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ABSTRACT

Invariant Risk Minimization is a well-known Domain Gen-
eralization framework that has received much attention over
the past few years. Invariant Risk Minimization is capable
of learning domain-invariant features from multiple domains
by finding representation features such that the optimal classi-
fier on top of these features matches all training domains. In
this paper, we show that even though the Invariant Risk Mini-
mization algorithm is based on a compelling idea, it is easily
vulnerable in a simple toy example where multiple domain-
invariant features exist and each possesses a corresponding
classifier that is optimal for all domains. Based on this obser-
vation, we propose an effective modification of the traditional
Invariant Risk Minimization algorithm named Error-Control
Invariant Risk Minimization, which allows learning different
domain-invariant features via controlling the training classi-
fication error, leading to a new algorithm that works well on
both our toy synthetic dataset and the real-world datasets.

Index Terms— Domain generalization, multiple domain-
invariant features, classification error constraints.

1. INTRODUCTION

The machine learning theory and algorithms have overwhelm-
ingly relied on the assumption that the training and the test
data are independent and identically distributed, i.e., the data
samples and labels from the training set and the test set must
follow the same underlying distribution. However, the inde-
pendent and identically distributed assumption may not hold
in practice due to a ubiquitous phenomenon usually referred to
as distribution shift for which the distributions of data and/or
labels on the training set and the test set are not identical.
Distribution shift is the primary cause of the performance de-
terioration of traditional learning algorithms, for example, it
has been observed that the Empirical Risk Minimization al-
gorithm (ERM) fails when facing samples from a different
domain, even under a mild distribution shift [1]. Mitigating
the problem caused by the distribution shift is the primary goal
of the Domain Generalization (DG) problem, where a model
is trained using data from several seen domains but later needs

to be applied to unseen (unknown but related) domains with
different data and/or label distributions.

A vast of DG theories and algorithms are mainly based
on the theme of domain invariant representation learning, i.e.,
training a representation function and its corresponding classi-
fier to learn the domain-invariant features that are unchanged
and stable across domains [1–4]. Over the past few years, the
Invariant Risk Minimization algorithm (IRM) [1] has appeared
as the state-of-the-art DG method which is capable of effec-
tively learning the domain invariant features while avoiding
the spurious (fake) invariant features. For given data from
multiple training (seen) domains, IRM allows a mechanism
to find the invariant features by looking for a representation
function and its corresponding optimal classifier such that this
optimal classifier works equally well on the representation
features from all training domains. In other words, under IRM
settings, features are called domain invariant if one can design
a corresponding invariant classifier (based on these features)
such that it is simultaneously optimum regardless of training
domains1. Even though the Invariant Risk Minimization algo-
rithm is based on a compelling idea, we show that it is easily
vulnerable in our toy example where there exist two domain
invariant features, each owning a corresponding optimal clas-
sifier that matches all training domains. To handle this failure
situation, we propose a simple fix but allow IRM works well
on both our toy example and the real-world datasets.

We summarize our contributions as follows:

1. We introduce a new synthetic dataset named Equally-
CMNIST (E-CMNIST) and numerically show that the
well-known IRM algorithm will fail on E-CMNIST
where multiple domain invariant features with differ-
ent levels of classification error simultaneously exist.

2. We propose an effective modification that allows IRM
to work well on E-CMNIST by imposing a constraint
on the training classification error, leading to a new
algorithm that is capable of selecting distinct domain
invariant features.

1Of course, IRM only works under an implicit assumption that such invari-
ant features and their corresponding invariant classifiers exist.
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3. Our numerical results demonstrate the effectiveness of
the proposed algorithm not only in our synthetic dataset
but also in the real-world DG benchmark datasets.

The remainder of this paper is structured as follows. In
Sec. 2, we provide a short survey of recent works in DG,
specifically, the works that are closely related to the IRM
algorithm. In Sec. 3, we formally define the DG problem and
summarize the main idea of the IRM framework. Based on the
failure case of IRM observed in Sec. 4, we provide an effective
fix in Sec. 5, leading to a new DG algorithm. The effectiveness
of the proposed algorithm is demonstrated in Sec. 6. Finally,
we discuss the limitations of our proposed approach in Sec. 7,
and conclude in Sec. 8.

