
Validating a Real-Time Word Learning Model Tested in USARSim and on a
Real Robot

Richard Veale and Paul Schermerhorn and Matthias Scheutz
Human-Robot Interaction Laboratory

Cognitive Science Program
Indiana University

Bloomington, IN 47406, USA
{riveale,pscherme,mscheutz}@indiana.edu

Abstract— In this paper we present a novel vision-based
word-learning model that was developed and first tested using
the USARSim simulation environment before being validated
in the real world. We describe the learning architecture and the
steps we took to integrate USARSim into the system. Models
that were trained in the simulator evolve similarly to those
trained on input from cameras, and perform comparably to
their real-world counterparts on a subsequent real-world color
recognition task.

I. INTRODUCTION

Robot control architectures are becoming increasingly
complex; prototyping and testing these systems can be
time-consuming and expensive. Simulated environments like
USARSim [2] can facilitate the process by allowing faster
and easier debugging. They can also be invaluable tools for
developing and testing real-time models of embodied situated
cognition. Specifically, sufficiently accurate simulations of
real-robots will allow us to develop and test cognitive models
effectively, without the need for the physical robot to be
available throughout the process. Rather, the robot will
only be needed for the final validation of the already fully
developed and tested simulation model.

This paper describes work in our lab integrating USARSim
into a robot development environment for the development
of cognitive models, specifically to explore the effects of
physical embodiment and situatedness. We will describe the
details of the modeling setup using a specific neural network
model of word learning that is currently under development
in our lab. Using this model, we show the sequence of model
development and testing in USARSim, followed by a final
validation on the physical robot.

II. BACKGROUND

Cognitive modeling has a long tradition in cognitive
science, going back to the late 70ies when the main architec-
tures ACT and SOAR emerged ([1], [7]). Subsequently, var-
ious other symbolic architectures were introduced (including
EPIC [8] and Prodigy [4]) as well as different kinds of neural
network architectures. Typically, cognitive models developed
for these architectures are only run in simulation, i.e., with
simulated inputs and outputs, instead of being connected
to real sensors and effectors. Yet, for studying embodied

cognition, it is important to be true to the real-time real-
world nature of sensory input and motor outputs. Hence,
the model will either have to be run on a robot or in a
physical simulation environment that can faithfully simulate
the important physical aspects of sensors and actuators. Con-
necting a model to a real-time system (robot or simulation),
however, is challenging because cognitive architectures have
typically not been designed to support it.1 What is needed
is an infrastructure that can connect the inputs and outputs
of the architecture with the outputs and inputs of the sensors
and actuators. We will describe our ADE system that has
been successfully connected to the USARSim simulation
environment as well as several robots and embedded devices.

III. A BRIEF OVERVIEW OF THE ROBOT AND THE
SETUP

We integrated the USARSim environment into our robot
development infrastructure ADE, the Agent Development
Environment [11]. ADE allows users to construct agent
architectures using modular components (called ADE servers
that provide services (e.g., access to sensors or effectors) to
other ADE servers, and can be distributed across multiple
hosts. An ADE registry serves as a “yellow-pages” service
for ADE servers to connect them with the other servers
they require. An ADE server submits a request for a service
(represented by an RMI interface) to the ADE registry, and
the registry checks the credentials of the requesting server
and forwards the information about the new resource. From
that point on, all communication between those two servers
is direct, without having to go through the registry (see [10]
for more details).

As noted, ADE servers interact via pre-defined interfaces.
Servers have been defined for many sensors (e.g., speech
recognition, laser rangefinder, and GPS localization) as well
as many effectors (e.g., robot bases such as the Pioneers
and Segways, and a humanoid RoboMotio torso). The ADE
USARSim server fits nicely into the system by instantiating
models of many of these sensors and effectors (some prede-
fined by USARSim, others constructed in our lab [5]) and

1However, note there are examples of both SOAR and ACT-R controlling
robots, and, of course, neural network architectures (e.g., [14]).



replicating their interfaces, allowing other ADE servers to
utilize those resources as if they were physically instantiated.
The USARSim server communicates with the simulation en-
vironment via a socket connection to the GameBots engine,
which allows the server to instantiate models and monitor
and manipulate their states. In addition to an interface for the
provided Pioneer robot and SICK laser rangefinder models,
we have constructed in our lab a full model of the RoboMotio
Reddy humanoid torso, including the head with manipulable
eyes, eyebrows, and lips, movable head, and arms with
three degrees of freedom. The model was created using a
combination of Blender, Inkscape, and the Unreal editor (for
details, refer to [5]).

