
Communicating, Interpreting, and Executing High-Level
Instructions for Human-Robot Interaction

Nishant Trivedi
Pat Langley

Computer Science and Engineering
Arizona State University, Tempe, AZ 85287

Paul Schermerhorn
Matthias Scheutz

Cognitive Science Program
Indiana University, Bloomington, IN 47406

Abstract

In this paper, we address the problem of communicat-
ing, interpreting, and executing complex yet abstract
instructions to a robot team member. This requires
specifying the tasks in an unambiguous manner, trans-
lating them into operational procedures, and carrying
out those procedures in a persistent yet reactive man-
ner. We report our response to these issues, after which
we demonstrate their combined use in controlling a mo-
bile robot in a multi-room office setting on tasks similar
to those in search-and-rescue operations. We conclude
by discussing related research and suggesting directions
for future work.

Introduction

Advances in robotics hardware and software have taken
robots to the point where they can play an important
role in extended activities like surveillance, exploration,
and rescue operations. Yet an important remaining
bottleneck is the need for robots to interact efficiently
with human team members. Effective human-robot in-
teraction requires a middle ground between fully au-
tonomous agents that operate entirely on their own
and detailed but tedious teleoperation by human con-
trollers. Many mixed-initiative settings would benefit
from human-robot coordination that operates at the
same level as occurs in human teams.

A key characteristic of human teams is that they
coordinate behavior at the level of natural language.
This lets the members communicate their beliefs, goals,
and intentions in terms abstract enough to be con-
veyed rapidly, yet unambiguous enough to transform
them into operational activity. We believe that sim-
ilar levels of communication support team coordina-
tion whether members are co-located or remote, and
whether they adopt a flat or hierarchical command
structure. We maintain that reproducing the ability
to coordinate such joint activity at this abstract level
will make human-robot teams as effective as ones that
are composed entirely of humans.

In this paper, we report an innovative approach to
supporting human-robot interaction in this manner.

Copyright c© 2011, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

The next section describes the search-and-rescue sce-
nario that has driven our research, along with the phys-
ical setting and robotic platform we have used to pursue
it. After this, we present three facets of our approach to
enabling joint human-robot activity: stating and repre-
senting complex tasks, converting them into operational
procedures, and executing those procedures in a teleo-
reactive manner. Next we report successful robot runs
on tasks communicated at an abstract level. In closing,
we review work on related topics and outline directions
for additional research.

Coordination for Search and Rescue

Consider a situation in which a human-robot team must
traverse a partially known environment to find objects.
For example, the members might need to jointly explore
a damaged building in search of injured people who
need medical attention or evacuation. The human may
have access to a map, but it could be unreliable and
in any case it does not include locations for the objects
being sought.

Suppose further that the human team member re-
mains outside for reasons of safety, since portions of the
building may be unstable. However, he can see the out-
put of a video camera mounted on the robot and he can
communicate with the robot through spoken or written
language. For instance, based on available video and
his estimate of the robot’s location, the human might
give the instruction:

Go down the hallway until you find an open door
and then go through it.

The robot would interpret this abstract command,
transform it into operational procedures, and report on
its progress and completion. The human would then
give another command, the robot would continue on
this new mission, and so forth. In this manner, the
team could jointly explore the environment, finding in-
jured people that could be treated or evacuated in a
more targeted operation.

We have developed a laboratory setting that captures
many important features of such scenarios: a building
with several rooms connected by a long hallway. We
have placed boxes of various colors throughout the en-



vironment that serve as surrogates for injured people.
We have control of which doors are open, lighting condi-
tions, and other factors that make the joint exploration
task more or less challenging.

We have used a Pioneer P3AT platform for our
robotics development and evaluation. The robot is
equipped with a number of sensors relevant to the task,
including a SICK laser range finder for detecting ob-
stacles and doorways, bumper sensors and emergency
stop buttons, and two video cameras, one visual-light
camera (for use in daylight) and one infrared camera
(for use at night), both for detecting objects and for
streaming video to the operator. The robot also has an
analog wireless audio link that lets it communicate in
natural language with the remote human operator. All
control software runs on a Dell quadcore Pentium lap-
top mounted on the robot, so it can range throughout
the test environment.

Supporting human-robot interaction in this type of
scenario poses a number of technical challenges. First,
we must specify and represent the complex tasks that
the human team member might ask his robot collabo-
rator to carry out. Second, we must translate these in-
structions into procedures that an intelligent agent can
interpret. Third, we must enable execution of these
procedures in a flexible yet task-directed way within
an integrated robotic system. In the sections that fol-
low we describe our responses to these technical issues,
which we claim are sufficient to enable high-level control
of robots in a variety of task-oriented settings. Later we
will support these claims with demonstrations of their
integrated use in directing behavior of the Pioneer robot
described above.