2. RELATED WORK

Over the past decade, domain-invariant learning has become
the most widely used and successful method in DG. Domain-
invariant learning decomposes the learning process into two
parts: (1) learning representation functions that output the
domain-invariant features, and (2) designing optimal classifiers
based on these invariant features [5–8]2.

Invariant Risk Minimization algorithm (IRM) was intro-
duced in [1] and was extended or served as the basis for the
development of other algorithms in [9–14]. For given data
from multiple training (seen) domains, IRM finds the invari-
ant features by looking for a representation function and its
corresponding optimal classifier such that this optimal classi-
fier must work equally well i.e., invariant across all training
domains. In other words, by looking for invariant classifiers,
IRM targets learning such features having the conditional dis-
tribution between labels given features stable regardless of
training domains. Although the approach seems promising,
IRM is vulnerable under particular settings. Kamath et al. [15]
construct a dataset where there exist some undesired predictors
but are considered invariant under IRM settings, leading to the
failure of the learned model on the unseen domain. Guo et
al. [9] consider a scenario where the correlation between spu-
rious features and labels is much stronger than the correlation
between true invariant features and labels, thus, enforcing the
model to learn the spurious features to achieve high classifica-
tion accuracy on seen domains while ignoring to learn the true
invariant features. Other failure cases of IRM can be observed
from [16] and [17] where the pseudo-invariant features and
geometric skews exist, thus, the classifiers will utilize both the
true and the pseudo-invariant features, leading to the failure
when applying these classifiers on the unseen domains.

Since all proposed algorithms in [9–14] mainly rely on
the theme of IRM, if IRM fails, there is a high chance that
its descendants will fail. Therefore, determining the failure
situations of IRM and finding the corresponding effective fix is

2Note that domain-invariant learning only works under implicit assump-
tions such that the domain-invariant features exist and are useful to predict the
labels.

important. In this paper, we construct a synthetic dataset hav-
ing multiple domain invariant features, leading to the failure of
IRM. To overcome this failure, an effective modification that
aims to control the training classification error is introduced
which not only allows better performances on our proposed
synthetic dataset but also on other real-world datasets.

3. PROBLEM FORMULATION

In this section, we formally define the Domain Generalization
(DG) problem and re-capture the main idea of the Invariant
Risk Minimization (IRM) algorithm.

3.1. Domain generalization

Under DG settings, one can observe the data from a set of
K observed (seen) domains D = {D(1), D(2), . . . , D(K)}.
Note that the data/label distributions of these K domains are
not necessarily independent and identically distributed. DG
algorithms aim to train a predictor from the input space to
the label space composed by: (1) a representation function
f : X → Z from the input space X to the representation space
Z , and (2) a classifier g : Z → Y from the representation
space Z to the label space Y on the data from K seen domains
such that this predictor induces a small classification error on
a new (unseen) domain D(u) /∈ D. Formally, DG algorithms
want to handle the following optimization problem:

min
f, g

R(u)(g ◦ f) (1)

where R(u)(g◦f) denotes the classification risk (error) induced
by f and g on the unseen domain D(u).

3.2. Invariant risk minimization

The Invariant Risk Minimization (IRM) algorithm [1] solves
(1) by finding a representation function f such that there ex-
ists an invariant classifier g which is simultaneously optimal
for representation features outputted by f across all training
domains. Here, the implicit assumption is that such represen-
tation function and classifier must exist. To find f and g, IRM
optimizes the following bi-level optimization problem:

min
f,g

K∑
i=1

R(i)(g ◦ f), s.t. g ∈ argmin
ḡ:Z→Y

R(i)(ḡ ◦ f), ∀i (2)

where R(i)(g ◦ f) denotes a classification error induced by f
and g in domain i, i = 1, 2, . . . ,K. In practice, R(i)(g ◦ f) is
usually approximated by the cross-entropy loss.

