
Using topic modeling to infer the emotional state of people living with 

Parkinson’s disease 

Abstract 

Individuals with Parkinson’s disease (PD) often exhibit facial masking 

(hypomimia), which causes reduced facial expressiveness. This can make it 

difficult for those who interact with the person to correctly read their emotional 

state and can lead to problematic social and therapeutic interactions. In this 

article, we develop a probabilistic model for an assistive device, which can 

automatically infer the emotional state of a person with PD using the topics that 

arise during the course of a conversation. We envision that the model can be 

situated in a device that could monitor the emotional content of the interaction 

between the caregiver and a person living with PD, providing feedback to the 

caregiver in order to correct their immediate and perhaps incorrect impressions 

arising from a reliance on facial expressions. We compare and contrast two 

approaches: using the Latent Dirichlet Allocation (LDA) generative model as the 

basis for an unsupervised learning tool, and using a human crafted sentiment 

analysis tool, the Linguistic Inquiry and Word Count (LIWC). We evaluated both 

approaches using standard machine learning performance metrics such as 

precision, recall, and 𝐹1scores. Our performance analysis of the two approaches 

suggests that LDA is a suitable classifier when the word count in a document is 

approximately that of the average sentence, i.e., 13 words. In that case the LDA 

model correctly predicts the interview category 86% of the time and LIWC 

correctly predicts it 29% of the time. On the other hand, when tested with 

interviews with an average word count of 303 words, the LDA model correctly 

predicts the interview category 56% of the time and LIWC, 74% of the time. 

Advantages and disadvantages of the two approaches are discussed 
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Introduction 

Parkinson’s disease (PD) is a universal disorder with an incidence ranging from 9.7 to 

13.8 per 100,000 population per year (WHO, 2006). In the US, PD follows Alzheimer’s 

disease as the most common neurodegenerative disorder, affecting at least 500,000 

Americans and perhaps 500,000 more if we include the undiagnosed and misdiagnosed 

cases (National Institute of Health, 2018). Tremors, muscle rigidity, bradykinesia 

(slowness of movement), and loss of balance are symptoms which accompany the 

disease; it is progressive, the symptoms worsening over time. The first three symptoms 

can occur in the facial, respiratory, and vocal muscles, resulting in diminished control of 

one’s facial and vocal expression which can dissociate one’s inner emotional state from 

the outward facial appearance; this is known as facial masking and is called hypomimia.  

Because people rely heavily on facial expression in attributing and interpreting other’s 

emotions and motivational states, facial masking can deeply affect the person’s ability 

to communicate which may lead to impaired social interactions and reduced quality of 

life (Sturkenboom et al., 2013; Takahashi & Tickle-Degnen, 2010). For example, 

rehabilitation therapists often use a client’s verbal and nonverbal behaviour to infer the 

client’s emotional state; if the client is mostly silent or displaying little facial 

expression, the therapist may infer the client to be more hopeless or apathetic which 

may not be their true emotional state.  In the home and community, desynchronization 

between a person’s emotional state and her external expression can occur during any 

social situation, which might take place in the home, among family and friends, and at 

work (Takahashi & Tickle-Degnen, 2010).  This may exacerbate feelings of social 

incapacitation and stigmatization, which leads to reduced quality of life and the vicious 

cycle of decreasing social engagement (Ma, Saint-Hilaire, Thomas, & Tickle-Degnen, 

2016). 



Given that facial expressiveness is a problematic channel for communicating 

emotions and emotional states in people with PD, a more accurate channel might be 

verbal communication: the words a person uses in their verbal or written speech 

(DeGroat, Lyons, & Tickle-Degnen, 2006).  Since for humans it is very difficult to 

override the interpretation of information transmitted through facial expression, which 

happens automatically and instinctively, it would be helpful to have a reliable, 

automated way of analysing verbal communication that helps detect the valence of the 

emotion expressed.  This automated capability could be implemented in a 

communication-assistive tool for improving social life.  The tool could take the form of 

a robotic companion or an application that would help people living with PD, their 

caregivers, and social community by alerting conversation partners to 

misunderstandings coming from the desynchronization the person with PD experience 

of emotion and its reflection in the face.  This device is meant to improve natural human 

interaction in the home and community. 

For text, detection of emotional content and its valence has been attempted using 

an automated textual analysis software program called Linguistic Inquiry and Word 

Count (LIWC) (Pennebaker, Boyd, Jordan, & Blackburn, 2015).  Tausczik and 

Pennebaker (2010) showed that LIWC’s categories for positive emotion, negative 

emotion, anxiety/fear, anger, and sadness/depression were correlated with external 

raters’ judgments, demonstrating they can be used to assess emotional content in text. 

