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Abstract

Humans are remarkably good at recognizing spoken language,
even in very noisy environments. Yet, artificial speech rec-
ognizers do not reach human level performance, nor do they
typically even attempt to model human speech processing. In
this paper, we introduce a biologically plausible neural model
of real-time spoken phrase recognition which shows how the
time-varying spiking activity of neurons can be integrated into
word tokens. We present a proof-of-concept implementation
of the model, which shows promise both in terms of recog-
nition accuracy as well as recognition speed. The model is
also pragmatically useful to cognitive modelers who require
robust any-time speech recognition for their models such as
real-time models of human-robot interaction. We thus also
present such an example of embedding our model in a larger
cognitive model, along with offline analysis of its performance
on a speech corpus.
Keywords: Liquid State Machine; Neural Network Model;
Any-Time Speech Recognition

Introduction
The mechanisms that convert physical signals such as light
and sound into firing rates of neurons are well-studied. How-
ever, the way these signals subsequently influence behavior,
especially cognitive behavior, is less well understood. In
particular, the progression from continuous real-time input
streams at the physical transducer level to high-level cognitive
processes that abstract over many physical characteristics is
challenging, so much so that classical cognitive architectures
simply assume higher-level representations such as word to-
kens instead of modeling the processes that generate them.
While these assumptions do not pose problems for disembod-
ied models (e.g., of higher-level cognitive processes such as
analogical reasoning in language), they are critical showstop-
pers for embodied situated models that depend on being im-
plemented on robots that interact with their environments in
real-time (e.g., in the context of human-robot interactions in
natural language). In such models, sensory processing must
be performed one way or another, and while it is sometimes
possible to substitute engineering solutions for biologically
plausible sensory modules (e.g., artificial speech recognizers
instead of biologically plausible models of speech recogni-
tion), those substitutions often come at a price that assump-
tions have to be made about the nature of the interface be-
tween those parts of the model that are meant to be biologi-
cally plausible and those parts that function as proxies for yet-
to-be-developed biologically plausible parts. Specifically, the
sensory modules must be able perform their function (e.g.,
recognizing words or objects) at least as well as humans, or
else other components of the model have to account for er-
rors in perceptual processing (e.g., word recognition errors).

Moreover, the sensory module must be able to perform its
task and make its result available at least as fast as the corre-
sponding module would in humans to be able to respect hu-
man timing (e.g., the human expectation to hear a verbal ac-
knowledgment at the right time in response to an utterance).
As a result, these two requirements often pre-empt the use
of traditional computational methods that perform sensory-
input-to-token conversion.

In this paper, we will address the problem of biologically
plausible real-time sensory processing of speech signals with
a two-fold goal: (1) to provide a biologically plausible neu-
ral model of human spoken phrase recognition, and (2) to
provide a sensory module that can be embedded in classi-
cal cognitive architectures for the study of embodied situated
models of natural language interactions. Specifically, we pro-
pose a new approach to robust speech recognition which gives
continuous access to meaningful partial results, and returns
word or phrase tokens that can be directly used by higher-
level cognitive models. The model includes several parts of
the early auditory processing system in humans: the cochlea
(converting time to frequency domain), parts of the olivary
complex (applying several filters to the cochlear-processed
signal), and a sensory cortical area (comprising a recurrent
spiking neural circuit to integrate the signal). Category sepa-
ration is performed by “readout neurons” (one per category)
that respond continuously to ongoing activity in the recur-
rent circuit based on the particular weighted projection they
receive, as is customary for the employed liquid-state ma-
chine (LSM) neural model (Maass, Natschlager, & Markram,
2002). The weighted projection received by each readout
neuron is determined before-hand based on offline training
on a speech corpus. The main contributions are thus the im-
plementation of the speech processing neural architecture and
the method of converting the instantaneous output of read-
out neurons to the token-type output for use by subsequent
cognitive processes. The paper starts by laying out the back-
ground and the problems to be solved by a model that has
to convert time-varying instantaneous neural-readout behav-
ior to discrete categories. The subsequent model section then
describes the neural speech-encoding and integration parts of
the model. Then an analysis of the performance of the model
on subsets of a speech-corpus from human-human interac-
tion experiments is presented together with links to videos in
which the model is used as part of a larger cognitive model
for situated embodied human-robot interaction experiments
where speech utterances are used to control the robot’s ongo-
ing behavior.