Since the above bi-level optimization problem is hard to
solve, Arjovsky et al. only considers a class of linear classifiers
and further argues that linear classifier can be finally replaced
by a scalar classifier [1], leading to the following objective
function:

min
f

K∑
i=1

R(i)(f), s.t. ∇g|g=1R
(i)(g · f) = 0, ∀i, (3)



where∇g|g=1R
(i)(g · f) denotes the gradients of the classifi-

cation error in different domains, and g is a scalar classifier.
Finally, to break the bi-level optimization, Arjovsky et al.

proposes the below practical objective function:

min
f

K∑
i=1

[
R(i)(f) + α ∥∇g|g=1R

(i)(g · f)∥2
]
, (4)

where α is a hyper-parameter that controls the balance be-
tween two terms in the objective function, and ∥.∥2 denotes
the squared Euclidean norm. From this point, we stick with
the IRM objective function in (4). The first term in (4) controls
the classification error on training (seen) domains to guarantee
the useful features will be extracted while the second term
in (4) ensures that the classifier works equally well (approxi-
mately invariant) for all training (seen) domains. Under quite
restricted assumptions (linear classifiers, the classification er-
ror function is convex and differentiable) Theorem 4 in [1]
shows that minimizing the proposed IRM loss in (4) will yield
an invariant classifier/predictor over all training domains.

4. A FAILURE CASE OF INVARIANT RISK
MINIMIZATION ALGORITHM

The IRM algorithm allows learning an optimal classifier that
is invariant across all training (seen) domains, thus, having a
high chance to accurately adapt to a new (unseen) domain.
Although the approach seems promising, IRM will fail if
there exist multiple representation features and each has one
corresponding optimal classifier that equally matches for all
domains. To illustrate this argument, we construct a toy ex-
ample derived from Colored-MNIST (CMNIST) dataset [1],
called Equally-CMNIST (E-CMNIST). While both the colors
and digits in E-CMNIST and the original CMNIST contain
information about the labels, the main difference between E-
CMNIST and CMNIST is that: in E-CMNIST, both colors
and digits possess their own optimal classifier that equally
matches for all domains (thus the same values of the second
term in (4) can be approximately achieved by learning colors
or digits), however, a classifier using digits will induce lower
classification error than a classifier using colors (thus the lower
value of the first term in (4) can be achieved by learning the
digits). Consequently, the IRM algorithm which minimizes the
loss in (4) will learn the digits and ignore the colors, thus, will
attain a low classification accuracy if, on the unseen domain,
the colors are more useful to predict the labels than the digits.
Our data construction is described in detail as follows.

4.1. Construction of Equally-CMNIST dataset

E-CMNIST is a variant of the CMNIST dataset proposed in [1].
There are two training (seen) domains each containing 25,000
images and one test unseen domain contains 10,000 images.
Let i = 1, 2, 3 denote three domains, X(i)

g denote the gray

Fig. 1. Graphical model for our proposed Equally-CMNIST
(E-CMNIST) dataset.

image in domain i, Y (i)
g denote the label of X(i)

g , C(i) denote
the color will be later added to gray image X

(i)
g , finally, X(i)

and Y (i) denote the colored image and its corresponding label
that will be used for the classification tasks. The graphical
model to construct E-CMNIST dataset is illustrated in Fig. 1
which contains the following steps:

1. Y
(i)
g ← L(X

(i)
g ): from gray images containing digits

from “0” to “9” in the MNIST dataset [18], we construct
a binary classification problem by labeling Y

(i)
g = 0 if

the digits are strictly less than “5”, and labeling Y
(i)
g =

1, otherwise.

2. Y (i) ← Y
(i)
g ⊕ N1, where N1 = Bern(a): adding

noise to the label via a Bernoulli function with hyper-
parameter a ∈ [0, 1] to create the final label. Due to
the added noise, using digits to predict the final label
Y (i) can only achieve the minimum error rate of a, or
equivalently, the maximum accuracy rate of 1− a.