However, there are several limitations to using the LIWC approach.  The basis for 

LIWC’s text analysis is a dictionary which in the latest version (i.e., LIWC2015) 

consists of approximately 6,400 words, word-stems, and emoticons, i.e., a pictorial 

representation of human facial expressions used to convey emotion in text (Pennebaker 

et al., 2015).  LIWC’s dictionaries are constructed by human scientists according to 



evaluation data generated by human raters, rather than learned from the text 

automatically.  This means that LIWC cannot be used with natural languages for which 

the software has not been modified to accommodate (i.e. for which such dictionaries 

have not been created). LIWC relies on word recognition, and needs to be periodically 

updated as language usage evolves. Also, LIWC is not designed for spoken language 

(Pennebaker et al., 2015), while for the detection of emotional content in a conversation, 

the ability to work with spoken language is crucial. 

In this paper we introduce a novel approach: using the Latent Dirichlet 

Allocation (LDA) generative model as the basis for an unsupervised learning tool which 

is trained to extract topic proportions from a collection of text documents (see the 

Background and Methods sections for details). When an unseen document is presented 

to the model, it finds the document’s topic proportions and uses them as a set of 

features. We then use a logistic regression (LR) classifier to associate these features 

with training data having enjoyable emotional content (text obtained through the 

prompt: talk about an enjoyable experience) or frustrating emotional content (text 

obtained through the prompt: talk about a negative emotional experience). We compare 

our model with the LIWC approach: the word count frequency of five LIWC features 

associated with emotion is extracted from the text and these are used to train another LR 

classifier to associate them with the emotion content labels frustrating and enjoyable 

that have opposing valence. 

The paper proceeds in the following way. In the Background and related work 

section, we review the LIWC and LDA approaches.  In the Methods section, we show 

how interview transcripts from the Self-management Rehabilitation and Health-Related 

Quality of Life in Parkinson’s disease database (Tickle-Degnen, Ellis, Saint-Hilaire, & 

Wagenaar, 2010) were used as text documents to train and test both models and we 



compare the results of two experiments: the first using training and test documents from 

the entire interview (average word count = 303) and the second using documents which 

were edited to contain the first 20 seconds of the interview transcripts (average word 

count = 13).  The Results section shows that for longer text, the LDA model correctly 

predicts the emotion label (frustrating or enjoyable) 56% of the time while the LIWC 

model 74% of the time.  However, in the case of shorter text, the LDA model 

outperforms the LIWC model.  We then discuss advantages and disadvantages of each 

approach and potential ways of using them to create emotion detecting assistive 

conversation tools. 

Background and related work 

Human-curated approach: LIWC 

A reliable method for analyzing the emotional content of text is useful in a wide range 

of scenarios such as opinion mining where it is necessary to detect shifts in customer 

sentiment as expressed in social media.  One approach is to manually label words 

according to their semantic valence, either positive or negative (Liu, 2010), creating a 

sentiment lexicon.  Generating a reliable sentiment lexicon manually is time-consuming 

and thus most researchers rely on already-generated lexicons such as LIWC (Hutto & 

Gilbert, 2014).  LIWC was first introduced in 1993 and has been updated three times 

since; its latest version was released in 2015. As previously indicated, LIWC2015 

contains an internal default dictionary that is used to determine the words which should 

be counted in the documents. The dictionary of approximately 6,400 words is associated 

with particular domains, such as negative emotion, and these are called word categories. 

There are 41 word categories associated with a psychological category (e.g., affect, 

biological processes), six personal concern categories (e.g., home, work, leisure), five 



informal language markers (e.g., swear words, net-speak), and 12 punctuation 

categories. When a word in the text is found in the dictionary, all the word categories 

that it belongs to have their counts incremented (Pennebaker et al., 2015). The 

reliability of LIWC has been validated internally (e.g., checking whether the more a 

person uses a word from a LIWC word category in a text, the more the person uses 

other words from the same category).  The external validity of the LIWC categories 

have been assessed in contexts relevant to daily living and mental and physical health 

(Tausczik & Pennebaker, 2010). 

With regards to emotional expression in PD, Takahashi and Tickle-Degnen 

(2010), using data from the same database as this study,  measured expressive behavior 

in transcripts of 212 video clips of 106 persons living with PD by using LIWC to count 

the number of motivation-related words in each transcript. The videos were recordings 

of interviews in which the participants were asked to discuss an enjoyable or frustrating 

activity that occurred during the past seven days. The researchers reported that when 

participants discussed enjoyable activities, they tended to use more words associated 

with the LIWC positive emotion category compared to when they discussed frustrating 

activities. Conversely, participants tended to use more words associated with the LIWC 

negative emotion category when discussing frustrating activities. The research objective 

of the current study is to determine whether our machine learning model can achieve 

similar results to LIWC, using the participants’ interview transcriptions from the 

Takahashi and Tickle-Degnen (2010) study and from the Tickle-Degnen et al. (2010) 

study. 

Latent Dirichlet Allocation (LDA) 

Generating and maintaining a sentiment lexicon suitable for reliably extracting 

emotional content and its valence from text is a labor and time-intensive undertaking. 



For example, there have been three major releases since LIWC‘s initial release in 1993, 

each containing a new dictionary and improved software design, the result of human 

testing and validation as well as software engineering effort (Pennebaker et al., 2015). 