The ADE vision server has been configured to work
with a variety of cameras (including IIDC Firewire and
USB cameras) and can provide information about visually
detected faces, color blobs, and environmental conditions
(e.g., darkness) to other ADE servers as requested. Using
the vision server in the USARSim environment required us
to extend the server to analyze frames from the UT virtual
camera instead of a real camera. Our solution is based on
the “SDL Hook for USARSim on Linux,” which modifies
the SDL library to intercept the frames and redirect copies
of them to a socket in addition to displaying them on-screen.2

When the vision server is directed to use USARSim instead
of a camera, the only difference is in the initialization (e.g.,
open a socket instead of initialize a camera) and the method
used to grab frames. All subsequent operations (i.e., analysis
performed on the frames) is performed in the same way
it would be if the frames were coming from a camera;
the analysis code does not need to be modified to operate
differently than it normally would. Similarly, because other
ADE servers only need to know the interface exported by
the vision server, whether the vision server is operating in
the real world or the UT environment is completely opaque
outside the vision server; other servers neither know nor care
from which environment the visual information comes any
more than they care what kind of camera provides the frames
in a real environment.

The tests described below (see Sec. V) were conducted
using the ADE vision server configured to use two “cam-
eras.” The tests conducted in the real world use a Unibrain
Fire-i IIDC Firewire camera, whereas the tests in the Unreal
environment use the virtual camera defined by the SDL
hook. Identical vision processing was performed in each case
before the results (in this case information about the color,
size, and relative location of each blob detected) was passed
on to the word learning model component, also encapsulated
as an ADE server.

IV. MODEL DEVELOPMENT: THE WORD
LEARNING MODEL

The word learning model is an associative, incremental
model implemented in several interconnected artificial neural

2The SDL hook is made available by Can Kavaklıoğlu at
http://cankavaklioglu.name.tr/shul.html.

networks. The desired behavior is to learn word-reference
associations in an unsupervised fashion. It has been hy-
pothesized that human infants learn such associations in
a statistical manner, tabulating co-occurrences, usually in
a batch-fashion (e.g. [13]). However, it has been shown
that such simple models are not sufficient to fit the human
data [12] [6] [15]. Humans are embodied agents whose
experiences are inextricably situated in time and space [3].
In light of this, temporal aspects and environmental context
must be taken into account in the learning model.

We introduce a learning model in which learning is
incremental, i.e. the system is modified by every experience,
and then it is the modified system which goes on to encounter
further experiences. This type of model affords important
qualities, perhaps most importantly the ability to learn based
on co-occurrences in a non-linear fashion. In other words,
the association strength learned from experiencing some A
and B co-occuring two times will not be simply double the
association strength of experiencing them co-occurring once.

The model can be deconstructed into its two constituent
networks, one of which learns words (as phoneme-strings),
and the other which learns colors. Learned types (words
or colors) are represented by a set of “concept nodes”.
Lower-level perception is represented by a three-dimensional
feature-map on the color side, and as a set of nodes which
react to different phonemes on the word side. The primary
learning rule for associations based on co-occurrences is a
non-linear Hebbian-type rule, which can be generally stated
as:

wt
xy = wt−1

xy +S ·
(
sig(αxαy) ·MeBe

Cwt−1
xy − (wt−1

xy ·D)
)

where S is a scaler variable3 which scales with the magni-
tudes of the activations of nodes x and y, wxy represents
the association weight between nodes x and y, and αx

is the output activation of node x. sig is a sigmoid soft-
thresholding function4. The doubly-exponentiated term is an
application of a Gompertz function to the previous weight,
and produces a horizontally asymptotic exponential growth
to the weight based on the previous magnitude of the weight,
but on a logrithmic scale. This is the primary factor causing
the non-linear incremental learning described earlier. The
coefficients B (−4) and C (−0.66) modulate the growth rate
and scale of the function, and M provides the upper bound.
D is a decay constant (0.02).