3. C(i) ← Y (i) ⊕ N2, where N2 = Bern(b): the index
color C(i) is selected via Bernoulli function with hyper-
parameter b ∈ [0, 1]. Here, we only use two index colors:
green and red, C(i) ∈ {green, red}. If Y (i) = 0, the
image is colored green with a probability of b and red
with a probability of 1 − b, If Y (i) = 1, the image is
colored green with a probability of 1− b and red with a
probability of b. Thus, using colors to predict the final
label Y (i) can only achieve the minimum error rate of b,
or equivalently, the maximum accuracy rate of 1− b.

4. X(i) ← T (X
(i)
g , C(i)): the gray image X

(i)
g is colored

with the index color C(i) to produce the final colored
image X(i).

5. Selecting different values of (a, b) and repeating the
above process for i = 1, 2, 3, we have two training do-
mains (i = 1, 2) and one test domain (i = 3). The
colored image X(i) and its label Y (i) are used for clas-
sification tasks.

For two training (seen) domains, we set (a = 0, b = 0.1). For
the test (unseen) domain, we select (a = 0.9, b = 0.1). By
construction, both colors and digits are stable on two training



Algorithms Training accuracy Test accuracy
IRM [1] 96.69% 32.33%

Table 1. The best test accuracy and its corresponding training
accuracy of IRM [1] on E-CMNIST dataset after 10 times
repeating the whole experiment.

domains, each owns a classifier that performs equally well
on two training domains, thus, yields a very similar value
for the second term in the IRM loss in (4). However, since
a = 0 < b = 0.1, the digits produce lower classification error
(the first term in (4)) than the colors on two training domains,
thus, optimizing the IRM loss in (4) will enforce the models
to learn the digits and ignore the colors. Next, by increasing
a = 0.9, but keeping the same b = 0.1, only colors are useful
in predicting the labels from the unseen domain, therefore, the
selected model on training domains that prefers the digits will
definitely fail on the unseen domain.

4.2. Failure of IRM on E-CMNIST

To verify the failure of IRM on the E-CMNIST dataset, we
follow the experiment established in [1]. Particularly, the
neural network is composed of three linear layers with feature
map dimensions of 196, 390, and 390, each linear layer is
followed by a Rectified Linear Unit (ReLU) activation. The
last layer is a linear layer that aims to classify the label of
images to “0” or “1”. We use Adam optimizer for training
with a learning rate of 5× 10−4, and the total number of steps
is set to 500. We repeat the whole experiment 10 times by
selecting 10 random seeds, for each random seed, the whole
training and test processes are repeated from scratch. Note that
all these hyper-parameters are exactly the same as the ones
used in [1] which can be viewed from this link3.

IRM’s training and test accuracy on the E-CMNIST dataset
can be viewed in Table 1. As seen, the best test accuracy on the
unseen domain selected from running the whole experiment
10 times is only 32.33% even though the training accuracy
can reach 96.69%. We conclude that under particular settings
in the E-CMNIST dataset where there exist multiple optimal
classifiers that match all training domains, the well-known
IRM algorithm will fail.

In the next section, we provide a modification to the tra-
ditional IRM algorithm that allows us to learn different fea-
tures (digits or colors) and its corresponding optimal classifiers
which finally allows us to achieve better test accuracy on the
unseen domain.

5. AN EFFECTIVE FIX FOR INVARIANT RISK
MINIMIZATION ALGORITHM

In this section, we provide an effective fix that helps IRM
performs well on the E-CMNIST dataset. Indeed, by construc-

3https://github.com/facebookresearch/InvariantRiskMinimization

tion, setting a = 0.9 and b = 0.1 makes colors more strongly
correlated with labels than digits on the unseen domain, thus,
the IRM algorithm will fail if it is not able to catch the colors.
However, as previous analysis, by optimizing the loss func-
tion in (4), the traditional IRM algorithm will definitely select
digits while ignoring colors.