Specifying Complex Tasks
The first step in developing any intelligent system in-
volves specifying the content over which it will operate.
We can conveniently divide this content into the sys-
tem’s beliefs about its situation, the tasks it desires to
achieve, and the knowledge it uses to achieve them. We
discuss the perceptual and inference mechanisms that
provide our agent’s beliefs in a later section, once we
describe the knowledge that supports them. Here we
focus on the more basic research question of how to
encode the tasks themselves.

Traditional task representations, like those used in
the AI planning literature (Ghallab, Nau, & Traverso,
2004), focus on goals that describe static or instanta-
neous features of the state, such as location of the robot
or having an object placed in a box. Clearly, the tasks
from our target scenario are more complex in that they
describe sequences of states that should occur, as well
as the conditions under which they should take place.
Yet these descriptions are not fully specified; they are
not themselves executable robot programs in that they
retain the high-level, abstract character of language.

In response, we have developed a command language
for specifying complex task-oriented behavior. The lan-
guage combines a small set of command predicates with

domain concepts and actions to let one describe ac-
tivities in terms of application conditions, termination
criteria, and orderings on subactivities. Elements in
the language are composable, letting one specify com-
plex commands, and thus a wide range of agent be-
haviors, by combining simpler structures. Our goal is
not to reproduce the full expressive power of natural
language, but rather to provide a surrogate that serves
the more limited functions needed to express high-level
commands, just as parents use restricted language when
communicating with children.

For this reason, the command language uses a con-
strained English syntax to describe activities. For ex-
ample, the statement

Go down the hallway until you find an open door
and then go through it.

would be rephrased as

First Until you find open door D
Holds you go down the hallway

Next you go through D.

This command demonstrates the use of two distinct
paired sets of command predicates.

One pair, Until/Holds, indicates an activity that the
agent should carry out until its halting criteria are met.1

The other, First/Next, specifies that the agent should
first pursue one activity (the Until/Holds subcommand)
and then carry out another (going through the door).
In more complex tasks, this might involve three or more
ordered activities. The expression open door refers to a
known domain concept, while go down and go through
refer to known domain activities. The words find, the,
are, and should are ‘stop’ words included for readability,
while the remaining terms, D and you, denote pattern-
match variables.

The constrained English syntax maps directly onto
an internal notation that uses list structures. Here the
corresponding internal representation would be

(before (until (open-door ?d)
(go-down-hallway ?you))

(go-through ?you ?d))

In this structure, the before predicate denotes an order-
ing on two or more subcommands, while until specifies
conditions (in this case, only one) for terminating a
subcommand. This notation differs from the English
syntax in that it uses parentheses as delimiters rather
than pairs of command words. In addition, it omits
stop words and marks variables with question marks.

The internal notation also clarifies the embedded
character of commands, with the until clause occur-
ring within the before statement and with the go-down-
hallway action occurring within the until clause. Both
before and until take two or more arguments. For be-
fore, each entry is a subcommand that the agent should

1The Holds here indicates that the preceding description
should be true, although the phrasing is slightly awkward.



carry out in order. For until, the final entry is either an-
other command or a domain action, whereas the earlier
arguments specify a set of conditions that must match
consistently (with shared variables denoting the same
values) for the final statement to apply.

Another function of commands is to allow conditional
statements. For example, consider the instruction

First If D is a door in front of you
Then you go through D

Next you turn left
Next you go down the hallway.

Here use of First and Next indicates that the agent
should execute the three subcommands in the specified
order, but the If/Then expression indicates that the
first subcommand is conditional on the agent detecting
a door in front of it.

We can also specify this embedded conditional state-
ment in our internal syntax; in this case, we would write

(before (if (door-in-front ?you ?d)
(go-through ?you ?d))

(turn-left ?you)
(go-down-hallway ?you))

Here the if predicate indicates that its final argument
should be carried out only if the preceding condition is
satisfied. More generally, such statements may include
multiple conditions, all of which must match to execute
the final subcommand. As before, door-in-front is a
domain concept, while go-through, turn-left, and go-
down-hallway are activities.

The above example is slightly problematic, since it
does not specify what the agent should do if there is
no door in front of it. This clarifies the need to express
contingent courses of action. For instance, consider the
command

If B is a box
Then Either If B is blue, Then you turn right

Or If B is not blue, Then you turn left.