To this end, automated approaches to identifying and extracting features from 

documents which are correlated with emotion valence and intensity have been the 

subject of active research. We categorize these approaches as machine learning, i.e., the 

fields of study in which computers learn without explicitly being programmed.  In 

contrast to LIWC in which humans have carefully associated words to emotion 

categories via its dictionary, the challenge for designing a machine learning model is to 

identify the features contained in the text, i.e. characteristics of the text that can be used 

to consistently identify distinctive categories, such as enjoyable vs. frustrating 

emotional content.  The goal is to find features such that as words associated with 

emotion valence change or new ones are introduced, the model’s features also adapt. 

Such features can be found in the thematic structure of a document. Topic 

modeling is the detection of the thematic structure of a document collection; it is a 

classic problem in natural language processing. One of the motivations for research in 

this area is to find ways to reduce the dimensionality of large collections of text; the 

goal is to find semantic structures in the text, which can be used to represent its 

characteristics using a parsimonious amount of information. This lower-dimensional 

representation can be used, for example, as an efficient way to retrieve the text. 

If samples of text were obtained, we hypothesize that a collection of text 

documents will contain a mixture of topics. The proportions of these topics in a single 

document could reflect the enjoyable and frustrating topics contained in that document. 

Thus, the model design goal is to detect thematic, topic information contained in a 

sufficiently large sample of text (i.e., a document collection) so that when a document 



the model has not yet seen is presented, it can identify the proportion of topics 

contained therein. We then train a classifier to associate a large sample of documents 

whose emotion valence is already known with these topic proportions. Once that is 

done, we now have created a way to predict the valence of the emotional content (e.g. 

enjoyable or frustrating) of any document for which we have extracted its topic 

proportions. For the feature extraction component of our model design, we will draw 

from the field of topic modeling, using a technique called Latent Dirichlet Allocation 

(Blei, Eng, & Jordan, 2003). 

LDA is built around the intuition that documents exhibit multiple topics (Blei et 

al., 2003). LDA makes the assumption that only a small set of topics are contained in a 

document and that they use a small set of words frequently. The result is that words are 

separated according to meaning and documents can be accurately assigned to topics. 

LDA is a generative data model which as the name implies describes how the data is 

generated. This idea is to treat the data as observations that arise from a generative, 

probabilistic process, one that includes hidden variables, which represent the structure 

we want to find in the data. For our data, the hidden variables represent the thematic 

structure (i.e., the topics) that we do not have access to in our documents. Simply put, a 

generative model describes how the data is generated, and inference is used to backtrack 

over the generative model to discover the set of hidden variables which best explains 

how the data was generated. To express the model as a generative probabilistic process, 

we start by assuming that there is some number of topics that the document contains and 

each topic is a distribution over terms (words) in the vocabulary. Every topic contains a 

probability for every word in the vocabulary and each topic is described by a set of 

words with different probabilities reflecting their membership in the topic. The LDA 

generative process can be described as follows: 



For each document: 

(1) Choose a distribution (i.e., list of topic proportions) over the topics in the 

document: 𝑃(𝛩𝑑), which is the per-document topic proportion drawn from a 

Dirichlet distribution. Note that we have a collection of documents and are 

choosing a distribution for one of the documents in the collection. The 

eponymous Dirichlet in Latent Dirichlet Allocation is the name of the 

distribution that can be used to sample from a collection of distributions. 

(2) Repeatedly draw a topic from this distribution. Draw a word, 𝑤, from the 

distribution of words for that topic, with the probability: 𝑃(𝑤|𝑍, 𝛽𝑘), where 𝑍 is 

the hidden topic assignment and 𝛽𝑘 is the topic distribution over all the words in 

the vocabulary. Note that 𝛽𝑘 is a Dirichlet distribution as we have a collection of 

topics from which we are choosing a distribution over words.  

For another document repeat (1) and (2). The above process generates each 

document on a word by word basis, according to the assumptions made about the 

document’s thematic structure (i.e., topic proportions and word distribution), regardless 

of word order; this latter characteristic is known as a bag of words model. We never get 

to observe this structure, so it must be inferred by asking: (i) what are the topics that 

generated these documents? (ii) for each document, what is the distribution over the 

topics associated with that document? (iii) for each word, which topic generated the 

word? In other words, we want to infer the topic structure which can be thought of, in 

probabilistic terms, as computing the posterior distribution of our generative model: 

(𝑃ℎ𝑣 | 𝑃𝑜), where 𝑃ℎ𝑣 is the probability that the document collection has a thematic 

structure given 𝑃𝑜, the probability of observing the document collection. Operationally, 

the hidden variables represented by 𝑃ℎ𝑣 can be computed several ways using a class of 



algorithms known as approximate posterior inference. In our model, the LDA algorithm 

computes both the hidden variables 𝑍 (per-word topic assignment) and 𝛩𝑑 (per-

document topic proportion). We hypothesize that the topic proportions are features 

which are reduced-dimensionality representations of the original documents and 

preserve essential characteristics such as the valence of the emotional content of the 

text. Our model uses a machine learning classifier to systematically correlate these 

features with PD participants’ interviews, labelled according to their enjoyable or 

frustrating emotional content. 

