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Abstract
Previous attempts at modeling the neuro-cognitive mecha-
nisms underlying word processing have used connectionist ap-
proaches, but none has modeled spoken word architectures as
the input is presented in real-time. Hence, such models rely on
the ingenuity of the modeler to establish a mapping of real-
time stimulus to the model’s input which may not preserve
processing that happens during each time step. We present a
neural field model which successfully replicates the effect of
immediate auditory repetition of monosyllabic words and fits
it to a component of a well-studied mechanism for analyzing
language processing, the event-related potential (ERP). This
represents a new modeling approach to studying the neuro-
cognitive processes, one that is based on the bottom-up inter-
action of real-time sensory information with higher-level cate-
gories of cognitive processing.
Keywords: dynamic neural fields; event-related potential
(ERP); spoken word perception; mental workload; computa-
tional modeling; word repetition

Introduction
By “spoken word perception”, we mean the cognitive pro-
cesses that entail the sensory intake of an acoustic waveform
until the words contained in it are identified. Some early
connectionist models of speech perception processes were
driven by research in generalized automatic speech recog-
nition and have shown, for example, that a good deal of
phonemic information is present in the auditory signal and
can be extracted from the statistical generalization of the
model. Among the best-known models of speech percep-
tion is TRACE (McClelland & Elman, 1986) which has mod-
eled several lexical effects (e.g., phonemic restoration in a
noisy environment) and the time-course of word recogni-
tion. TRACE has been criticized for its biologically unre-
alistic handling of time and the lack of a learning mecha-
nism (Protopapas, 1999). As a result, models were developed

(Elman, 1990; Norris, 1995) which represent time through
cyclical, recurring connections from one state to an earlier
state in the network. One popular method by which learning
is incorporated in these networks is through a gradient decent
regression using backpropagation.

While these models can account for many aspects of how
humans comprehend spoken and written words, none of these
architectures model speech perception using real-time, hu-
man input. We present a neural field model with an efficient
learning mechanism which dynamically responds to the spo-
ken word process as it unfolds over time. A neural field sits
in an equilibrium state waiting for a pattern it has tuned it-
self to detect, and this detection takes the form of a perturba-
tion. Learning associates the equilibrium state of a field with
its environment. Primary fields tune themselves to fall into
systematic equilibrium states in response to combinations of
sensory input. Deeper-processing, secondary neural fields are
then enabled to tune themselves in response to their environ-
ments once primary fields have settled into predictable behav-
iors. With experience, the network forms representations as
each neural field systematically responds to its environment
through time.

Word Repetition Effects and ERPs
An event-related potential (ERP) is an electrical voltage asso-
ciated with an event such as a stimulus or response. ERPs are
believed to reflect the summation of post-synaptic potentials
occurring in many thousands of neurons. The time course of
ERPs in auditory processing can be traced starting from stim-
ulus onset and continuing for approximately 800 ms. Our
study focused on a particular ERP known as the P200 (P2)
which occurs in the interval from 145 ms to 225 ms after



Figure 1: ERP repetition effects, seen in the difference between the first presentation (black line) or a word and the immediate
repetition (red line) of that word

stimulus onset and is classically associated with top-down
attention processes on early sensory processing (Hillyard &
Anllo-Vento, 1998). Of particular interest, the P2 has also
been associated with a word repetition effect (Luck, 2014;
Molfese, Key, Maguire, Dove, & Molfese, 2005) where the
P2 showed a reduced positivity (i.e., a larger negativity) to
primed versus unprimed targets. Word repetition is frequently
used as an investigative tool in psycholinguistic and memory
research. It is a simple empirical procedure which demon-
strates that subjects are usually faster in their response to the
second presentation of words than the first; such responses
may be captured via reaction time (RT) measures across a va-
riety of experimental paradigms such as lexical decision or
semantic categorization.