Here the Either predicate indicates the start of the first
alternative, while Or marks its end and the start of the
second option. Although not shown in this example,
the syntax allows three or more alternatives.

Again, we can state an equivalent command in the
internal syntax, with the English instructions becoming

(if (box ?b)
(or (if (blue ?b) (turn-right ?you))

(if (not (blue ?b)) (turn-left ?b))))

In this case, the or predicate has two arguments, but it
can take anny number of subcommands or expressions
with domain actions like turn-right and turn-left.

We have also implemented a routine that transforms
English command expressions into the internal repre-
sentation already described. This process involves de-
tecting command predicates that mark the beginning
and end of subcommands to determine the hierarchical
structure of the instruction. The software also removes

stop words, detects word sequences that correspond to
domain predicates and actions, and replaces the former
with the latter. The routine transforms any remaining
terms into pattern-match variables. The result is a list
structure like those we have already seen.

The above statements are imperative in that they
indicate the agent should carry out the specified in-
structions. However, both the English and internal lan-
guages also incorporate a nonimperative define pred-
icate that lets the system encapsulate procedures for
later reuse. This function takes as arguments the ac-
tivity’s name, its arguments, and its specification. The
ability to define such named procedures has two bene-
fits. First, it supports the specification of recursive ac-
tivities that otherwise could not be stated. Second, it
enables the specification of generalized behaviors, such
as moving toward or away from an entity, followed by
repeated use of this command with different objects as
arguments. As a result, this capacity reduces consider-
ably the effort needed to produce complex behavior.

Some readers may question whether stating instruc-
tions in constrained English provides advantages over
writing programs in a traditional procedural language.
However, note that, although our command language
can specify desired behavior in great detail, it also al-
lows very abstract instructions that refer to known pro-
cedures. Moreover, commands may be nondeterminis-
tic and require the agent to select among different ex-
pansions. Taken together, these features support the
ability to accept and interpret high-level specifications
for complex activities that the agent should carry out,
supporting taskability in the sense that Langley, Laird,
and Rogers (2009) describe.

Our first claim is that the command language de-
scribed above suffices to specify a broad range of complex
tasks that involve extended activities . More specifically,
the four pairs of command predicates, when combined
with domain concepts and actions, are enough to de-
scribe a reasonable subset of behaviors that arise in
tasks like search-and-rescue operations. We will return
to this claim when we report experimental results with
the Pioneer robot. We will not argue that our notation
is necessary, since other formalisms may offer equiva-
lent coverage. We also believe that human users will
find the constrained English syntax more usable than
traditional languages for robot programming, but we
are not yet ready for studies with human subjects, so
for now this must remain a conjecture.

Translating Tasks into Procedures

Although statements in the internal syntax are more
formal than English instructions, they would be use-
less without an interpreter that executes them in the
environment or converts them into executable proce-
dures for an existing interpreter. We have chosen the
second alternative of transforming internal command
statements into knowledge structures for Icarus (Lan-
gley, Choi, & Rogers, 2009), an agent architecture that
supports teleoreactive execution. We will delay discus-



sion of this execution mechanism until the next section.
Here we focus on the structures it utilizes and our meth-
ods for transforming commands into them.

Icarus distinguishes between two types of knowl-
edge. The first – concepts – specifies classes of situ-
ations that can arise in the agent’s environment. Each
conceptual predicate is associated with one or more
Horn clauses that define it as logical combinations of
lower-level concepts and percepts, the latter describing
objects in the environment. This imposes a hierarchical
organization on concept memory, with higher levels de-
noting more abstract relations. Our command language
assumes relevant domain concepts have been defined, so
that instructions can refer to them without ambiguity.

The second form of knowledge in Icarus – skills –
describes activities that the agent can carry out to alter
its environment. Each skill predicate is associated with
one or more decomposition rules that break into down
into an ordered set of component skills or actions, the
latter describing primitive activities the agent can exe-
cute directly. Each skill clause also includes conditions
that determine when it can apply and a set of effects
that describe how it alters the environment. The archi-
tecture organizes skills in a hierarchy, with higher-level
structures encoding more abstract procedures that typ-
ically cover longer periods.

We have developed a translator that turns commands
in the internal format described earlier into a set of
Icarus skills for the task. The mapping is reason-
ably straightforward, with each list or sublist in the
internal command representation leading to one skill
clause. The translation algorithm operates recursively,
stepping downward through the embedded lists of the
internal notation and creating skills as it returns up-
ward. For this reason, it creates lower-level skills first,
then ones that refer to them, and finally a single top-
level skill that corresponds to the entire command.