To handle this situation, we propose a method that is ca-
pable of learning colors or digits by controlling the classifi-
cation error induced from the training phase. To do that, we
introduce a modification of the IRM algorithm named Error-
Control-IRM (EC-IRM). In practice, EC-IRM optimizes the
loss function below:

min
f,g

K∑
i=1

[
ReLU

(
β−R(i)(f)

)
︸ ︷︷ ︸

new term

+R(i)(f)+α∥∇g|g=1R
(i)(g · f)∥2︸ ︷︷ ︸

Original IRM terms

]
(5)

which differs from the original IRM loss in (4) by adding a
new term ReLU

(
β − R(i)(f)

)
where ReLU

(
.
)

denotes the
Rectified Linear Unit function defined by:

ReLU
(
β −R(i)(f)

)
=

{
0, if β ≤ R(i)(f)

β −R(i)(f), otherwise.

Indeed, ReLU
(
β −R(i)(f)

)
is parameterized by β will penal-

ize if the classification error R(i)(f) < β. Thus, the new term
ReLU

(
β −R(i)(f)

)
acts as a constraint to control the classifi-

cation error of the learned models. By varying the values of
β, it is possible to learn the invariant features with different
levels of classification error. Since learning different features
(colors or digits) can vary the values of classification error in
the E-CMNIST dataset, adding this constraint helps the model
discern and then is able to select different features. This is why
the proposed algorithm is called Error-Control-IRM (EC-IRM)
algorithm.

To illustrate how EC-IRM works, we consider the E-
CMNIST dataset again. In E-CMNIST, by construction, both
colors and digits are domain invariant features i.e., each corre-
sponds to an optimal classifier that matches all seen domains.
For this reason, both colors and digits approximately yield
the same value for the second terms in the traditional IRM
loss function in (4). Thus, to optimize (4), the network will
prefer the digits to achieve a lower value for the first term
(classification error) in (4), leading to the failure on the test
phase where the colors are more useful than the digits on the
unseen domain. On the other hand, our EC-IRM algorithm
is able to select different features with different levels of
classification error by varying the value of β. For example, by
selecting a large enough value for β, the model will prefer the
invariant features with a high classification error, thus, will
pay more attention to learning colors.

In the next section, we will demonstrate that the proposed
EC-IRM algorithm not only performs well on the synthetic
E-CMNIST dataset but also on other real-world datasets.

https://github.com/facebookresearch/InvariantRiskMinimization


Algorithms Training accuracy Test accuracy
EC-IRM (β = 0.1) 95.66% 39.97%
EC-IRM (β = 0.2) 92.64% 63.85%
EC-IRM (β = 0.3) 89.86% 89.75%
EC-IRM (β = 0.4) 89.88% 90.07%
EC-IRM (β = 0.5) 90.03% 90.00%
EC-IRM (β = 0.6) 51.08% 49.95%
EC-IRM (β = 0.7) 53.14% 54.16%
EC-IRM (β = 0.8) 52.31% 55.56%
EC-IRM (β = 0.9) 49.61% 50.96%

IRM [1] 96.69% 32.33%

Table 2. The best test accuracy and its corresponding training
accuracy of EC-IRM (ours) and IRM on E-CMNIST dataset
selected from 10 times repeating the whole experiment. For
EC-IRM, we report the accuracy with different values of hyper-
parameter β ∈ [0.1, 0.9] that controls the constraint on training
classification error.

6. NUMERICAL RESULTS

6.1. Synthetic dataset

We use the same experimental setting as described in Section
4 when testing our proposed EC-IRM algorithm on the E-
CMNIST dataset. The EC-IRM algorithm is compared against
its original version, the IRM algorithm. Table 2 provides the ac-
curacies of EC-IRM with different values of hyper-parameter
β ∈ [0.1, 0.9] that controls the constraint on the training clas-
sification error. As seen, EC-IRM consistently outperforms
its baseline IRM for any value of β ∈ [0.1, 0.9]. The best
accuracy of EC-IRM on the test (unseen) domain is 90.07%
achieved at β = 0.4 which is approximately the theoretical
maximum value induced by colors on the test domain when
setting b = 0.1.

6.2. Real-world datasets

Even though EC-IRM significantly outperforms the traditional
IRM on our synthetic dataset, we still want to verify whether
our method works well on a real-world dataset. To do so,
we examine EC-IRM on two datasets: PACS [19] and Office-
Home [20]. We follow the settings in SWAD [21] to perform
our experiments.