Prior research in which participants read short texts con-
taining repeated words has found three distinct ERP compo-
nents to be sensitive to repetition: a positive component peak-
ing around 200 ms post-stimulus, a negative component at
400 ms (N400) and a later positivity (van Petten, Kutas, Klu-
ender, Mitchnier, & McIsaac, 1991). However, van Petten et
al. (1991) note that the early P2 repetition effect has not been
consistently found in other studies, at times appearing with an
opposite polarity. Due to the paucity of research using real-
time speech signals and the conflicting early results cited, it
appears that the processes which control this early component
are not well-understood. Among the research questions that
remain open are to what extent does deeper lexical processing
and explicit memory influence the word repetition effect and
what particular cognitive processes elicit this effect? While

this paper did not set out to explore these questions in depth,
we address some of them in the context of our results.

Human Experiments and ERP Data
Empirical ERP Data
We collected ERP data from 12 Native English speakers from
Tufts University (mean age 19.6, 7 male), of which 2 were ex-
cluded due to excessive ocular artifacts. All participants self-
reported as monolingual and right-handed (Oldfield, 1971),
with normal or corrected-to-normal vision/hearing and nor-
mal neurological profile. Participants provided written in-
formed consent and were monetarily compensated, as ap-
proved by the Tufts University Institutional Review Board.

Materials and Design
During ERP recording, participants completed a dual-task
paradigm with a primary task of playing a video game (i.e.,
“Breakout”: breaking pre-arranged blocks by bouncing a ball
from a controllable paddle) and a secondary task of listen-
ing to words through a set of headphones. The dual-task
paradigm was important for our ERP modeling task because
we attempted to reduce any explicit episodic memory ef-
fect so that we could focus on more implicit repetition pri-
mary effects by introducing the primary task of playing a
video game. For the primary task, we utilized a JavaScript
variant of Breakout. Three game levels were chosen based
on pilot results, indicating them to be similar in difficulty.
For the secondary task, a female experimenter recorded 300



monosyllabic English words to be used in stimuli genera-
tion. These 300 words were split into two lists (of 150 words
each) matched for psycholinguistic properties (e.g., bigram
frequency, length, phonological and orthographic frequency,
familiarity, and concreteness). An additional list was created
from the two split lists (half from each) so that a total of three
lists of 150 words were created. From each of the 3 lists, 50 of
the 150 words were randomly selected to be repeated so that
each list contained a total of 200 words. None of the repeated
words were redundant across lists.

EEG Recording
Participants engaged in the dual-task paradigm in a dark,
sound-attenuated room while their EEG was recorded using a
29-channel electrode cap. Loose electrodes recorded from 1)
below the left eye (LE) to monitor for blinks and vertical eye
movements, 2) at the right temple (HE) to monitor for hori-
zontal eye movements, and 3) behind each mastoid (left: A1,
right: A2) for referencing (A1) and monitoring differential
mastoid activity (A2). Electrode impedances were kept under
5 k for all scalp electrodes, 10 k for both eye electrodes, and 2
k for both mastoid electrodes. We sampled the EEG at 200Hz
while an SA Bioamplifier (SA Instruments, San Diego, CA)
amplified the signal with bandpass of 0.01 and 40 Hz.

Experimental Results
Averaged ERPs were formed for each spoken word (using
-100 and 0 ms baseline) after artifact rejection (15.67% of
the trials were rejected due to ocular artifacts) and collapsed
into conditions (first presentation or repeated) for compari-
son. The ERPs were then low-pass filtered at 15 Hz. Individ-
ual participant ERPs were then averaged into a grandmean
of 10 participants, allowing for the analysis of overall audi-
tory language processing effects. Of particular interest is the
repetition effect on particular ERP components such as the
P2 (van Petten & Kutas, 1991; Rugg, 1987) with an ante-
rior scalp distribution, sensitive to lexical processing and im-
plicated in word recognition processes (Dambacher, Kliegl,
Hofmann, & Jacobs, 2006). Such repetition effects mani-
fest in the form of attenuated amplitudes to repeated items
compared to their first presentation, reflecting the ease of pro-
cessing for the former relative to the latter. Results indicate
the presence of a P2 repetition effect, seen clearly in anterior
electrodes between 200 and 400 ms (Figure 1).