We can clarify the translator’s operation with an ex-
ample. As we have seen, the English instruction

First Until you find open door D
Holds you go down the hallway

Next you go through D.

is converted to the internal notation

(before (until (open-door ?d)
(go-down-hallway ?you))

(go-through ?you ?d))

In this case, the translator produces two Icarus skills

((skill-2 ?d ?you)
:conditions ((robot ?you))
:subskills ((skill-1 ?you ?d)

(go-through ?you ?d)))

((skill-1 ?you ?d)
:subskills ((go-down-hallway ?you))
:effects ((open-door ?you ?d)))

organized in a two-level hierarchy, with skill-2 refer-
ring to skill-1. Because the first structure corresponds

to an If/Then command, it includes conditions but no
effects. In contrast, because the second came from
an Until/Holds statement, it contains effects but no
conditions. The predicates robot and open-door are
predefined concepts, whereas go-through and go-down-
hallway are predefined primitive skills.

We have noted that the mechanism for converting
English commands to the internal encoding assumes
that relevant domain concepts and actions have been
defined, and our translator relies on the same assump-
tion. However, we should also mention that, if a com-
mand refers to skills already defined, the system can
incorporate them into new structures. This lets a hu-
man instructor state high-level commands in terms of
simpler specifications he has given earlier.

Our second claim is that the translation mechanism
just described supports the conversion of commands
stated in our constrained English syntax into a set of
equivalent Icarus skills . More specifically, the four
pairs of command predicates map directly onto different
aspects of the Icarus skill syntax, and that embedding
these commands leads naturally to the hierarchical or-
ganization of skills that plays a central role in the archi-
tecture. The internal details of the translation mecha-
nism matter little, and other implementations are cer-
tainly possible, but we hold that the mapping process
supports the same broad range of physical activities as
does the command language. We will revisit this claim
when we present the results of robot demonstration runs
in a later section.

Executing Translated Commands

Once it has transformed constrained English instruc-
tions into a set of hierarchical skills, the command in-
terpreter invokes Icarus to carry out the specified ac-
tivities in the current situation. To clarify the details of
this process, we should briefly review how the architec-
ture utilizes its concepts and skills to produce complex
activity over time.

Icarus operates in discrete cycles that involve calling
on two main modules.2 The first carries out a process
of conceptual inference. This matches the antecedents
of conceptual clauses to percepts (descriptions of ob-
jects visible to the agent) to produce beliefs (instances
of defined concepts) that the module adds to a belief
memory. These trigger matches of higher-level con-
ceptual clauses that produce more abstract inferences.
This process continues in a bottom-up manner until the
architecture has generated all beliefs implied by its con-
cepts and percepts. In this manner, the agent maintains
an up-to-date set of beliefs about its environment.

The second Icarus module is responsible for skill
execution. This examines its top-level intentions (in-
stances of known skills) and selects the highest-priority
candidate that it has not yet completed. The architec-
ture retrieves skill clauses with heads that match this

2The full architecture includes additional modules for
problem solving and skill acquisition, but we will not deal
with them in this paper.



intention and selects one with matched conditions that
make it applicable. If this skill clause is nonprimitive,
then Icarus creates a new intention for its first subskill
and continues to the next cycle. This continues until it
reaches a primitive skill, which it executes in the envi-
ronment. Once this has completed, it moves on to the
next subskill, expands it if necessary, and continues un-
til none remain, in which case it pops back to the parent
intention. If all goes well, Icarus eventually completes
the top-level intention, but unexpected environmental
changes cause it to adapt reactively to the new situa-
tion, accessing other parts of the skill hierarchy.3

The notion of an intention plays a central role in car-
rying out the English commands provided to the robot.
Once the translator has produced a corresponding set
of hierarchical skills, it also generates a top-level in-
tention that is an instance of the highest-level skill.
The command interpreter then calls on Icarus to carry
out this intention, which brings the architecture’s ma-
chinery into play. Upon completion, the system awaits
further instructions, then translates and executes them
upon arrival.