A. THE COLOR NETWORK

The color network is the simpler of the two. It is composed
of a three-dimensional feature map (with each dimension
accounting for one dimension of a color in RGB format),
with each node connected to concept nodes. Color concept
nodes are created when appropriate. In the case of our

3S = sig(αx + αy)
4sig(x) = 1

1+e−λ(x−C) , C is the displacement determining where the
soft threshold is set, λ (6.0, as tested)is a parameter determining how quickly
(steeply) the function grows to its asymptote.



composite system, this is when a sufficiently new word-
color pair is experienced. Input comes into the color network
in the form of activation given to nodes in the color map.
Nodes to be activated are determined by finding the node in
the map which minimizes the distance between its feature
weights (i.e. R, G, B values) and the RGB values of the
incoming color. Nodes surrounding the winning node then
receive smaller amounts of activations based on their distance
from the winner.

For these experiments, we use a feature map of size
10×10×10, with each node in the feature map initialized to
evenly-spaced places between 0 and 255 in each dimension.
We find this as an acceptable compromise between speed
and space concerns, while maintaining a sufficiently fine
granularity for discriminating different colors.

After a winner has been selected, activation of all other
nodes is set:

∀xyz∈CN , αxyz = e
−d2xyz

2σ2

αxyz is the activation of node with coordinates x, y, z in the
feature map. σ is a parameter, which we have set to 0.8.
CN refers to the RGB feature map. d is a distance function
which determines the distance between the winner and the
node in question, and is defined as:

dxyz =

√
(rxyz − rwin)2 + (gxyz − gwin)2 + (bxyz − bwin)2

dmax

where r, g, b are the feature value of subscripted node
to that feature (r for red, g for green, b for blue), and
dmax is a constant, maximum distance used to normalize
the values into the desired range of activation [0, 1], which
is determined by the size of the color feature network, among
other things:

dmax =

√
255
10

2

· 3

10 is the width of our network in a given dimension (i.e.
there are ten nodes), and 3 is the number of dimensions.

Energy then flows from the winning node to any connected
concept nodes, modulated by the weight of that connection,
i.e.

∀n∈WN , α
t
n = αt−1

n + αwin · wwin,n

where, again, α is the activation of the subscripted node at the
superscripted time (where time is measured by the number
of sounds heard since input began).

B. THE WORD NETWORK

The word network is a recurrent network, with a layer
representing the reactive activations to experienced aural
input, and a recurrent layer representing the activations of the
previously experienced input. These two layers are connected
to the (word) concept layer via an array of soft-thresholding
interneuron nodes. This network effectively recognizes words
based on the sequence of phonemes they contain. It does
this by incrementally pooling activation into word concept
nodes as phoneme-strings contained in that word-concept are
experienced.

The network is assumed to know when a word ends and
a word begins. Sounds enter the system as deconstructed
probabilities, one for each phoneme. These are the probabil-
ities that the uttered sound was an instance of that phoneme.
Thus, if a perfect /a/ is uttered, the probability for the /a/
phoneme will be very close to one, while others will be
close to zero. In the case of more ambiguous sounds, such
as /b/ and /p/, it may be that each receives relatively high
activation, especially if the environment is noisy.

The network is instantiated with the full score of these
“phoneme nodes”, one representing each salient phoneme
present in the language and dialect. Input thus enters the
system and induces an activation in each of those phoneme
nodes. There is also an equally sized recurrent layer of
phoneme-nodes, which hold the activation of the phoneme
layer from the previous sound. The activation spreads along
efferent links to arrays of “interneurons” (N for each word
node, where N is the number of phonemes). Each phoneme
node is connected to one interneuron node in each word
cluster, and each recurrent phoneme is connected to all
interneuron nodes. These interneuron nodes apply a soft
threshold to their activation (using a sigmoid as in footnote 4)
and pass that output on to a layer of “word nodes”. The
only weights which are currently trained are those of the
connections between the recurrent phoneme layer (nodes
notated po), and the interneuron layer. This weight is updated
using a Hebbian rule based on three values. For a recurrent
layer node po and an interneuron node i, the weight between
po and i will update according to the following rule:

wt
po,i = wt−1

po,i
+
(
S · η · sig(αiαpoαpn)− wt−1

po,i

)
η is a learning rate (0.1), and S is (again) a scaler to reduce
undesired decay of weights when the connected nodes are
not activated, calculated as:

S = 0.01 + sig(αi + αpn + αpo)

where pn is the normal phoneme node corresponding to the
recurrent phoneme in question po.