Model Description
We modeled a single layer of the hierarchical process gen-
erally regarded to represent the architecture of speech per-
ception (Grossberg, 2005; McClelland & Elman, 1986; Nor-
ris, 1995). In Figure 2, the model architecture consists of
(1) a vector of auditory input nodes, (2) a vector of cate-
gory nodes, (3) a grid of processing units called a neural
field, and (4) three fully connected sets of weights to be
trained called adaptive filters. The field processing units are
reciprocally connected to each other through non-adjustable

Figure 2: Neural field training. The training vector at the
word representation layer develops an input signal s = mi
through the modulator filter to each processing unit ui in the
neural field as a random sound exemplar of the same training
vector category is played to the input nodes.

weighted connections using an on-center, off-surround “Mex-
ican hat” distance function (Brady, 2014). The input nodes
carry sensory information which is refreshed with new data
at each time step. This input is passed through a “driver”
filter to develop a bottom-up input signal to the field. The
category nodes carry persistent labeling information which is
passed through a “modulator” filter to provide a top-down in-
put signal to the field. The labeling information is also used
as the training target for a “read-out” filter.

A neural field in our model is a “sheet” of processing units.
If given no input and random initial conditions, all units of the
field are guaranteed to quickly fall into a stable equilibrium
state with respect to each other such that the entire field may
be considered to fall into an equilibrium. Different equilib-
rium states of the field are associated with different input pat-
terns. The field is updated once every 10 ms (i.e., a time step)
using Equation 1 which computes the change in its activation.
This general equation and its variations are widely used in
dynamical systems models, (e.g., Amari, 1977; Beer, 2000;
Brady, 2014; Grossberg, 2005; Hopfield, 1982; Schöner &
Spencer, 2015).

u̇i =−ui + si +h+n+∑
j

λ(i, j) ·σ(u j) (1)

The change in activation of a unit, ui at a given time step is
computed as the sum of influence to the unit at that time step
minus the activation of the unit from the previous time step.
Influence to a unit at a time step comes from an input signal,
si, the field’s slightly negative bias, h, a noise term, n, and
from other units within the field. Influence from other units
within the field is computed to be the sum of the squashed ac-
tivations of neighboring units multiplied through correspond-
ing within-field connection weights w. A stepwise squashing
function, σ, is used such that only units with non-negative ac-
tivations can influence their neighborhoods. Within-field con-



nection weights are specified as on-center off-surround by a
Mexican hat weighting function, λ(D). Input to the function
D is the Euclidean distance between two units, ui and u j; the
output of the function specifies their connection strength.

Neural Field Learning
We implemented a learning mechanism in which the driver
and modulator filters are trained together that works as fol-
lows. The filter weights are initialized with random values
which are then updated across training cycles. A training cy-
cle consists of iterations in which the neural field is initialized
with random unit activations simulating the passage of time
between learning patterns. Then, a training vector is used to
generate an input signal si through the filters to each unit of
the neural field using Equation 2, and a random sound exem-
plar of the same category as the training vector is played to
the input nodes as time unfolds. In our experiment, the train-
ing vector represents a monosyllabic word. Here, oy is the
activation of a category node, ox is the activation of an input
node, and g1,g2,g3 are gain terms; ḋi is the change in activa-
tion of the driver signal, ui is the running average of the unit
being updated, and mi is the running average of the modulator
signal to a unit.

si = g1|ḋi| · (g2mi−g3ui) (2)

mi = ∑
y

wiy ·oy

ḋi = ∑
x

wix ·ox

The weights of the modulator and driver filters are adjusted
following Equation 3, a variant of the delta training rule.