In previous work, we have provided Icarus with
domain actions that it can execute directly in simu-
lated environments, but this approach is not available
when dealing with physical robots. To give it robust
means for controlling a robot, we have integrated it
with DIARC, a distributed robot control architecture.
This supports lower-level activities such as multi-modal
perceptual processing using color and shape detection,
object detection and tracking using SIFT features, face
detection and person tracking, gesture and pointing be-
havior detection, navigation, and overall behavior co-
ordination (Scheutz & Andronache, 2004). DIARC is
implemented in the distributed multi-agent robotic de-
velopment infrastructure ADE (Scheutz, 2006), which
allows for straightforward extension and integration of
new software components by “wrapping” them in “ADE
agents”, in this case the Icarus architecture.
DIARC provides a convenient way for executing be-

haviors on the robot by virtue of a goal manager, which
is a priority-based scheduler for actions scripts that run
in parallel in their own threads. Whenever a script
is ready for execution, the goal manager instantiates
an action interpreter, whose job it is to execute all
atomic and complex actions in the script. Atomic ac-
tions are typically either requests for (raw) sensory in-
formation from the robot’s sensors (e.g., distance data
from the laser range finder) or motor commands that
are sent to various robot effectors (e.g., rotational and
translational velocities sent to the wheels of the base).
Complex actions are (possibly conditional) sequences
of atomic actions. Each instantiated action script has
a priority associated with it, which can be based on
various factors, typically including the utility of ac-

3This approach to hierarchical yet reactive control incor-
porates ideas from both Ingrand, Georgeff, and Rao’s (1992)
PRS and Nilsson’s (1994) teleoreactive programs.

complishing the goal associated with the script and
the time available for the script to finish. DIARC uses
these priority values for priority-based behavior arbitra-
tion (Scheutz & Andronache, 2004), in which the goal
manager continually recalculates the priority of each
running script to let those with higher priority access
resources (e.g., effectors) when there is contention.

Because DIARC interfaces directly with the robot’s
sensors, it is responsible for detecting entities like boxes,
doors, and hallways, then depositing descriptions of rel-
evant objects into Icarus’ perceptual buffer to drive
the inference process. This occurs automatically in
some situations, such as when an obstacle appears in
the robot’s path, letting them serve as interrupts to on-
going activities. However, Icarus can also deliberately
focus attention on classes of objects like doors or boxes
by invoking an attend action, which causes DIARC to de-
posit descriptions of any visible instances of that class
into the perceptual buffer. Icarus must explicitly call
this action on each cycle for it to have an effect; other-
wise, DIARC will not provide it with information about
objects when they are detected, which can cause the
former to omit key inferences about the environment.

Another aspect of the Icarus-DIARC integration con-
cerns the selection and execution of hierarchical skills.
This is straightforward when Icarus first attempts to
find an applicable path through the hierarchy. The pro-
cess works as described earlier except that, upon reach-
ing a primitive skill, the architecture passes the asso-
ciated actions to its companion system as DIARC goals,
which invokes modules that attempt to achieve them.
However, because both components have reactive inter-
preters, the integrated system also requires information
to flow upward from the former to the latter about the
status of these actions/goals, which may take many cy-
cles to complete. For this reason, each DIARC goal is
marked as ongoing, succeeded , or failed . In the first
case, Icarus does not invoke any more actions, since
it assumes DIARC is making progress on the task. In
the latter two cases, Icarus abandons the previously
selected skill path, even if otherwise applicable, and at-
tempts to find another, since it knows DIARC has ei-
ther completed it successfully or failed to do so. This
feedback lets Icarus retain high-level oversight of the
robot’s behavior while taking advantage of DIARC’s ef-
forts at lower levels.

Our final claim is that the integration of Icarus and
DIARC just described is sufficient to execute the same
broad range of tasks that the command language and the
command translator support . More specifically, the in-
tegrated system enables teleoreactive control of robots
which carry out extended activities that involve com-
plex combinations of conditions and sequencing. In the
next section, we report demonstrations of this ability
with a physical robot in realistic scenarios. Again, we
will not argue that our approach is the only response
to this challenge, but we believe it is a viable one that
makes a clear contribution to the literatures on human-
robot interaction and cognitive systems.



Experimental Demonstrations

To ensure that our approach to human-robot interac-
tion has the intended capabilities, we have tested it on
the Pioneer P3DXE platform in the environment de-
scribed earlier. During the development phase, we used
a 2D simulator to debug the system, making simpli-
fying assumptions to ease the process, but the physi-
cal world poses additional operational issues. Only by
demonstrating our system on an actual robot can we be
sure that our technical approach is robust in the face
of these issues. Here we consider one run in detail and
then present the highlights from additional tests.

Our first demonstration involved the English com-
mand that we presented in the beginning:

First Until you find open door D
Holds you go down the hallway

Next you go through D.

As explained previously, the first step in processing
this task description is to pass it through a compiler
that transforms it into a list-structure representation.
As background knowledge, this process depends on the
presence of basic concepts for domain-specific concep-
tual predicates like open-door and domain actions like
go-through. The second step, which we also discussed
earlier, involves translating the list-structure encoding
into a set of hierarchical Icarus skills that refer to
the conceptual predicates in their conditions and ef-
fects. Finally, the system generates a top-level inten-
tion, (skill-2 ?d you), which it asks Icarus to execute.