Throughout a word experience, there is a rising threshold
value which is applied to the activations of the word nodes.
This threshold depends on the number of sounds experienced
since the word began. The output activation of word nodes
(as used in learning rules involving links between word nodes
to other nodes) is also determined by the application of a
sigmoidal soft-thresholding function based on this threshold.
When a word ends, a winner is chosen from among the
word nodes based on highest activation. If the activation
of this winner surpasses the threshold, then the experienced
sequence of sounds is considered recognized. If it does not,
then the experienced sound sequence does not sufficiently
match any remembered words, and so a new word node is
added to the network (trained on the sound sequence).

C. THE INTEGRATED SYSTEM

We integrated the system by removing the color concept
nodes and simply connecting the word nodes directly to the
RGB feature map. This is justified since the color modality



Fig. 1. The integrated word-learning system. On the left is the 3-d feature
map representing red, green, blue dimensions of RGB color space. The
layered network on the right is the recurrent network recognizing phoneme-
sequences. Not all links are shown (only the top interneuron node of the
top word node has all of its afferent connections displayed).

is in a sense supervised by the word modality. It only will
carve out an area of color space and associate it with a word
when a word is presented.

The easiest way to understand how the composite system
functions is to observe that the word-learning side will
behave as it would alone, except that it will receive additional
activation energy from the visual modality. This energy flows
from feature map space, representing those colors which
were previously experienced simultaneous to a word being
experienced.

This additional information will have two interesting ef-
fects we would like to focus on. First, it will make word-
recognition more robust, providing sufficient activation to
a word-node if the associated color is present, even in
situations where all of the contained phonemes were not
sufficiently recognized to exceed the threshold for recogniz-
ing that word (a form of “perceptual co-modulation”). Sec-
ond, since the learning rules contain terms representing the
activations of the respective connected nodes, higher word
node activations will result in higher connection weights.
which translates to stronger memories. Stronger memories
will be forgotten more slowly and will be easier to recall
(recognize) later than memories of words which were less
strongly associated with visual color experiences.

D. SETTING UP THE SYSTEM FOR EXPERIMENTS

For the testing and experiments presented in this paper,
the system was set up to receive the necessary information
from both its modalities in a relatively simultaneous fashion.
The system is implemented as a C++ library, with functions
which allow the system to be fed input (causing updates to
the internal networks based on that input). To integrate this
C++ library with the ADE framework, it was necessary to
create an ADE server which calls the library. JNA was used
to allow access to the C++ library’s necessary function calls
from Java.

The color map side was then updated every 150ms by
querying the vision server for detected color blobs, their

Fig. 2. Blob detector’s view in the simulator of a typical bluebox situation.

RGB values, and their areas. The area was normalized into
the range [0,1]. This value was used to determine how much
to activate a winning RGB map node. Phoneme information
was fed from pre-configured files representing the output
the phoneme-deconstruction program described above would
produce on perfect or near-perfect input. These files were fed
into the system on cue, with one “sound” fed every 150ms.

For the simulated training sessions, the agent was nav-
igated to a block of the appropriate color and arranged so
that the block took up a significant portion of the visual field
(> 55%). In the real world training sessions a block of the
appropriate color was placed in front of the robot so that
it took up a similar portion of the visual field. For testing,
after the system had been trained, it was shown real-world
objects. To do this with a simulation-trained agent, it was
necessary to disconnect the ADE server running the network
from the vision server in the simulator, and reconnect to
a vision server connected to the real-world robot. This
was accomplished using ADE’s recovery abilities–by simply
killing the simulation server and having the ADE system
recover by hooking into a server connected to the real-world
robot.

V. MODEL VALIDATION: COMPARISON OF
SIMULATION AND ROBOT DATA

Our evaluation tests are intended to examine how closely
matched the behavior of the model is between the simulated
environment and the real world. The learning task involved
showing the robot a colored object during 10 presentations of
a 4-phoneme word. Each phoneme is presented for 150ms,
and there is a random (1–5s) time interval between presen-
tations. Although the camera was allowed to move between
training runs, it was held stationary while training. To prevent
possible speech recognition confounds, the phoneme input
was presented in perfect form so as to elicit the maximal
recognition probability for each phoneme. The target object
was a blue box in both the real world and USARSim. Fig. 2
shows the robot’s view of the simulated box, while Fig. 3
shows a frame from a real-world training session.