Background
Liquid state machines have been proposed as neurologi-
cally plausible models of cortical microcircuits (Maass et al.,
2002) which can be used for time-invariant categorization
of continuous-time signals by way of simple linear “read-
out units”. The conversion from instantaneous readout activ-
ity to discrete tokens that accurately encode the temporally-
extended category, however, is not a trivial task as the instan-
taneous activity of a readout neuron only reflects that the very
recent activity (e.g., tens of milliseconds) of the recurrent cir-
cuit is similar to what its activity was at some point during
its response to the category on which the readout neuron was
trained. In other words, if a readout neuron R is trained to
respond to an isolated category, e.g., a word W , and is firing
vigorously to a stimulus S presented to the circuit, it is not
clear which part of S is recognized by the readout as being
similar to W . It is possible that the readout will fire (entirely
by coincidence) in response to a 20 ms segment of S but re-
main silent otherwise (as that part of the speech signal bears
resemblance to patterns that occur in typical speech signals
for W , e.g., similar phones). Obviously, it would be prema-
ture in this case to conclude that S is an instance of the cat-
egory W – after all, W might be typically 500 ms long, and
parts of it will be similar to parts of many other words. This
dissociation between recognizing matching parts of a word
versus recognizing the whole word (or phrase, for that mat-
ter), is the first problem to be solved: the challenge here is to
produce a mechanism for filtering out coincidental noise and
choosing a single “winning” category from among all readout
neurons that will have time-variant activations throughout the
presentation of S.

The second problem to be solved is to determine when to
select a winner (clearly a winner cannot be select at very
small time intervals as this would be tantamount to recog-
nizing new words all the time). Since a single stimulus can
span thousands of time-steps at which neurons can fire, the
model should return a single token exactly once per stimulus
and only if the stimulus is one of the categories that it has
been trained on. Even if there is a stimulus-length patch of
noise, the model should not recognize it as being similar to
the readout with the highest activation, but should not detect
any word token at all (alternatively, it could detect a “noise
token”).

Liquid state machine models have been previously ap-
plied to cases where the speech corpus was pre-processed
into frequency channels that were guaranteed to have only
one spike per word (coding onset, offset, or peak of that fre-
quency band) (Maass et al., 2002). However, these assump-
tions are unrealistic and it is difficult if not impossible to
produce this type of encoding in real-time from raw audio
streams. Another approach addressed this encoding limita-
tion and compared the performance of LSMs using differ-
ent sound-coding front-ends (Lyon cochlear vs. MFCC) as
well as different methods for converting the front-ends’ ana-
log output into input spike trains for the LSM (Verstraeten,

Schrauwen, & Stroobandt, 2005). While both approaches
performed category-token recognition well by their own met-
rics (i.e., the ratio of the number of correct readout spikes to
total time points in (Maass et al., 2002) and the class with
the most readout spikes in response to a given word file in
(Verstraeten et al., 2005)), neither method is applicable to
real-time speech recognition, since real continuous-time au-
dio is not separated into “files” with a clear stimulus onset and
offset. Rather, it is non-trivial to detect the onsets and offsets
of real utterances from continuous speech streams, which are
often full of non-word noises, variations in word pronuncia-
tion, or words on which the system has not been trained.

Hence, we developed novel and realistic neural implemen-
tations of onset/offset detectors to increase recognition per-
formance and aid in utterance detection and classification.
Specifically, the model is based on the approach of Smith
and Faser (2004) who, inspired by Ghitza (1987), present a
biologically inspired onset-detection regime using depress-
ing synapses. This implementation via short-term plasticity
(STP) synapses is justified based on the evidence provided
by MacLeod, Horiuchi, and Carr (2007), who argue that not
only synaptic depression, but also facilitation, can play a crit-
ical role in auditory processing. Finally, for auditory input
signal processing we utilize the Lyon cochlear model (Lyon,
1982; Slaney, 1998) which effectively applies band-pass fil-
ters and transformations to sound waves to approximate the
firing activity of a set of neural channels along the cochlea.

Model Architecture and Implementation
Figure 1 is a visualization of the neural circuits implemented
for speech recognition without the learned components (i.e.,
readout neurons and readout integrators). Here, we describe
the components of the model together with all parameters
used for the empirical evaluation presented later.