Given this intention and its supporting structures,
the system invokes Icarus to make conceptual infer-
ences and execute relevant skills to carry out the inten-
tion, relying on DIARC to provide it with percepts and to
carry out low-level activities like moving through a door
and going down a hall. For this task, Icarus initially
executes skills that move the robot down the hallway,
calling on DIARC to handle the necessary motion com-
mands. This continues for several Icarus cycles until
the robot reaches a door, leading to satisfaction of the
‘until’ condition and to completion of the first subskill.
Icarus then calls on another translator-generated skill
to move the robot through the door, again invoking
DIARC to handle details of environmental execution.

Our second demonstration involved an English in-
struction of similar complexity that illustrates sequen-
tial behavior:

Go straight through the door in front of you and
turn left, then go down the hallway and turn right.

Using our constrained English syntax, we rephrased this
statement as

If you are a robot
Then First If D is a door in front of you

Then you go through D
Next you turn left
Next you go down the hallway
Next you turn right.

Conversion of this command to the list-structure nota-
tion and translation into Icarus structures produces
the two skills

((skill-4 ?you)
:conditions ((robot ?you))
:subskills ((skill-3 ?d ?you) (turn-left ?you)

(go-down-hallway ?you)
(turn-right ?you)))

((skill-3 ?d ?you)
:conditions ((door-in-front ?d ?you))
:subskills ((go-through ?you ?d)))

In addition, the system generates the top-level intention
(skill-4 you), which it passes to Icarus for execution.

In this run, Icarus infers that a door is directly in
front of the robot and calls DIARC to maneuver through
it. Once the latter reports success, Icarus again in-
vokes DIARC, first to turn the robot to the left and then
to move it down the hallway. Some time later, when
DIARC completes these activities, Icarus tells it to turn
the robot right. Finishing this behavior means the en-
tire task is done, at which point the system halts and
awaits further instructions.

A final task that illustrates the conditional execution
of behavior involves the command:

Go through the first doorway after the blue box.

This time, we rephrased the instruction in our con-
strained syntax to be

If you are a robot and
B is a box and B is blue and
D is the door immediately after B

Then you go through D.

In this case, the conversion and translation processes
generated only the single Icarus skill

((skill-5 ?you ?d ?b)
:conditions ((robot ?you) (box ?b) (blue ?b)

(door-immediately-after ?d ?b))
:subskills ((go-through ?you ?d)))

along with the intention (skill-5 you ?d ?b), which
the system calls on the architecture to execute. Here
Icarus must notice a blue box that DIARC detects for it,
infer which door comes immediately after the box, and
call on DIARC to maneuver the robot to that door and
through it. Afterward, the agent does not go through
any more doors without further commands, since it has
completed the specified task.

Although these example traces do not cover the en-
tire range of instructions that can arise in our setting,
they provide clear evidence that our system operates as
planned, converting English commands into list struc-
tures, translating this internal notation into hierarchical
skills, and using one of these skills to state a specific in-
tention. The system then calls on Icarus to execute
the intention, which in turn invokes DIARC to control
the robot. The demonstrations provide support for the
three claims stated earlier: that our command language



covers a wide range of robot behaviors, that our trans-
lation mechanism converts these commands into legal
Icarus skills, and that the hybrid Icarus-DIARC sys-
tem executes the specified behavior in a realistic set-
ting. The integrated character of our approach makes
it difficult to evaluate these claims separately, but the
successful runs with a physical robot suggest their via-
bility. Naturally, we plan to carry out additional tests
on other complex tasks in this domain, but the results
to date have been encouraging.

Related Research
There has been considerable work in the human-robot
interaction community (Goodrich & Schultz, 2007) on
coordinating teams of humans and robots, examining
both high and low levels of interaction, and ranging
from one-on-one coordination to managing large robot
teams. For example, Kennedy et al. (2008) advocate us-
ing detailed mental simulation of a single human team-
mate’s reasoning and choices in order to predict his ac-
tions and thus avoid wasted effort. At the other ex-
treme, Lewis et al. (2006) have examined ways that a
human operator can teleoperate large robot teams with-
out encountering cognitive overload.

