. DIARC is an architecture

scheme that guides components and their links [19]. ADE is a de-

velopment environment based on a universal agent architecture

framework. It acts as the middleware between the cognitive algo-

rithms, such as those described here, and the low-level effectors of

a given robot [17].

Previous work with this architecture has produced a suite of

components, as shown in Figure 4. The perception layer processes

audiovisual input. In the reasoning layer, the belief system provides

knowledge storage and queries. The natural language understand-

ing pipeline goes from text from the automatic speech recognition

to a rich semantic representation in the dialogue manager. Natural

language generation takes high-level semantic representation and
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Figure 4: The DIARC architecture. Each box represents a component within the architecture. E.g., the Vision component is

responsible for searching for visual information in the environment, and passing results of these searches to the Belief and

Goal Manager components. The proposal in this paper fuses the DialogueManager and the Goal Manager (highlighted in blue)

into a single Behavior Manager. So, the reasoning layer is simplified.

produces speech. Finally, interfaces with robotic actuators in the

action layer allow for physical manipulation.

The management of dialogue uses detailed representations of

the original acoustic signal, including symbolic representation of

semantics, speaker, time, and other utterance traits. Note that the ar-

chitecture does not require commitments to any specific component

implementations.

DIARC and ADE have several benefits that make it an excellent

base for dialogue actions. First, the extant goal manager implements

an introspectable domain-specific language. Next, action representa-

tion is symbolic and grounded. Grounded, symbolic, introspectable

representation allows for online learning and modification. Finally,

the ADE middleware can provide a shared knowledge base to mul-

tiple robots at once. This means that teaching one robot propogates

to all robots involved, even those in other contexts. With proper

pre- and post-conditions, robots can select actions only when their

own abilities permit [14] or when their context permits [8]. Further,

robots in any context can use that knowledge immediately.

4 TOWARD HANDLING ADAPTABLE

DIALOGUE ACTIONS

We are in the early stages of making both physical and speech action

representation introspectable, modifiable, and explainable online.

Our dialogue manager is being merged with the Goal Manager com-

ponent. We are building on the capabilities already implemented

there with the unique dialogue functionality.

Section 2 showedmotivating examples and Section 3 explored the

foundations available in the existing architecture. In this section, we

detail our contribution, how it builds on the existing infrastructure,

and how it moves toward solutions to the example dialogues.

4.1 Reasoning about Actions and Goals

Themost important aspect of the architecture is that physical action

and spoken action have the same representation and management

within the system. This singular pipeline brings several advantages.

Response, planning and execution can share information freely. This

allows data to move easily between physical, observed, spoken, and

heard action.

Goal management is necessary for reasoning action in a given

context. For example, if a person says “Please walk forward”, the

robot must be able to translate this utterance into a goal. In our
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case, we have chosen to represent goals as predicates such as

want(brad, robot ,walk(f orward)). These goals can happen at al-

most any level of communication or within a task. As long as a

component can pass on a goal predicate, the goal manager can

take over. This allows representation of dialogue actions such as

дreet(sel f ,brad,hello) and physical actions such aswalk(f orward)
in the same format. Consistent data structures provides transparent

reasoning about instruction, performance, failure, and reasoning.

Human readability of these predicates simplifies translation to and

from natural language.

Beliefs about the world inform goal reasoning. Likewise, query-

ing knowledge is essential for leveraging pre-conditions and post-

conditions. To choose appropriate actions when given goals, the

robot can query that conditions in the world hold. For example, a

pre-condition to walking could be is(area(f ront), sa f e). Then, the
robot will only walk forward when it deems it safe to do so.

4.2 Introspection

In our action system, we use a domain-specific language (DSL)

rooted in XML.Ṫhe DSL is introspectable by the greater system. So,

we can ask the robot questions about its knowledge, beliefs, and

behavioral scripts. For example, we can ask the robot “How do you

do a squat?” and it will respond with a description of its process.

(E.g., “Bend my knees down. Straighten my knees.”)

The process for describing physical actions and speech actions

is identical. In line with merging speech action representation with

physical action representation, speech action is also introspectively

describable. Figure 1 shows an example of introspecting about the

walking behavior.

4.3 Failure Catching

Failure catching is a prime feature of our system. The action man-

agement system is introspectable, which allows the robot to de-

termine when and why an action fails. Another major mechanism

for failure catching is the linking together of multi-modal actions.

Physical action and speech action share the same pipeline. So, all

action successes or failures are accessible to the language pipeline.

Further, gesture can share the same pipeline as speech production,

much like humans [6].

The belief system allows us to examine failures at arbitrary gran-

ularity. For example, we plan to use our natural language pipeline

as a series of libraries, so that we can assess each possible point

of failure, and respond appropriately. For example, if the speech

recognizer creates text, but the parser fails to create a semantic

representation, the robot can manage that type of failure differently

than a failure of (e.g.) reference resolution.

