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Abstract

We show how temporal and spatial information can be rep-
resented as stable patterns in a dynamical system. It is
hypothesized that human perception and knowledge repre-
sentation arise from such patterns. We describe how these
patterns can be used in a neurologically-inspired model of
speech perception, and show how word recognition arises
when phonemes and their position in a word are mapped
onto activation patterns. These activation patterns are
used to identify the set of words whose prefix is the cor-
responding sequence, consistent with the “cohort”-based
model of word recognition.
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Introduction
The brains of all animals encode and process sensory input acquired
from the environment. Sensory input, regardless of modality, is en-
coded as temporal and spatial patterns, and a superior form of pat-
tern processing has evolved in humans coinciding with the expan-
sion of the neocortex. In this brain structure, several essential cog-
nitive processes (e.g., visual, auditory, speech) engage in process-
ing (Koch, 2004; Mattson, 2014) which includes not only recogniz-
ing patterns, but classifying them (Grossberg, 2005). In addition,
different members of a particular sensory input category, e.g., the
phoneme “@’, are mapped to the same pattern to allow for invari-
ance in speech perception across multiple speakers (Kleinschmidt &
Jaeger, 2015). Consistent with these hypotheses, our model uses
patterns of activation in a neural field to represent sequences of
states, in this case in the context of perceiving words.

Model Architecture
The human neocortex consists of six layers of tissue containing ap-
proximately 1010 neurons. A column of tissue could be represented
mathematically as a neural field which forms patterns of activation
through interaction with other fields. From this cortical information
cognitive processing emerges (Amari, 1977).

In a previous model of speech perception (Valenti, Brady, Scheutz,
Holcomb, & Pu, 2016), a single neural field layer was modeled as a
32x32 grid of bidirectionally connected units whose dynamics allow
the field to fall into a stable equilibrium pattern. In the present model,
we use a neural field of similar size and design.

Input is presented to our model (Figure 1) as a one-hot vector
that is the size of the number of atomic categories in the input do-
main, i.e., 61 phonemic labels. This input vector (I) is fully connected
to the neural field layer (F ) by the input weights (Wi). F, described
in the next section, is connected to the output vector (O) by the fully
connected output weights (Wo).

State representation
Our model represents a state, or position in a known sequence, as
the activation of F, which contains neurons connected to form a neu-
ral field. Each neuron in F is connected to each of its neighbors with
weights (Wmh) based on a Mexican hat function whose input is the
Euclidean distance between a pair of units. These weights create an
on-center off-surround activation pattern, where the closest neigh-
bors provide a positive influence on activation, further neighbors a

Figure 1: Diagram of model architecture.

negative influence, and the furthest no influence. As described in
(Amari, 1977), after repeated updates units connected as such will
fall into a stable equilibrium and subsequent updates will not result in
a change in activation for any of the units in the layer.

The model represents sequences in the input domain through
combinations of these unique equilibrium states. As our model re-
ceives input, it combines its current equilibrium, which represents the
inputs it has seen up to this point, with an equilibrium that represents
the next input character. These combined equilibriums then settle to
form a new equilibrium. The process can be described as follows:

Ft = σ(settle(Wmh,(I ·Wi +Ft−1)))

The previous and next equilibriums are summed and their result
is allowed to settle into a stable equilibrium. The settling process is a
sequence of repeated activations, where each neuron’s activation is
updated based on its neighbors until the updates no longer cause a
change in activation.

The activation of the settled state is then normalized to the range
[0,1] through the application of the squashing function σ: σ(x) =
max(0, x

x+1 ).
This normalized state Ft represents the sequence of inputs that

the model has received up to this point. For a given sequence of
inputs a single state in the field is produced, and that state can only
be reached by that sequence of inputs. A visualization of the combi-
nation process is show in Figure 2.

Figure 2: The addition of an input equilibrium state to a pre-
vious equilibrium state, after settling, produces a third equilib-
rium representing the sequence of states up to that point.



State interpretation
For each unit in the input domain, we choose an arbitrary equilibrium
generated from a random seed and train the input weights to produce
that equilibrium given the corresponding input.

At any given point, the activation of the units in the neural field
F represents the sequence of inputs that the model has been pre-
sented. This activation pattern must somehow be grounded in a
human-interpretable fashion. This grounding depends on the infor-
mation that the model receives and what that information means to
humans.