Methods 

Materials 

Input to our model is a document collection of de-identified transcribed interviews 

collected during a previously conducted randomized control trial called Self-

management Rehabilitation and Health-Related Quality of Life in Parkinson’s disease 

(Tickle-Degnen et al., 2010).  Data for the current study include responses to open-

ended questions about daily life events in the recent past that participants had 

experienced as particularly frustrating or enjoyable.  Participants (N = 117) were people 

in the early to middle stages of PD, with mild unilateral or bilateral symptoms, Hoehn & 

Yahr stages 1 through 3 (Goetz et al., 2004), were unassisted for walking and 

communicating, non-depressed, and of normal mental status.  Of the 117 participants, 

69.8% were male and 30.2% were female with an average age of 65.6; on average, 

participants were diagnosed with PD seven years prior to the study.  At the time of the 

interview, participants were “on stage” (i.e., they were taking their medication and their 

medication was working). 

Using a mood-manipulation protocol, the researchers examined the participants’ 



apparent emotional state by asking them to recall two types of experiences: a frustrating 

one and an enjoyable one that they had during the past seven days. The interviews were 

videotaped, later transcribed and the response to each prompt was saved in a separate 

document. The interviews were conducted at the following intervals: at the baseline, 

after six weeks, and then two months and six months, post-intervention. Participants 

talked about typical activities with a focus on their social life and interactions. 

Since extracting features using LIWC requires at least some words to count in 

order to correlate with the built-in emotion categories, we created one dataset containing 

only documents with at least 130 words to be included in our models, resulting in a 

document collection of 366 positive and negative interviews. Documents contained an 

average word count of 303 words, with the largest containing 1732 words and the 

smallest, 131. We also created a dataset of 448 documents containing documents with 

an average word count of 258 words, with the largest containing 1732 and the smallest, 

2. We used this to see how well small documents were classified by the LDA and LIWC 

models.  To elicit responses containing enjoyable or frustrating content, the interviewer 

used the following prompt: talk about an enjoyable/frustrating experience that happened 

in the last week. 

Model design 

The overall approach to the model design consists of two processing steps: (1) extract 

the features from each document in the set, and (2) use these features to predict whether 

the interview described a frustrating (negative) or enjoyable (positive) experience. The 

difference between our model and LIWC is the feature extractor used in step (1): LDA 

topic proportions vs. LIWC word count. The design of the LDA feature extractor is 

shown in Figure 1 and that of LIWC in Figure 2. Prior to extracting features from the 

document set, the collection is split using a 90/10 proportion into a training and test set, 



shown in steps 1 and 2 in both figures. This is to create ”set-aside” test documents, 

which can be used to evaluate how well the model predicts whether an interview is 

enjoyable or frustrating for a document that has not been used for training. The training 

set is used to build the generative topic model which is then used to infer the topic 

proportions (i.e., features) of both the training set as well as the set-aside test set. Once 

the training and test sets have been created, feature extraction follows two distinct 

processes for LDA and LIWC. 

LDA training and feature extraction 

Once we have split our document collection, we can use the training set to generate the 

topic model and infer its thematic structure, i.e., topic proportions. We use the Gensim 

(Řehůřek & Sojka, 2010) implementation of LDA, a robust, stable version that is widely 

used in academic research for topic modeling and natural language analysis. While it is 

possible to adjust many of the implementation’s parameters (e.g., the Dirichlet priors for 

the per document distributions and for the per topic word distributions), we accept the 

default values. As mentioned earlier when we introduced LDA, the generative model 

assumes a number of topics over which an initial distribution of documents (i.e., 𝑃(𝛩𝑑)) 

is estimated. We now describe how we selected the number of topics. 

Recall that a topic model tries to discover a thematic structure in a document 

collection; it is trying to find structure in otherwise unstructured text. One of the 

characteristics of this type of machine learning method is that it does not guarantee that 

the topics will be interpretable by humans. Thus a measure is needed to automatically 

evaluate the topic quality of the topics generated by the LDA model. We use the topic 

coherence pipeline available in Gensim which is an implementation of the method 

described in (Röder, Both, & Hinneburg, 2015). In the context of topic modelling, a 

coherent model is one in which words are treated as facts; coherence can then be 



evaluated on the basis of how well the words in a topic “support” one another, as when 

we speak of a coherent set of facts. In the topic model, words support one another based 

on their probability of co-occurring together. The coherence measure produced by the 

Röder et al. (2015) framework is a real number representing an aggregation of 

probability estimates; this number can be used to compare the topic quality of different 

topic models. Röder et al. (2015) report that the model has been extensively compared 

with human gold-standard coherence measures using Wikipedia as a reference corpus 

and has performed quite well. Figure 3 shows a plot in which the LDA model was run 

with an increasing number of topics in steps of 2, from 2 to 100, against which the 

coherence score was calculated. We can identify eight local maximum values at 4, 16, 

24, 34, 44, 50, 64, and 91 topics respectively. We hypothesize that the interview 

process, during which a participant was asked to recall a frustrating and enjoyable 

activity, tends to generate a large set of words with different co-occurrences across 

participant interviews. However, there are a set of topics which distinguish between 

frustrating and enjoyable content, allowing the model to use these topics to predict 

emotion valence. We will describe how these eight topic-number values were used in 

the model evaluation in a subsequent section. 