Due to limited resources, we only report the performance
of EC-IRM for β = [0.01, 0.09] while the accuracy for the
baseline IRM is directly adopted from [22]. As seen, from
Table 3, EC-IRM outperforms the traditional IRM for all val-
ues of β between 0.01 and 0.09. Specifically, the largest gain
achieved by EC-IRM over IRM is 2.3% on the PACS dataset
and 2.2% on the Office-Home dataset. Based on our numerical
results, we recommend using a small value of β between 0.05
and 0.10 for real-world datasets. Finally, our implementation

Algorithms PACS Office-Home
EC-IRM (β = 0.01) 84.5% 65.2%
EC-IRM (β = 0.02) 84.6% 64.9%
EC-IRM (β = 0.03) 85.1% 65.1%
EC-IRM (β = 0.04) 85.4% 65.1%
EC-IRM (β = 0.05) 85.6% 65.9%
EC-IRM (β = 0.06) 85.7% 65.9%
EC-IRM (β = 0.07) 85.7% 66.4%
EC-IRM (β = 0.08) 85.8% 66.4%
EC-IRM (β = 0.09) 85.6% 66.5%

IRM [1] 83.5% 64.3%

Table 3. The test accuracy on the unseen domain of EC-
IRM (ours) and IRM on PACS and Office-Home datasets.
For EC-IRM, we report the accuracy with different values of
hyper-parameter β ∈ [0.01, 0.09] that controls the constraint
on classification error.

is available to download at this link4.

7. DISCUSSIONS AND LIMITATIONS

In [8], Lyu et al. pointed out that there is a fundamental trade-
off while minimizing a class of common objective functions
in DG that usually includes two terms: (1) the classification
error, and (2) the domain discrepancy (for learning domain-
invariant features). Particularly, Theorem 1 in [8] showed
that one can not perfectly minimize both two terms in DG’s
objective function, i.e., if the algorithm focuses too much on
minimizing one term, it will definitely enlarge the other term
and subsequently may fail on the test phase on the unseen
domain. We believe that IRM algorithm is not an exception
and will follow this trade-off. Applying the result in [8] into
IRM implies a crucial fact that a model having the lowest
training classification error may not be the best model on
the unseen domain. Interestingly, this is coincident with the
idea of the proposed EC-IRM algorithm where we propose a
mechanism to control the classification error, thus, enabling
one to select the model with different values of training error.
Indeed, by using β > 0, EC-IRM enforces the network to
avoid the model with the lowest training accuracy, thus, may
be able to achieve lower values of domain discrepancy and
precisely learn the domain-invariant features. Even though
our focus in this paper is just the IRM algorithm, our idea as
well as the theory in [8] are not limited to IRM only and can
be extended to other DG algorithms by adding one more term
that manages the classification error on the training process.

For the limitations, we believe that the proposed method
will not work under some particular settings. For example, if
the distributions of data from seen and unseen domains are
identical, then one should select a model that has the lowest

4https://drive.google.com/file/d/1Qkym-G_
U4gS2IX9AUlbZkBgTv28I0NEY/view?usp=sharing

https://drive.google.com/file/d/1Qkym-G_U4gS2IX9AUlbZkBgTv28I0NEY/view?usp=sharing
https://drive.google.com/file/d/1Qkym-G_U4gS2IX9AUlbZkBgTv28I0NEY/view?usp=sharing
https://drive.google.com/file/d/1Qkym-G_U4gS2IX9AUlbZkBgTv28I0NEY/view?usp=sharing


classification error on seen domains to apply to the unseen
domain. In this case, adding a classification error constraint
will definitely harm the generalization performance.

8. CONCLUSIONS

In this paper, we proposed a new synthetic dataset named
E-CMNIST where multiple domain invariant features exist
and each possesses its optimal classifier that matches all train-
ing domains, leading to the failure of the well-known IRM
algorithm. To make IRM works on E-CMNIST, we modified
its original objective function by adding a constraint on the
training classification error, leading to a new algorithm named
EC-IRM that does not only outperform the traditional IRM on
our synthetic dataset but also on other real-world datasets.
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