Fig. 3. Blob detector’s view in the real world of a typical bluebox situation.

The training results are presented in Fig. 4. These results
are averaged over multiple runs (16 in Unreal, 21 real-world).
The results demonstrate that the learning behavior of the
system is comparable in the simulator and in the real world.
Because the camera is held stationary, there is little change in
the average blob size as the training sessions progress. How-
ever, note the horizontally asymptotic exponential growth
behavior of the weight between the color and the associated
word node, caused by the learning rule proposed above. The
regular “dips” in association strength are actually an effect
of the implementation of word-recognition in the system.
They occur because the initial phoneme of a word will not
cause any major activation in a word node (since it is not
a sequence). Thus, at these times, the word and color may
actually be de-associated, but only by a small amount.

Regarding the real-virtual comparison, the growth of the
weights is very strongly correlated in the two environments
(Pearson’s r = .982, p < .001). There are minor differences
in the overall pattern of growth, caused by the difference
in average blob size and a greater blob size variance in the
simulated environment. However, the learning is clearly very
similar in the two environments. Moreover, as an additional
validation, we tested the “recognition” ability of the trained
systems in a real-world test. That is, we performed the
training as described above, then after a short interval (2s)
to allow the system to settle (due to decay), we presented
input from the real camera to both those trained in the real
world and those trained in USARSim. When presented with
the blue blob input, without any phoneme input, real-world
trained systems’ word activation rose from an average of
.0001 to .88, while the USARSim trained systems’ average
activation rose from .0001 to .77. That is, the activation of
the word associated with the color increased substantially
in virtue of being presented with that color. The increases
are quite similar, as confirmed by the lack of a significant
difference found by the t-test (t = −1.1346, p = 0.2677).

It was difficult to get the blob sizes in the real world versus
the simulated tests to match up exactly, and this explains

0 5 10 15

0.
0

0.
2

0.
4

0.
6

Blob Size vs. Weight

Time (sec.)

S
iz

e/
W

ei
gh

t

 

Unreal Blob Size
Unreal Weight
Real Blob Size
Real Weight

Fig. 4. Plot of blob size and color-word association weight over time

some of the small differences in the growth rate data. In
the controlled situations used in the experiments, and with
only pertinent aspects of the network extracted and reflected
in the results presented above, the effects of noise in the
blob-detection algorithm are not obvious. However, this is
justified. More so than visual noise or failures of the blob-
detection algorithm (which would often result in additional,
superfluous blobs being detected), it was differences in the
size of the blob that adversely affected the results. Since
the blob size has a doubly-exponential effect on the learning
rate of the system, we see an odd comparison in our data. On
the simulated side, blob size ranged over a larger variance
of values then in the real world, where control over the
positioning of the camera is not so coarse. This variance
resulted in a more awkwardly-shaped graph (i.e. differently
shaped than the curve that would be generated by the learning
algorithm discussed above) for the simulated side, since
functions with drastically different growths and shapes are
being averaged together with no account for the blob size, an
exponent. These small differences sometimes had the effect
of the system falling on two sides of a bifurcation, resulting
in relatively close blob sizes causing two drastically different
learning curves–one which grew to maximum within the
allotted time, and another which did not even come close
to doing so.

It is also important to recognize that the differences ob-
served in our results are not due to noise in the real world and
the lack thereof in the simulated world. Even if the simulated
image was somehow intentionally degredated to account
for noise, the effect would be more failures of the blob
detection algorithm in ambiguous or noisy visual situations,
which we endeavored to avoid in the experimental setup
presented in this paper and which are not reflected in the
results. It is entirely possible, however, that given a different
experiment (for example, one that examined the robustness
of recognition, as is discussed below) the differences in noise
in the real world versus the simulated one would be salient
in explaining the differences.



VI. CONCLUSION AND FUTURE WORK
This paper presented our integration of a vision-based

word learning architecture with the USARSim simulation
environment. The existing vision component of the ADE
robotic architecture infrastructure was extended to allow
input from Unreal, allowing us to use the simulated envi-
ronment as a drop-in replacement for real-world testing. We
demonstrated the validity of the integration by comparing
tests of the learning mechanism conducted using the sim-
ulator with tests conducted in the real world. The results
showed that the training progressed comparably in the two
environments. Moreover, on the real world color recognition
task, the system performed similarly regardless of whether
it was trained in the simulated environment or in the real
world.