As shown in step 2 of Figure 1, once we have split the interview transcriptions 

into training and test document sets, we set aside the test set and proceed to pre-process 

the training set. The purpose of pre-processing is to transform the original text into a 

more efficient set of words, removing information that does not help the LDA model 

infer its thematic structure. Pre-processing lemmatizes words (i.e., words in the third 

person are changed to the first person; verbs are changed to the present tense) and words 

are stemmed (i.e., reduced to their root). Common “stop” words (e.g., the, is, at) and 

disfluencies (e.g., um) are removed. Document text is split into sentences and then into 



words and word frequencies are computed. It should be noted that during the pre-

processing, the ordinal nature of the document structure is broken and it becomes a bag 

of words. The LDA model does not use grammatical structure to infer thematic 

structure. 

Training is completed once the LDA model has estimated the hidden variables 

𝑍 (per-word topic assignment) and 𝛩𝑑 (per-document topic proportion), which the LDA 

model in Gensim does automatically on our behalf. At this point we have a trained topic 

model to which we can supply unseen documents and obtain topic proportions; we can 

also extract the topic proportions already assigned to the documents it used for training. 

In either case, the topic model produces a set of feature vectors, one for every document 

the size of each being the number of topics. However, we do not yet have an association 

between the topic proportions and the classification of a document as “frustrating” or 

“enjoyable”. In a subsequent section, we will describe how we can use a machine-

learning tool known as classifier to make this association. 

LIWC feature extraction 

Takahashi and Tickle-Degnen (2010) used five LIWC dictionaries (categories) to 

measure participants’ verbal expression of positive and negative emotion. They are: 

positive emotion, anxiety or fear, anger, sadness or depression, and achievement. The 

researchers used the 2010 version of LIWC to extract word counts in these categories 

from participant interviews. An analysis of variance (ANOVA) was used to show a 

statistically significant effect that participants used more words categorized by LIWC as 

expressing positive emotion when talking about enjoyable activities rather than 

frustrating activities, and used fewer words expressing negative emotion. Alternatively, 

participants used more negative words when asked to recall a frustrating activity. Thus 

we chose these five categories to be used as features, hypothesizing that they could be 



associated with the classification of an interview as being frustrating or enjoyable. As 

shown in step 2 of Figure 2, the participant interviews were lightly processed to remove 

disfluencies and then input to the 2015 version of the LIWC software. The resulting 

output is a set of feature vectors for every document, each vector of size five and where 

each feature represents the word proportion of the corresponding LIWC emotion 

category. The feature vectors generated by LDA and LIWC were then used by a 

classifier to learn the association between the features and the type of interview. 

Using features to predict emotion valence 

In machine learning, a classifier is a software tool used to predict classes of items rather 

than values; the latter is performed using regression techniques. In our model we use a 

logistic regression (LR) classifier to predict a set of two possible interview classes, 

interview = {frustrating, enjoyable}. We use a stable, widely-used implementation of an 

LR classifier from Scikit-learn, a free software machine learning library (Pedregosa et 

al., 2011). Logistic regression, developed by statistician David Cox (1958), computes 

the probability of output in terms of input and this can be used to construct a classifier 

by choosing a cut-off probability value (i.e., 50%) and classifying input values greater 

than the cut-off as one class and below the cut-off as the other. The classifier is trained 

and used to predict the interview classes in exactly the same way for both the topic 

features and LIWC features (see Figure 4); the only difference is the feature set used, 

and the following discussion holds for both sets. 

Training the logistic regression classifier consists of finding the parameters θ of 

the model such that it sets high probabilities for enjoyable content and low probabilities 

frustrating content. This is achieved by minimizing the cost function, 𝑐(𝜃), where the 

probability estimate is �̂� and the training label is 𝑦: 



𝑐(𝜃) = {
−log (𝑝), 𝑖𝑓 𝑦 = 1

−log (1 − 𝑝), 𝑖𝑓 𝑦 = 0
 

Consistent with the goal of the classifier, 𝑙𝑜𝑔(𝑥) grows larger when 𝑥 

approaches 0, and therefore, the cost will be large if the classifier estimates a probability 

close to 0 for an enjoyable interview; likewise, it will also be large if it estimates a 

probability close to 1 for a frustrating interview. Alternatively, −log(x) is close to 0 

when x approaches 1 and the cost will be close to 0 when the estimated probability is 

close to 0 for frustrating interview and close to 1 for an enjoyable interview. To 

compute the value of θ that minimizes the cost function, the Scikit LR classifier 

implementation uses an optimization method known as stochastic gradient descent (a 

good discussion can be found in Géron, 2017). Once classifier training was completed, 

we evaluated the LDA and LIWC models’ performance using materials from (Tickle-

Degnen et al., 2010). 