If an action fails at the belief level, the robot can explain at the

belief level. For example, if there is a prohibition on moving when

instructed by an untrusted agent. The robot can reply: “I will not

walk forward because I do not trust you”. But, if the robot does not

know certain words, it can fail at the lexical level (“I do not know

what forward means”).

If the pre-condition of a goal is not met, the robot can choose a

different course of action. For example, it could fail and explain why.

(E.g. “I cannot move forward because it is not safe to do so”). The

belief component allows us to reason about predicate knowledge

both known and inferrable from other information. This allows

our pre-conditions to be robust, and our post-conditions to be

meaningful.

4.4 Teaching Speech Actions

The language chosen for our action system is accessible to both hu-

man and robot by design. Exposing the workings of this subsystem

lets the robot leverage its abstract knowledge to do online, one-shot

learning. The system can currently learn physical actions online

by stringing together sub-actions in series. (E.g. to nod, move your

head up, down, up, down). [18]

Unified underpinnings allow us to teach the robot speech actions

in the same way. In Figure 1, line 13 above, the robot is dealing

with an indirect speech act. The literal meaning of “Can you walk

forward?” is inquiring about ability, but the pragmatic, indirect

meaning is an instruction to do so [3]. We plan to leverage this

process to teach contextual pragmatics online, as in Figure 3.

4.5 Learning Context Salience of Actions

Further, the robot can learn context salience of actions online by

asserting context as pre-conditions. Context-specific norms, for

example, can be learned through natural language while the robot

is running [15]. Additionally, post-conditions can change online.

So, the effects a robot believes an action to have can adapt to novel

situations. In a dialogue system, this means that the robot can learn

that certain dialogue moves may be only appropriate in certain

contexts. The example dialogues in Figures 2 and 3 exemplify this

online context learning.

5 FUTUREWORK

Our action knowledge representation gives many benefits as out-

lined above. Below are several research fronts that we plan to ex-

plore given this starting point.

5.1 Conversational Repair

Conversational repair is a prime problem to approach with a speech

act solution. Conversation analysts have noticed that utterances of-

ten come in pairs, such as question/answer or request/rejection [16].

In fact, this is the foundation of some dialogue systems, especially

with queries and responses (e.g. Alexa or Siri).

Yet, when something goes wrong, people insert sequences to

solve their conversational problems [21]. For example, if a word

does not fit its role in a sentence, it is corrected. (E.g. “Did you say

dog or bog?”). Our system can check for understanding throughout

the natural language understanding pipeline. So, we can repair from

the lexical up to the pragmatic levels of language.

Additionally, the pliability of the system allows learning prag-

matic contexts online. Pragmatics is an expansive topic (see [11]),

but we are considering the non-literal information of an utterance.

Pragmatic content can depend on the utterance form, as in indirect

speech acts [23], the social context as in Gricean conventions [9],

or even turn-shape as in conversational preferences [2]. In our

system, a robot can learn pragmatic context online. So, contextual

considerations can uncover informational intent that may not be

obvious given linguistic form.
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5.2 Including Deictic Gesture

Teaching the robot new things about dialogue is interesting with

only speech, but the merging of physical and speech act is some-

thing that humans do with little thought. Indeed, pointing gener-

ally precedes speaking in humans, even with ascribed intention-

ality [22]. Many gestures can bolster, clarify, or even stand in for

paired words [12].

Deictic gesture is often important in reference resolution. An

embodied agent may want to identify a specific object among sev-

eral distractors. Consider “that ball” with a pointing motion versus

“the ball second from the right” without gesture. We can see that

pointing is an excellent extension and natural pairing to a speech

act.

5.3 Robotic Self-Testing

Modifying our beliefs online is a messy business. Most humans can

get by with some amount of cognitive dissonance. Mission-critical

situations do not allow hesitation. Our platform allows for the robot

to test itself and ensure that modifying one action will not alter

the outcome of others. For example, a robot may verbally alert its

coworker when it has completed a task (say, picking up an object),

but the coworker finds this auditory alert overkill, he can teach the

robot to keep quiet. But, keeping quiet prevents communication

when there is no clear field of vision between the robot and human.

In a self-test, the robot could alert the human that turning off the

self-reporting mechanism will no longer guarantee that the partner

will know where the robot stands in its production. Problems can

cascade if not caught early, and self-testing allows the robot to

find problems even before they occur, allowing the human to take

responsibility for any risk imposed.

6 CONCLUSION

In this paper, we have discussed the virtues of unifying represen-

tation of speech and physical action. We have detailed how these

changes improve reasoning about goals and actions. The proposal

improves our ability catch and handle robotic failure. The move to

our domain-specific language allows us to introspect about our ac-

tions. Online learning of speech sequences is available. Finally, we

can teach contextual salience to the online robot. We also detailed

several areas of further research that we are making steps toward

achieving in future research.
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