∆wix = η · ōx · (ui− ḋi) · |u̇i| (3)

∆wiy = η · ōy · (ui−mi) · |u̇i|

Learning proceeds as the training vector persists for the du-
ration of the input sound as the neural field adjusts itself in
response to its input, updating the modulator and driver fil-
ters at each time step. Subsequently, a new iteration begins
by initializing the field to a new random state and associat-
ing the transformation of that state through time with the next
input training vector (i.e., new word), and so on. A cycle is
completed when all training vectors have been exposed to the
model in random order, at which point a new training cycle
begins.

In Equation 3, η is the learning rate, (ui− ḋi) and (ui−
mi) are the errors to be minimized; cyclic training continues
until the learning error is reduced to asymptote. The last term
of the equation, |u̇i|, is an innovation which allows learning
to occur only if there is a change in the target neural field
and therefore important associations are maintained even as
learning proceeds over time.

Neural Field Model Simulations and Results
The model’s read-out filter is trained in order to evaluate how
well the neural field categorizes its input. The weights of
this read-out filter are updated using the “delta rule” as in
Equation 4. Training vectors oy are converted to target vectors
Ty by setting the negative values of the training vectors all to
zero. The generated output is notated as ô.

∆wyi = η ·ui · (Ty−σ(ôy)) (4)

Where:
ôy = ∑

i
wyi ·mi

We selected a subset of five monosyllabic words from the
stimuli used in the empirical experiment: “beach”, “dog”,
“soup”, “bog”, and “tend”. Four exemplars of each word
were recorded separately by a male speaker as male voices
span a lower frequency range making for easier speech pro-
cessing by the model. The recordings were transformed into
the 26 coefficients shown in Figure 2 and were provided as
input to the model in 10 ms time steps. The model was
trained on three target words from this set, “beach”, “dog”,
and “soup”. How well the model learned was measured by
computing the error as the sum of the differences between
“readout” vector generated as output by the model and the
corresponding target word.

Modeling the ERP Measure
We chose to model the ERP as the difference between the
modulator signal and the field activation. This can be thought
of as analogous to error values or implicit prediction error.
Implicit prediction error at multiple levels of language pro-
cessing is thought to play a critical role in language com-
prehension (Kuperberg & Jaeger, 2015). Within probabilis-
tic frameworks, implicit prediction error has been linked to
other language-related components such as the N400 ERP
(Kuperberg, 2013; Xiang & Kuperberg, 2014; Kuperberg,
2016), as well as non-linguistic ERP components (e.g., Fris-
ton, 2005; Wagongne, Changeux, & Dehane, 2005). More-
over, the N400 ERP component has recently been simulated
as cross-entropy error at a semantic level within a connection-
ist model (Rabovsky & McRae, 2014).

The ERP at time t is computed as shown in Equation 5; mi
and ui are each unit’s modulator and field activation respec-
tively:

ERPt = ∑
i
|mi−ui| (5)

Modeling Results
The words from the test input were presented in the following
order: “soup”, “dog”, “dog”, “dog”, “beach”, “dog”, “bog”,
“tend”. The neural field was trained on “soup”, “dog”, and
“beach”; “bog” and “tend” were novel stimuli the field was
not trained on. Figure 3 shows that the model replicates the
repetition effects, i.e., the maximum ERP values at a t af-
ter the first exposure of the word “dog” are all smaller than



Figure 3: Modulator-Field difference for repetitions of the
word “dog”

the first peak, until a different word is presented. At this
time, the neural field is perturbed into a different state, re-
leasing it from the effect. A subsequent presentation of “dog”
no longer elicits a repetition effect, producing a larger peak
as the field resettles into the equilibrium state for “dog”. In
Equation 5, the modulator signal, mi, can be thought to “pre-
dict” the next equilibrium state the neural field ui is likely to
settle to. This suggests that a smaller amount of perturbation
is required to “nudge” the settled field into a new equilibrium
state upon presentation of a repeated word. The presentation
of untrained, novel stimulus, i.e., “bog” and “tend”, does not
show the repetition effect as these words are not predicted by
the modulator signal.