Future work will involve further development of the word
learning system presented in this paper in multiple directions.
For these experiments, parameter values and even function
types were chosen using trial-and-error. In future work, a
genetic algorithm may be used to optimize these parameters
for the task at hand. The complexity of the word-learning
side of the network leaves a lot to be desired, only recog-
nizing contained phoneme-sequences. Modifications to the
network will also be performed to allow for other effects
on word-recognition, such as a phoneme being present in
a word. Eventually, we hope to match the word-learning
behavior of the system to data from real-world children’s
word-learning behaviors. Observations from that domain
may give important clues towards optimizing the parameters
and learning functions to match that behavior. Finally, an
exciting next step will be to move from only recognition
to also initating action. Hearing a word or seeing a color
could actually cause the agent to initiate action, perhaps
a refocusing of attention. We expect this to result in an
interesting dynamical feedback loop, as attention focus on
an object brings it larger in to the visual field, activations for
that will increase, causing faster learning to take place. The
fast learning would in turn cause higher activations the next
time around, resulting in more probable, stronger attention
shift towards that object. Research suggest that children may
also learn words in this fashion [9].

VII. ACKNOWLEDGMENTS
This work was in part funded by ONR MURI grant

#N00014-07-1-1049 to second author. Thanks to You-Wei
Cheah for his work on the USARSim integration into the
ADE vision server.

REFERENCES

[1] J.R. Anderson, D. Bothell, M.D. Byrne, and C. Lebiere. An integrated
theory of the mind. Psychological Review, 11:1036–1060, 2004.

[2] Steven Balakirsky, Chris Scrapper, Stefano Carpin, and Michael Lewis.
Usarsim: Providing a framework for multi-robot performance evalua-
tion. In Proceedings of PerMIS, 2006.

[3] Randall Beer. Dynamical approaches to cognitive science. Trends in
Cognitive Science, 4(3):91–99, 2000.

[4] Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, Craig
Knoblock, Steve Minton, and Manuela Veloso. Prodigy: an integrated
architecture for planning and learning. SIGART Bull., 2(4):51–55,
1991.

[5] Kyle Carter, Matthias Scheutz, and Paul Schermerhorn. A humanoid-
robotic replica in usarsim for hri experiments. In IROS Workshop on
Robots, Games, and Research, 2009 (under review).

[6] George Kachergis, Chen Yu, and Richard Shiffrin. Temporal contiguity
in cross-situation statistical learning. In Proceedings of the 31st Annual
Conference of the Cognitive Science Society, 2009.

[7] John Laird, Allen Newell, and Paul Rosenbloom. SOAR: An archi-
tecture for general intelligence. Artificial Intelligence, 33:1–64, 1987.

[8] D.E. Meyer and D.E. Kieras. A computational theory of executive cog-
nitive processes and multiple-task performance. part 1. Psychological
Review, 104(1):3–65, 1997.

[9] Larissa Samuelson and Linda B Smith. Memory and attention make
smart word learning: An alternative account of akhtar, carpenter and
tomasello. Child Development, 69:94–104, 1998.

[10] Paul Schermerhorn and Matthias Scheutz. Natural language interac-
tions in distributed networks of smart devices. International Journal
of Semantic Computing, 2(4):503–524, 2008.

[11] Matthias Scheutz. ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures. Applied
Artificial Intelligence, 20(4-5):275–304, 2006.

[12] Richard Shiffrin and Mark Steyvers. A model for recognition memory:
REM–retrieving effectively from memory. Psychonomic Bulletin and
Review, 4(2):145–166, 1997.

[13] Joshua B. Tenenbaum and Fei Xu. Word learning as bayesian
inference. In Proceedings of the 22nd Annual Conference of the
Cognitive Science Society, 2000.

[14] J. Trafton, N. Cassimatis, M. Bugajska, D. Brock, F. Mintz, and
A. Schultz. Enabling effective human-robot interaction using
perspective-taking in robots. IEEE Transactions on Systems, Man and
Cybernetics, 25(4):460–470, 2005.

[15] Chen Yu and Linda B. Smith. Rapid word learning under uncertainty
via cross-situational statistics. Psychological Science, 18:414–420,
2007.