Natural language interaction is widely viewed as the
most promising communication medium for human-
robot teams, and several projects have explored inte-
gration of natural language capabilities in robot sys-
tems. For instance, Rybski et al. (2008) describe an
approach that lets a human teammate teach a robot
new action scripts using natural language descriptions,
although the scripts are fairly simple and descriptions
must conform to a highly structured subset of language
that mirrors the procedural semantics of action execu-
tion. Another approach, reported by Brenner (2007),
uses knowledge about the robot’s capabilities to aid
language understanding. This method relies on a cor-
respondence between words and terms that appear in
models of actions’ conditions and effects. This connec-
tion aids determination of parts of speech and, more
generally, understanding of commands in the domain.

There has been extensive research on formal represen-
tation languages for expressing the complex activities
that arise in many planning and executon tasks. For
example, Baier and McIlraith (2006) present a heuris-
tic approach to planning that converts goals stated in
a variant of linear temporal logic into nondeterminis-
tic finite automata over which planning techniques can
operate. In other work, Fainekos et al. (2009) describe
a motion-planning system that converts high-level be-
havior descriptions (e.g., a sequence of desired actions)
expressed within linear temporal logic into robot pro-
grams. Similarly, Grosskreutz and Lakemeyer’s (2000)
cc-GOLOG extends the logic programming language
GOLOG to robotic tasks by supporting the statement
of complex hierarchical procedures. However, none of
these systems actually control a physical robot; the re-
sulting plans have been tested only in simulation or
compared to “known” solutions.

Finally, there have been successful efforts to control
robots using other agent architectures, such as SOAR
and ACT-R. Laird et al.’s (1991) Robo-SOAR inter-
acted with the external environment via a camera and
robotic arm to achieve simple block manipulation goals.
Although the system could accept advice when unable
to solve a problem itself, this was restricted to suggest-
ing a particular task operator and was not provided in
natural language. ACT-R/E enables control of mobile
robots by integrating modules that interact with sensors
(e.g., visual and aural), reason about the world (e.g., lo-
calization), and carry out actions (e.g., locomotion and
speech production). Kennedy et al.’s (2008) work with
ACT-R/E is similar to our integrated approach, but it
does not translate natural language instructions into a
formal notation before further processing or construct
an explicit skill hierarchy.

Hence, although our work incorporates ideas from
each of these research projects, there have been no re-
ported efforts on human-robot coordination that com-
bine presenting commands in constrained natural lan-
guage, translating them into a formal notation, and exe-
cuting them via an agent architecture like Icarus. This
integrated approach offers clear advantages for human-
robot interaction, since both the high-level goal lan-
guage and the architecture’s internal structures for be-
liefs, goals, and intentions remain close to natural lan-
guage, which humans use effectively in coordination.
Thus, our work makes clear contact with previous re-
sults but combines them in new ways to provide novel
capabilities for human-robot coordination.

Concluding Remarks
In this paper, we reported a novel approach to human-
robot interaction that supports communication of high-
level but complex tasks and their robust execution. Our
approach relied on three distinct but integrated compo-
nents. The first specifies instructions in a constrained
version of English, relying on pairs of key words that
allowed direct conversion into an internal list-structure
notation. The second translates these list structures
into a set of hierarchical skills that can be interpreted
by Icarus, an agent architecture that supports concep-
tual inference and teleoreactive execution. The third
specifies an intention based on the command, expands
the skills in a top-down manner, and passes information
to DIARC, a robotic architecture, to handle the details
of controlling the physical device, which returns results
to Icarus for use on future decision cycles. We demon-
strated this integrated system on a Pioneer robot in a
multi-room setting on tasks that could arise in search-
and-rescue operations.

The encouraging results from these experiments sug-
gest that we should continue pursuing this approach to
human-robot interaction, but it is also clear that our
initial system would benefit from a variety of exten-
sions and studies. One natural avenue for future work
involves adding knowledge to DIARC and Icarus that
would let them recognize a broader range of objects and



act appropriately in response to them. We should also
examine empirically whether humans can use our com-
mand language effectively on realistic search-and-rescue
tasks. It seems possible that they will find the syntax
overly constraining, in which case we should explore
more flexible approaches to processing robot instruc-
tions stated in natural language (e.g., Dzifcak et al.,
2009; Kress-gazit et al., 2008).

In the longer term, we should take advantage of
Icarus’ ability to solve novel problems (Langley et al.,
2009), so that our integrated system can handle com-
plex tasks even when it lacks domain-specific skills for
their components. Moreover, the architecture’s ca-
pacity for acquiring such skills from successful prob-
lem solving should support learning of high-level com-
mands, which would let humans simplify their instruc-
tions to robots and allow even more efficient communi-
cation. A more radical extension would let the agent
draw inferences, based on a human’s commands and
questions, about the latter’s beliefs, goals, and inten-
tions, which in turn would further reduce the need for
detailed commands. Taken together, these extensions
would let the Icarus-DIARC combination play an even
fuller role as a member of a human-robot team.