Neural and Synaptic Models
The neural model uses Leaky Integrate-and-Fire (LIF) neu-
rons, whose membrane potential Vm:

∂Vm

∂t
=

−(Vm −Vrest)+Rm · (Ibg + Isyn)

τm
(1)

where Rm is the membrane resistance, Ibg the background
current, and Isyn the total current impinging from afferent
synapses. −Vm represents the leakage term, causing the mem-
brane potential to decay exponentially with time constant
τm. When Vm reaches the threshold value Vthresh, the neuron
“fires” and Vm is reset to Vreset and enters a refractory period
during which it does not update.

The model uses static or dynamic synapses to connect neu-
rons. A static synapse has a post-synaptic response (PSR) that
decays exponentially with time constant τpsr. The dynamics
of the post-synaptic response qpsr of a synapse is thus:

∂qpsr

∂t
=

−qpsr

τsyn
(2)



Figure 1: 3-D visualization the neural model described in this
paper. The pictured circuit has only 4 input channels, and a
3× 3× 10 recurrent circuit. The actual circuit has 52 input
channels and a 5×5×15 recurrent circuit. Readout neurons
not shown (they would be on the right of the recurrent circuit,
receiving input from it).

Synaptic dynamics (short-term plasticity, STP) are imple-
mented following (Legenstein, Naeger, & Maass, 2005) using
the UDF model. The arrival of a spike k after interspike in-
terval ∆k−1 induces an increase in the post-synaptic charge of
amplitude Ak:

Ak = w ·uk ·Rk (3)

uk =U +uk−1(1−U)e−∆k−1/F (4)

Rk = 1+(Rk−1 −uk−1Rk−1 −1)e−∆k−1/D (5)

where w is the weight of the synapse (synaptic efficacy), uk
and Rk are hidden dynamic variables maintaining the facilita-
tory and depressionary tendencies of the short-term plasticity
of the synapse, and U , D and F are the parameters modu-
lating synaptic use, time constant of depression (in seconds),
and of facilitation. Initially, Rk = 1 and uk = U . Each spike
contributes Ak to its PSR at the time it hits.

Recurrent Circuit (Liquid)
The auditory recurrent circuit (“liquid”) is a 15× 5× 5 col-
umn of current-based leaky integrate-and-fire (LIF) neurons
(for a total of 375 neurons; 20% are randomly chosen to be
inhibitory).

For the neurons in the liquid, Ibg = 13.5 mV uniformly and
τm = 30 ms. Vrest is 0 mV. When the membrane potential of
a neuron exceeds Vthresh (15.0 mV), the membrane potential
is reset to Vreset (13.5 mV) and the neuron enters a refractory
period during which its dynamics are frozen. For excitatory
neurons this is 3 ms (inhibitory 2 ms). Isyn is equal to the dif-
ference of the post-synaptic responses (PSR) of excitatory af-
ferent synapses and the PSRs of inhibitory afferent synapses.

The probability that a synapse exists between neurons at
3-D points a and b is C · e(−D(a,b)/λ)2

, where λ is a global pa-
rameter controlling the density of connections (= 2.0), D(·) is

the Euclidean distance function, and C is a parameter to mod-
ulate the probability of a synapse depending on properties of
the connected neurons. In our case, C = 0.3 if a is an exci-
tatory neuron and b is an excitatory neuron (EE), C = 0.2 for
excitatory and inhibitory neurons (EI), C = 0.4 for inhibitory
and excitatory neurons (IE), and C = 0.1 for two inhibitory
neurons (II).

The parameters (U ,D,F) were selected for each synapse
depending on the type of neurons that were connected and
were drawn from a Gaussian distribution with means (0.5,
1.1 s, 0.05 s) for EE, (0.05, 0.125 s, 0.120 s) for EI, (0.25,
0.7 s, 0.02 s) for IE, and (0.32, 0.144 s, 0.06 s) for II (stan-
dard deviation 50% of the respective means). Negative results
were redrawn from a uniform distribution between 0.001 of
the mean and double the mean. The weights w of the synapses
were drawn from Gamma distributions with means 30.0 (EE),
60.0 (EI), 19.0 (IE), and 19.0 (II); SD 100% of mean, with
negative results redrawn from a uniform distribution as de-
scribed above. In addition, a synaptic delay of 1.5 ms was
implemented for EE synapses, 1.0 ms otherwise.