Results and evaluation 

Experiment 1: Predicting interview class using larger word counts 

For this evaluation, we used the document collection, from the Self-management 

Rehabilitation and Health-Related Quality of Life in Parkinson’s disease database 

where the average word count = 303 to train and test the model; there are 332 and 34 

documents in the training and test sets respectively. The LDA feature extractor (see 

Figure 1) was trained eight times by setting the LDA model’s parameter for the number 

of topics according to the eight values identified by the coherence model as local 

maxima (see Figure 3). Each training session 𝑖, where 1 ≤  𝑖 ≤  8, and 𝑛𝑖  =

 {4,16,24,34,44,50,64,91} topics generates a feature vector of size 𝑛𝑖 for each 

document in the training set. Each feature vector is associated with a document’s target 



label (i.e., 𝑒𝑛𝑗𝑜𝑦𝑎𝑏𝑙𝑒 =  1, 𝑓𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑛𝑔 =  0) and the (𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡) pair is used 

to train the logistic regression (LR) classifier using a method known as K-fold cross 

validation. The results for each training session are shown in Table 1. In K-fold cross 

validation, the training set is split into K distinct subsets called folds. We set K = 10; 

this is typical for the size of our training set, which is considered small compared to 

typical machine learning problems that can have several thousand training instances. 

This process trains and evaluates the LR classifier ten times choosing a different fold for 

testing every time and training on the remaining nine folds. 

We include more robust metrics than accuracy to evaluate the model 

performance: precision, recall, and 𝐹1. Precision gives a measure of the accuracy of 

positive predictions. It is computed as shown in the equation below, where TP is the 

number of true positives and FP is the number of false positives.  Thus, a model with 

low precision will tend to signal a high number of “false alarms”. It is often compared 

with another measure called recall, also known as sensitivity or the true positive rate, 

i.e., the proportion of positive instances correctly identified by the model. It is computed 

as shown below, where FN is the number of false negative instances. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
       𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

For example, referring to Figure 1, when using four features and when the model 

predicts the interview is enjoyable, it is correct only 56% of the time; when an interview 

is actually enjoyable, it predicts so 56% of the time. It is common when evaluating 

classifiers to combine precision and recall into a single statistic, called the 𝐹1 score. This 

score is the harmonic mean of the precision and recall, which unlike the arithmetic 

mean, balances both; you cannot get a good 𝐹1 if either are low. 𝐹1gives its best score at 

1, when precision and recall are perfect. Thus, the harmonic mean will generate high 𝐹1 



values when both the precision and recall are high. We can see, for example, that the 𝐹1 

score of 61 is highest when features = 24, 34. 

As discussed, we have trained eight LDA feature extractors, corresponding to 

the number of topics we presented as a parameter to the model and that we have set-

aside 10% of our documents (i.e., 34) which have never been used to train either the 

LDA feature extractor or the LR classifier. For each of these feature extractors, we 

present the test documents in order to extract their features and then we present them to 

our trained classifier which predicts whether the documents are either frustrating or 

enjoyable interviews (refer to Figure 4). The results are shown in Table 2 which gives 

the classification accuracy for each feature set size used. The accuracy is the mean score 

across the 34 test documents. 

The five emotion categories used by Takahashi and Tickle-Degnen (2010) were 

used to extract features from the 332 training documents as shown in Figure 2. These 

feature vectors were paired with their corresponding document target labels and we 

followed the same 10-fold cross validation procedure described in the previous section 

to train the LR classifier (refer to Figure 4). The precision, recall, and 𝐹1 evaluation 

metrics are shown in Table 1. We then used the LIWC categories to extract the features 

from the set-aside test documents and presented them to the trained LR classifier in 

order to predict each document’s interview category. The results are shown in Table 2 

which gives the mean classification accuracy across the 34 test documents. 

Experiment 2: Predicting interview class using smaller word counts 

In this experiment, we investigated how well an LDA model trained on a collection of 

404 documents from the same database whose word count ranged from 2 to 1732, with 

an average of size of 258 could accurately predict the interview class using test 



documents representing short bursts of dialog. For the test set, we used transcripts that 

were edited to obtain the first 20 seconds of conversation. These documents have an 

average word count of 13 words, and ranging from 22 to 2 words; this is the typical 

word count found in the average sentence. The LDA feature extractor was trained using 

number of topicsequal to 4. 

As can be seen in Table 3, the LDA model F1 score of 0.80 using the test set is 

considerably better than the LIWC model score of 0.44. Presumably this is because it 

has extracted the topics from the context of all the documents in the training set and 

thus is able to use this information to situate the unseen document in these topics. In 

contrast, LIWC only uses the words in the test document presented to it, which may 

contain insufficient content to accurately predict the emotion content. We do not report 

statistics for the training process since the training data is similar to what was used for 

Experiment 1 and the purpose was to evaluate short test documents. 