In our development of the model we have focused on speech as
our input. Speech is composed of a small set of atomic units. These
units are combined into a much larger set of sequences, where each
unique sequence has a unique meaning. In our evaluation we con-
sider speech at the phonemic and word levels, so this structure fits
nicely with the representational capabilities of our model.

We draw the inspiration of the grounding in our system from the
Cohort model of word recognition (Marslen-Wilson, 1987). In the
Cohort model, as a sequence of speech segments is heard by the
listener, every word that begins with that prefix of segments is ac-
tivated. This set of activated words is referred to as the cohort of
relevant words. As more of the word is recognized the size of the
cohort shrinks until a single word remains.

We train the Wo so that the output of O behaves in a similar fash-
ion. O is a vector that is the size of the total number of words, (unique
sequences of phones), with which the model has been presented.
Each element in O represents a word, and a positive activation at a
given element means that the current state of F represents the word,
or a prefix of the word, at the given index. As the sequence of inputs
increases in length, the number of words that share the unique prefix
decreases.

This behavior is achieved through the training of Wo. We use a
version of the perceptron learning rule, seen below, to train the single
layer perceptron whose activation is found in O.

∆Wo = η ·Ft · (Target −Ft ·Wo)

Where η is the learning rate and Target is the ground truth, a
vector the size of O with positive activations in the elements that
correspond to the set of words for which the sequence represented
by the Ft is either a prefix or the word itself.

Our model represents the incremental recognition of a word, pre-
sented as a sequence of phonemes, by outputting the set, (i.e., co-
hort), of known words for which the current sequence of phonemes
is a prefix. As more words are presented, the cohort of positive ac-
tivations in O shrinks. When the input to our model contains mul-
tiple words, e.g., a sentence, the model is also able to determine
the boundaries between those words. Since it is trained on word
level sequences, the model is able to detect when a sequence of in-
crementally presented phonemes no longer represents a word in its
lexicon. As phonemes are presented, the size of cohort of activated
units in O does not increase. To detect the end of a word the model
looks for values of O whose activations are not a subset of the acti-
vation of O from the previous input. In these cases the model knows
that end of the word has been reached, and F is reset to its initial
starting state; the most recent input is presented again, starting the
next word.

Model Evaluation
The TIMIT corpus (Garofolo, Lamel, Fisher, Fiscus, & Pallet, 1993)
provides a set of sentences which are annotated at the word and
phoneme level; we use these annotations in the evaluation of our
model. TIMIT uses 61 phonemes as the atomic units in its transcrip-
tions. In our evaluation, we define I as a 61 unit vector each of whose
elements represents one of these phonemes. There are 7,368 words
in the TRAIN subset of the corpus, so O is defined as a 7,368 ele-
ment vector, with each element representing a word. We chose the
TRAIN set as our lexicon, since it is larger than the TEST set, and
since we are modeling perception and not lexicon acquisition, our
evaluation is done on that same set.

The weights of the input and the decoder perceptrons were trained
until the error terms fell below a threshold value. These thresholds
were chosen by hand by the authors, and a more rigorous investiga-
tion on how optimal values may be reached is needed.

Results
Once the model was trained, the entirety of the TRAIN set was pre-
sented. The 65,529 phonemes were presented in the order in which
they were found in the corpus. After the presentation of a phoneme,
the activation of O was compared to the ground truth. For 99.1% of
the words in the lexicon, the activation of O matched the ground truth
for every phoneme in that word.

The model was artificially reset to a default state at the end of ev-
ery word so that errors in the perception of one word did not affect the
perception of other words. However, each time before the model was
reset, the first phoneme of the next word was presented. In 82.5% of
cases, the model detected the word level transition by testing if the
activation of O was a subset of the activation of O from the previous
phoneme.

Conclusion
We have constructed a model in which the representation of discrete
sequences as patterns of activation modeled in a more neurologically
plausible fashion than the representations in previous models e.g.,
as a vector of neurons. We have evaluated the model in the speech
perception domain and noted that it recognizes sets of words consis-
tent with the access stage of the Cohort model of word recognition
(Marslen-Wilson, 1987). Our model is consistent with the hypothesis
that the neocortex receives and processes patterns of information in
the same way regardless of whether the sensory input is visual, au-
ditory, or tactile. Thus we believe our model is applicable to these
cognitive domains as well.

The model assumes a perfect, invariant presentation of input data
which is believed to occur in later stages of cognitive processing, e.g.,
the IT layer in the visual cortex. Further development of the model
will introduce uncertainty in the input during training to assess how
well the model can generalize when presented with lower level input.
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