Table 1: Model Fitting

Interval Model ERP Data
Width Proportion Proportion
100 ms 1.41 1.60
112 ms 1.53 1.53
120 ms 1.66 1.58
Best fit (112 ms) 144 ms - 256 ms

We note that model does not aim to fit the polarity of the P2
ERP as what gives rise to the polarity is not well-understood
and as there have been inconsistent reports on the word rep-
etition effect as mentioned earlier (van Petten et al., 1991).
Furthermore, it is the nature of ERP measurement that the in-
terval within which a given effect is manifested varies some-
what between experimental paradigms. However, the model
should fit the magnitude and the duration of the human ERP
data. Thus, to compute the model fit, we looked at the ERP
data intervals centered around 200 ms as this interval con-
tains the P2 effect and computed the proportion as follows.

We took the area under the ERP curve within an interval for
the first presentation of the word “dog” and divided it by the
identical interval contained under the repeated presentation to
calculate its proportion. Referring to Figure 3, we also took
the area under the ERP curve generated by the model and per-
formed the same calculation. As shown in Table 1 we found
that the 112 ms interval around 200 ms (i.e., from 145 ms to
255 ms) showed both proportions to be identical i.e., 1.53,
thus demonstrating it is possible to find a good model fit to
the experimental data.

Discussion
We designed our model to be a single neural field reflect-
ing processing in the auditory cortex and hypothesized that
this forms a “layer” of phonological processing. In order to
provide a modulator signal, we simulated the existence of a
deeper word-form layer by “clamping” the modulator signal
to the three words the model was trained on (i.e., “beach”,
“dog”, “soup”) and this was fed “down” to the neural field
as its modulator signal. We did not presuppose which ERP
correlates would occur using only one neural field layer and
did not set as a goal to identify all possible auditory effects;
we were not concerned with capturing non-speech auditory
processing at all.

The model succeeded in capturing the repetition effect
noted in the experimental results as can be seen in Figure 1,
most notably in the central scalp ERPs e.g., Cz. Figure 3
shows a diminished response to the initial presentation of the
word “dog” at 75 ms with the repetition effect occurring at
150 ms and 225 ms. Note that the typical convention is to
plot the ERP, with the area above the x-axis as negative and
the area below as positive. Thus the model and ERP wave-
forms covary in amplitude and polarity with the repetition
(i.e., in the model the repetition effect is “more negative” than
the initial presentation).

The model demonstrated the immediate word repetition ef-
fect using a single neural field sheet, without modulator in-
put from deeper lexical and semantic processing layers. This
suggests that the ability of a single neural field layer to learn
sound patterns (i.e., phonemes, monosyllabic words) alone
appears to be sufficient to account for the immediate word
repetition effect and the release from repetition. We believe
this to be among the first computational models to match the
time course of ERP events on real-world, real-time data, and
the first model to do so using spoken word perception i.e.,
we used the same data that was presented to the experiment’s
participants and validated the model fit. These results sug-
gest that our neural field approach can now be used to build
additional layers and thus model later ERPs.

Conclusion
We have developed a dynamic neural field model of phono-
logical processing of monosyllabic spoken words and com-
pared it with a separately designed experiment which mea-
sured ERP responses of participants to spoken words. We



found a good fit between the model and the human ERP data.
The model succeeded at replicating the word repetition effect
showing a positive correlation with the experiment’s P2 mea-
surements. This suggests that a minimal neural field model
can perform some components of auditory processing (e.g.,
detect immediate word repetition) and generate a correlated
ERP effect. Future work will explore modeling deeper lexi-
cal and semantic processing and related mid-to-late ERP ef-
fects by connecting additional neural field layers in a hierar-
chy which will allow feedback from the deeper processes to
affect computations at earlier layers.
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