Input Neurons
Raw audio streams (PCM 16 kHz) are converted into firing
probabilities by a cochlear model (Slaney, 1998) which ap-
proximates the instantaneous firing activity of the auditory
nerve at different points along the cochlea (“cochlear input”,
gray neurons in Fig. 1). These probabilities are linearly scaled
and injected as current into a set of “spike generating” LIF
neurons (“spike generation”, blue neurons in Fig. 1). There
are three differently parameterized classes of spike generating
neurons (the three columns of neurons), for onset, offset, and
passthrough. The onset spike generating neurons have a low
(no firing without input) baseline firing rate (Ibg = 13.5 mV),
and receive strong positive input from the cochlear model in
the form of the spike probability for that channel × 20000 nA
(thus increasing activity when input is present in that chan-
nel). The offset spike generating neurons have a higher (fir-
ing without input) baseline rate affected by Gaussian noise
Ibg = 13.5+Γ(3.0,0.05) nA, where Γ indicates a value drawn
from a Gaussian distribution mean 4.0 and standard deviation
of 0.05. The input from the corresponding cochlear channel
is scaled by −20000 nA, thus suppressing activity when input
is present in that channel. The passthrough (direct) spike gen-
eration neurons have the same parameters as the onset spike
generation neurons. Vthresh = 15.0 mV for all these neurons.

The actual onset and offset detector neurons (green input
neurons in Fig. 1) receive dynamic synapses from the sur-
rounding three spike generation channels of their correspond-
ing class of spike generating neurons. These synapses mod-
ulate the current injected into the post-synaptic neuron based
on pre-synaptic firing activity. Large pre-synaptic activity
will cause an initial facilitation, followed by a longer depres-
sion in the strength of injected post-synaptic current per ac-
tion potential. Thus, they will inject strong current for the
first few pre-synaptic spikes, followed by less current for a
period thereafter. This, combined with the different baseline



firing rates of the spike generators, is what implements the on-
set/offset detectors. The passthrough neurons have quickly-
recovering dynamic synapses and perform more like static
synapses, but limit their firing rate to a slower rhythm.

Vthresh for each sensitivity level of onset/offset/passthrough
detector is:

Vthresh =Vreset +E0 · (Di · (c+1)) (6)

where E0 = 1.0 for onset/offset detectors and E0 = 0.2 for
passthrough neurons. D = 1.414, with i from c = 0 to c = N
for each of the N sensitivities of onset/offset detectors (N = 1
for the experiments, i.e. only one sensitivity level for on-
set/offset detectors). For the one passthrough level, D is
scaled by a factor of 9.0.

For the dynamic synapses between the spike generation
and the onset/offset/passthrough neurons, the UDF parame-
ters are (0.5,1.1,0.05) and w = 3.0 (onset), (0.5,0.025,0.5)
and w = 9.0 (offset), and (0.5,0.025,0.5) and w = 9.0
(passthrough).

Input (offset/onset/passthrough) neurons synapse into a
randomly selected 30% of circuit neurons via static synapses.
The weight A of each of these input synapses is drawn from
a Gamma (shape = 1) distribution with mean Amean = 18.0
when the post-synaptic neuron is excitatory and Amean = 9.0
when it is inhibitory. Negative weights are set appropri-
ately from a uniform distribution between 0.001 ·Amean and
2 ·Amean.

The cochlear model described in (Slaney, 1998)1 was
modified and updated to run in real time. Parameter de-
faults are retained (except for: break f = 500, qconst =
8.0, step f actor = 0.5, sharpness = 5.0, notcho f f set = 1.5,
preemph f req = 300, tau f actor = 3.0) producing 52 output
channels which encode on each simulation step the probabil-
ity that a spike occurs in that channel on that time step.

Readout Neurons and Phrase Integration
A final set of neurons (readout neurons) serve as classi-
fiers (rn, one for each category n). They receive as input a
weighted projection of the liquid’s instantaneous firing activ-
ity (if spiked +1, otherwise −1), low-pass filtered to mimic
the change in post-synaptic membrane potential had the read-
out been modeled as an LIF neuron (time constant 30 ms). A
readout neuron is said to fire at a given time point if the sum
of its inputs exceeds a threshold (the bias term determined
by the linear regression below). The shape of the weighted
projection is determined by supervised learning on a train-
ing corpus for each readout neuron independently. This is
achieved by linear regression of the matrix of the liquid re-
sponse to all stimuli (with an additional bias column which is
always −1), with a supervisor vector which contains +1 for
every time point during which input was from the target word
class, and −1 otherwise.