Discussion 

The findings suggest that LDA can be used to discover a set of topics whose proportions 

for any given document in the collection can be used to parsimoniously represent the 

positive or negative emotion content of that document. It appears that the number of 

topics used to extract the features does not greatly affect the performance of the 

classifier. The most compact feature set using four topics, had an 𝐹1 score of 0.58 and 

resulted in a test set accuracy of 71% whereas the largest feature set of 91 topics had an 

𝐹1 score of 0.61 and a test set accuracy of 74%. In comparison, the LIWC model used 

five categories of words which have been previously shown to correlate with interview 

category (Takahashi & Tickle-Degnen, 2010). Words belonging to each category were 

tallied and used to calculate their category’s proportions. This approach produced an 



𝐹1score of 0.74 and a test set accuracy of 76%. When faced with a number of choices of 

increasing complexity, all of which have similar explanatory power in a model, it is 

reasonable to choose the least complex explanation (i.e., Occam’s razor). The least 

number of topics that can be used to train the LDA model and generate features that 

separate the documents into positive and negative emotion categories is four and in the 

remainder of the discussion, we will assume this version of the LDA feature extractor. 

Classification accuracy is only one part of the evaluation; precision and recall, 

described earlier, are metrics that provide more nuanced on the models’ predictive 

behaviour. In experiment 1, precision and recall are both 0.56 during the cross-

validation training. This gives us insight as to how the model will perform across a 

variety of test sets. These metrics suggest that LDA does better than chance predicting 

the interview category in two situations: (1) when it makes a prediction, it is correct 

56% of the time (precision) and (2) given the actual target, the model makes the same 

prediction 56% as well (recall). The LIWC model, with an 𝐹1 score of 0.74, performs 

better in both cases, 74% of the time. We note that for both models, precision equals 

recall and thus neither is biased toward giving more false positives (precision) or false 

negatives (recall). These statistics suggest that the LIWC model would more accurately 

classify new interviews whose average word count is 303 words (approximately 22 

sentences per document on average). The performance differential may be due to the 

five dictionaries selected to be the source of the features used in the LIWC model. 

On the other hand, in situations where the model is likely to encounter one or 

two sentences, Experiment 2 (Figure 3), which produced an 𝐹1 of 0.80, suggests the 

LDA to be the better choice. We might, for example, create a communication-assistive 

tool to infer the emotion content of each interaction between a person with PD and a 

caregiver, which most likely consists of short bursts of dialog. In this experiment, the 



precision and recall metrics have different values in both LDA and LIWC. In LDA 

precision = 0.75 and recall = 0.86 suggesting that the model is biased away slightly 

from making false negative predictions and more towards false positives. In an 

interaction with a PD person and a caregiver, the LDA model will evaluate that turn in 

the conversation to contain more positive emotion (more enjoyable) when it may in fact 

contain more negative emotion (more frustrating), slightly more frequently (11%) than 

making a negative prediction when the turn is positive. However, the LIWC precision of 

100% suggest that it will almost never make a false positive prediction, but when it does 

makes an incorrect prediction, which it did in this experiment, 1.00 - 0.64 or 36% of the 

time, it is likely to be a false negative. A higher level of false negative predictions 

(predicting frustrating content when the actual is enjoyable) is an example of the 

desynchronization of mental state and facial expression which Tickle-Degnen, Hall, and 

Rosenthal (1994) report “can have a profound effect on communication ability and 

quality of life”. 

Another characteristic of the LDA model is that it is not sensitive to the 

language of the text and uses the entire document collection during training to infer the 

hidden topic structure. Thus it can learn thematic structure from documents in any 

language and use what it has learned to place documents it has not seen in the topic 

structure, even short, one or two sentence documents. LIWC, however, would have to 

be modified to incorporate a new language and its dictionaries would have to be updated 

to ensure the new language’s words were placed in the proper emotion categories. Thus 

we hypothesize superior performance of LDA in spoken dialog of persons with PD. 

Persons with PD have difficulty with enunciation and voice volume, therefore 

automated speech recognition technology (ASR) at its current level (i.e., 15% Word 

Error Rate), is likely to produce inaccurate transcripts. This will make it difficult for 



LIWC to recognize words and process word counts. Since LDA is not sensitive to the 

word orthography, it should still be able to use the imperfect transcriptions to extract the 

topic features; this theory however remains to be tested. At present, we used the model 

to classify emotion valence categorically as enjoyable (positive) or frustrating 

(negative); however it is also possible to use the model to predict other discrete 

emotions including the level of arousal. In a future version of the model, predicting both 

valence and arousal can be used to observe and inform the emotion trajectory of a 

conversation as it unfolds between any two participants, for example, in therapy or 

counselling sessions. 

Limitations 

The results of this study suggest that topic modeling could extract features associated 

with emotion valence using verbal transcriptions of interviews in which participants 

were specifically asked to recall an enjoyable and a frustrating experience. We shall 

point out a few limitations of this approach. People living with PD might have talked 

about frustrating things when describing enjoyable experiences, this sometimes happens 

in the context of chronic illness, especially with people with depression. However, our 

participants were screened for depression and were found to not be clinically depressed.  