Acknowledgements
The research reported in this paper was funded in part
by MURI Grant No. N00014-07-1-1049 from the Of-
fice of Naval Research. The views and conclusions con-
tained herein are the authors’ and should not be inter-
preted as representing the official policies or endorse-
ments, either expressed on implied, of ONR or the U. S.
Government. We thank Wende Frost, Ravi Gummadi,
and Anupam Khulbe for their earlier contributions to
the project.

References

Baier, J. A., & McIlraith, S. A. (2006). Planning with
first-order temporally extended goals using heuris-
tic search. Proceedings of the Twenty-First National
Conference on Artificial Intelligence (pp. 788–795).
Boston: AAAI Press.

Brenner, M. (2007). Situation-aware interpretation,
planning and execution of user commands by au-
tonomous robots. Proceedings of the Sixteenth IEEE
International Symposium on Robot and Human In-
teractive Communication. Jeju Island, Korea: IEEE
Press.

Dzifcak, J., Scheutz, M., Baral, C., & Schermerhorn,
P. (2009). What to do and how to do it: Trans-
lating natural language directives into temporal and
dynamic logic representation for goal management
and action execution. Proceedings of the 2009 In-
ternational Conference on Robotics and Automation.
Kobe, Japan.

Fainekos, G. E., Girard, A., Kress-Gazit, H., & Pappas,
G. J. (2009). Temporal logic motion planning for
dynamic mobile robots, Automatica, 45 , 343–352.

Ghallab, M., Nau, D., & Traverso, P. (2004). Auto-
mated planning. San Francisco: Morgan Kaufmann.

Goodrich, M. A., & Schultz, A. C. (2007). Human-
robot interaction: A survey, Foundations and Trends
in Human-Computer Interaction, 1 , 203–275.

Grosskreutz, H., & Lakemeyer, G. (2000). cc-GOLOG:
Towards more realistic logic-based robot controllers.
Proceedings of the Seventeenth National Conference
on Artificial Intelligence. Austin, TX: AAAI Press.

Ingrand, F. F., Georgeff, M. P., & Rao, A. S. (1992).
An architecture for real-time reasoning and system
control. IEEE Expert , 7 , 34–44.

Kennedy, W. G., Bugajska, M. D., Adams, W., Schultz,
A. C., & Trafton, J. G. (2008). Incorporating men-
tal simulation for a more effective robotic teammate.
Proceedings of the Twenty-Third Conference on Ar-
tificial Intelligence. Chicago: AAAI Press.

Kress-Gazit, H., Fainekos, G. E., & Pappas, G. J.
(2008). Translating structured English to robot con-
trollers, Advanced Robotics , 22 , 1343–1359.

Laird, J. E., Yager, E. S., Hucka, M., & Truck,
C. M. (1991). Robo-SOAR: An integration of exter-
nal interaction, planning, and learning using SOAR.
Robotics and Autonomous Systems , 11 , 113–129.

Langley, P., Choi, D., & Rogers, S. (2009). Acquisition
of hierarchical reactive skills in a unified cognitive
architecture, Cognitive Systems Research, 10 , 316–
332, 2009.

Langley, P., Laird, J. E., & Rogers, S. (2009). Cog-
nitive architectures: Research issues and challenges,
Cognitive Systems Research, 10 , 141–160.

Lewis, M., Polvichai, J., Sycara, K., & Scerri, P. (2006).
Scaling-up human control for large scale systems. In
N. J. Cooke, H. Pringle, H. Pedersen, & O. Connor
(Eds.), Human Factors of Remotely Operated Vehi-
cles . New York: Elsevier.

Nilsson, N. (1994). Teleoreactive programs for agent
control. Journal of Artificial Intelligence Research,
1 , 139–158.

Rybski, P. E., Stolarz, J., Yoon, K., & Veloso, M.
(2008). Using dialog and human observations to dic-
tate tasks to a learning robot assistant. Journal of
Intelligent Service Robots , 1 , 159–167,

Scheutz, M. (2006). ADE - Steps towards a distributed
development and runtime environment for complex
robotic agent architectures, Applied Artificial Intelli-
gence, 20 , 275–304.

Scheutz, M., & Andronache, V. (2004). Architec-
tural mechanisms for dynamic changes of behavior
selection strategies in behavior-based systems, IEEE
Transactions of System, Man, and Cybernetics Part
B , 34 , 2377–2395.