Phrase Integration is performed by injecting 1.0 nA per rn
spike into a corresponding readout integration neuron in (with

1Code from http://www.slaney.org/malcolm/pubs.html

membrane time constant τm = 50 ms). The readout integra-
tion neuron is considered to be active when Vm > 0.25, with
no reset or refractory period. These readout integrators pro-
vides a more continuous picture of the readout activity that is
robust to small recognition errors.

Utterance onset and offset detection (modeled as a neu-
ron with membrane potential Vutter) is performed by com-
bining input from the onset/offset/passthrough input neurons
with the current readout firing activity. Each spike of an on-
set/offset/passthrough neuron imparts directly 1.0/−0.5/0.7
mV to Vutter, which decays exponentially with τ = 200 ms.
For a word onset to be detected, Vutter > 1.0, and the highest
value of all n, in > 0.25. An offset occurs when either of these
variables falls below the threshold. On onset, an accumula-
tor neuron al increases its voltage at a constant rate of 0.002
mV/ms, with a threshold of 0.3 mV. An utterance is only con-
sidered to be an instance of a category (i.e. not noise) if al is
over threshold. The accumulator is reset to 0 mV at offset.
Another set of accumulators an(one for each readout integra-
tor in) sums the value of its corresponding readout integrator
in from the point an onset is detected, and are reset at offset.

When an utterance that meets all the above conditions is
detected, its category is determined by dividing each readout
accumulator by the length accumulator. If the highest value
is greater than the in threshold (0.25), the utterance is classi-
fied as being an instance of the winning category n. A token
(e.g. a textual representation of it, or a number) indicating
that category is returned.

Experimental Validation, Analysis and Results
The model was tested on part of the “CReST corpus”
developed from human-human interactions in a search
task (K. Eberhard, Nicholson, Kuebler, Gundersen, &
Scheutz, 2010) (http://www.cs.indiana.edu/˜riveale/
hricorpora.html). The liquid was trained 10 times each
on 9 audio samples each for each of ten phrase categories.
In addition, it was “counter-trained” on a sample of recorded
microphone noise (that portion of the supervisor vector for
all categories was −1 for all time-points for the linear regres-
sion). The final two audio samples for each category were set
aside for testing.

To test phrase recognition, a new audio stream was created
by concatenating the 10 test samples which were presented to
the model in real-time. The returned categories were verified
to be recognized only once during the correct portion of the
audio stream. The best liquid was able to correctly recognize
all ten phrase categories. 50 liquids were randomly generated
and trained. All were able to recognize at least 7 of the cat-
egories, with the exception of 3 liquids that only recognized
5 of them (recall that liquids are randomly generated). By
observing the readout behavior during recognition, it was de-
termined that the primary reason for failure was similarities
in the categories (e.g. it was most likely to fail when phrases
shared similar words, or words had large regions that were
similar-sounding).
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Figure 2: Top: Readout (spike) and integrator (lines) response
of each trained category from the best liquid to a test case
of its own class. Center: Readout integrator responses of 5
phrases uttered sequentially, along with scaled utterance de-
tector. Horizontal line is threshold. Note each “correct” read-
out is active during its own category and relatively inactive
otherwise. Bottom: Proportion of correctly spiking and cor-
rectly not spiking time points for each trained readout (cor-
rected for large leading/trailing silence).

Figure 2 shows the time-line of phrase recognition over the
course of the test speech stream in two different ways (includ-
ing the raw spiking characteristics of the best liquid for the
auditory corpora used). Note that even during an utterance,
it can be predicted based on readout integrator levels whether
the utterance stream is probably of a given class. This in-
formation can be used to prepare (pre-cache or “prime”) re-
sponses to that phrase.

The model has also recently been used for speech recogni-
tion embedded in a larger cognitive model of embodied sit-
uated human natural language interactions in human-robot
interactions tasks, thus providing evidence for its utility in
real environments (video at http://www.cs.indiana.edu/
˜riveale/muridemo.html). In this task, the model played
the role of a speech recognizer that sends processed tokens
representing whole phrases to a natural language parser and
understanding system. This system processed the meaning of

the phrase, and passed it on to a cognitive architecture (plan-
ner, etc.) which was able to initiate actions (such as chang-
ing its own goal state, change its behavior, learn new actions
such as door-pushing) based on the content of the phrases
(Cantrell, Talamadupula, Schermerhorn, Benton, & Scheutz,
2012).