Also, human emotional state can change in far more complex ways and in more 

subtle gradations than the positive/negative emotional categories we have explored in 

this study. In addition, further research in how humans combine input from several 

modalities such as visual, auditory, and tactile to generate understanding of complex 

mental states such as embarassment, thinking or depression is needed to inform a more 

naturlistic and incremental model. Furthermore, the topic model infers the hidden 

thematic structure and the topics are not easily interpretable. The topics cannot really 

tell us much in a way that makes sense to a human why a certain text has an enjoyable 



or frustrating emotional content. Finally, our training and testing dataset was 

comparatively small. At most, we had 448 transcripts in the document collection, a 

limited amount of data compared to typical machine learning endeavours which may 

have thousands of training examples available.  This means that in order to generalize 

the test results to a domain beyond that described in Tickle-Degnen, et al. (2010), 

additional training documents will have to be used. 

The initial purpose of this research was to investigate whether interview data 

from persons with PD could be used to train a model to predict whether a new utterance 

described something enjoyable or frustrating.  We view this as a first stage in building 

an assistive tool which a caregiver could use to infer the emotional state of a person 

with PD.  In order for the model to be useful in a clinical setting as a communication 

assistive tool, it will have to be developed further to generate the more incremental and 

subtle gradations of human emotional states.  In addition, clinical trials would need to 

be conducted to assess its usefulness.  

Conclusion 

In this article, we investigated an automated method for inferring the emotional state of 

a person with Parkinson’s disease using a machine learning approach. Our results show 

that the LDA model performs better with shorter text which makes it more suitable for 

evaluating emotional content of short dialog turns. For longer documents, LIWC 

performs better; however, it has the shortcoming of assuming a constant, non-evolving 

language and is dependent on manually selecting the dictionaries to be used as features 

in the problem domain. It is also non-generalizable to other languages for which 

dictionaries have not yet been created. 

The LDA model is a first step towards creating an assistive tool which the 

caregiver can use to infer the emotional state of a person living with PD. Given that 



many people with PD live in the community, the caregiver is likely to be a member of 

the family who is not necessarily trained or accustomed to the symptoms of the disease 

and may make incorrect inferences about the person’s true emotional state. Thus an 

assistive tool equipped with the ability to accurately and immediately provide feedback 

on the emotion content of a conversation is not only beneficial for improving the social 

interaction with the PD patient, it can improve the quality of life in the home, including 

that of the family members. This capability can also be to assist the rehabilitation 

therapist in, for example, during client evaluation, helping preserve the client’s dignity 

in situations where the client’s claims to be happy is belied by her affectless face. This 

technology is not restricted to the domain of people living with Parkinson’s disease; it 

should be able to generalize and serve as an intelligent agent useful for monitoring the 

emotional content of the interaction between any two parties, providing real-time 

feedback on the emotional content as the interaction unfolds. 
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Table 1.  Experiment 1: Model evaluation using 10-fold cross-validation for 332 

training documents with average word count = 303; max = 1732; min = 131 

LDA evaluation 

Features Precision Recall 𝐹1 

4 0.56 0.56 0.58 

16 0.54 0.55 0.54 

24 0.62 0.62 0.62 

34 0.62 0.63 0.62 

44 0.59 0.59 0.59 

50 0.57 0.57 0.57 

64 0.57 0.58 0.57 

91 0.63 0.63 0.61 

 

LIWC evaluation 

Features Precision Recall 𝐹1 

5 0.74 0.74 0.74 

 

  



Table 2.  Experiment 1: Model testing using with average word count = 303; max = 

1732; min = 131 

LDA evaluation 

Features Accuracy 

4 0.71 

16 0.65 

24 0.59 

34 0.68 

44 0.65 

50 0.53 

64 0.56 

91 0.74 

 

LIWC evaluation 

Features Accuracy 

5 0.76 

 

  



Table 3.  Experiment 2: Model testing using 14 documents with average word count = 

13; max = 22; min = 2 

LDA evaluation 

Features Accuracy Precision Recall 𝐹1 

4 0.79 0.75 0.86 0.80 

 

LIWC evaluation 

Features Accuracy Precision Recall 𝐹1 

5 0.64 1.00 0.29 0.44 

 

 

 

  



 

Figure 1. LDA feature extractor. 

 

 

 

 

Figure 2. LIWC feature extractor. 

  



 

 

Figure 3. Coherence score by number of topics. 

The LDA model was trained repeatedly using the training set, starting with 2 topics. At 

the end of each iteraction, the coherence score was calculated and the number of  topics 

was increased by 2 until 100 topics was reached. Eight local maxima are identified by 

cross-hairs on the graph. 

  



 

 

Figure 4. Logistic regression classifier. 

(1,2) Features are extracted from the training set using either LDA or LIWC. (3) 

Training proceeds until the model minimizes a cost function, 𝑐(𝜃), which penalizes 

misclassification. (4,5,6) Features are extracted from the set-aside documents and 

presented to the trained classifier for predicting the interview type (yes = enjoyable, no 

= frustrating). 