Discussion

While previous research has presented methods for convert-
ing spike-encoded streams (generated offline from audio in-
put) into liquid activity and, subsequently, liquid activity into
instantaneous category readout firing, the problem of using
readout firing activity to generate category-tokens of the kind
used by most higher-level cognitive models has not been suf-
ficiently addressed. Moreover, the method of encoding sound
as spikes did not take into account the onset/offset-detection
capabilities of the human auditory system, which contributes
significantly to the robust recognition of shorter phonemes
like consonants. The model presented in this paper addresses
both shortcomings by processing sound in a realistic way up
to the neural readout-level and being capable of returning cor-
rect word tokens based on readout activity at the right time.
One limitation of the current model that must be addressed
in the future is that some aspects of the token conversion
(the conversion from raw spiking activity to phrase-tokens)
are not guarenteed to work well in all speech situations. For
example, the assumption that phrases will be preceded and
followed by silence may not hold in situations where speech
is very fast. In those situations recognizing phrases based on
other information such as prosody could lead to better results
(Christiansen, Allen, & Seidenberg, 1998).

In addition to the practical benefits of having a real-time
model that shows promising performance on natural speech,
the model makes important predictions about the mechanisms
by which humans are capable of extracting discrete category
information from a continuous real-time stream of sensory
data. For example, the model proposed an explanation for
how category priming or biasing effects come about, as the
ongoing activity of each readout integrator can be viewed
as the probability that the category it represents is currently
present in the stimulus stream. This probability can be made
to bias ongoing behavior even before the stimulus signal ends.
To see this, imagine an experimental paradigm (e.g., the vi-
sual world paradigm (K. M. Eberhard, Spivey-Knowlton, Se-
divy, & Tanenhaus, 1995)) in which an auditory cue (e.g., a
color word) determines to which of two locations the sub-
ject should direct her eyes – it is well-known that humans in
that case are capable of performing eye saccades shortly after
the onset of the color word (even though they will not always
perform them right away). For computational models of these
human behaviors it means that a decision for eye movements
has to be reached before the word stimulus ends. Specifi-
cally, if there are two category readouts, one for “Red” and
one for “Blue”, and the first phoneme of “Red” is presented,
the model could use the already high activity of the “Red”



category to bias its looking behavior even before the stimulus
has ended and the category word “Red” is fully recognized.

This example demonstrates that there can be multiple
routes from the “readout” level to other parts of the cog-
nitive system that can influence and bias behavior (one be-
ing the route where recognized word tokens are passed on
to higher syntactic and semantic processing areas, while an-
other being the more direct, intermediate route that can bias
looking behavior). The current model is silent about the ex-
act nature of these routes, as this would require additional
specifications of those higher-level cognitive components and
behavior-generating components, an important direction for
future work. The current model is also silent about the impor-
tant top-down biases coming from various other parts of the
human cognitive system such as the syntactic and semantic
biases as well as other biasing information based on percep-
tual, dialogue, task, and goal information. These top-down
biases are critically involved in human speech processing and
contribute to the robustness of human speech recognition in
noisy environments. However, we believe that the particu-
lar model architecture will directly allow for this kind of in-
formation integration by way of appropriate top-down con-
nections to the readout units whose activations represent the
dynamically changing hypotheses about recognized words.
We are currently investigating extended versions of the model
that include additional perceptual areas (e.g., as described in
(Veale, Schermerhorn, & Scheutz, 2011)) to test the extent to
which perceptual biases can influence recognition rates and
behavior (such as eye saccades).

Different from our previous models (Scheutz, Eberhard, &
Andronache, 2004) which only at a high level of abstraction
resembled the human cognitive architecture and only mod-
eled the human data qualitatively, the goal for these new mod-
els is to be fully realized in neural architectures and to model
the human data quantitatively.

Conclusions
In this paper, we presented a novel biologically plausible
model for human speech recognition together with a proof-
of-concept implementation and evaluation of the model. As
part of the model, we introduced new methods for any-time
phrase recognition based on the human early auditory sys-
tem coupled with biologically plausible methods to produce
word category tokens from a continuous auditory stream. We
also introduced biologically plausible implementations of on-
set/offset detectors for word signals. Future work will in-
clude the already mentioned extensions by perceptual areas
to be able to allow for biologically plausible quantitative neu-
ral models of human eye gaze behavior during reference res-
olution. In addition, we will also investigate mechanisms for
improving noise-robustness with multiple sensitivity levels at
the onset/offset stage and online learning of novel word cate-
gories.
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