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1. INTRODUCTION
A primary goal of the field of Human-Robot Interaction

is to allow for natural human-robot interactions, and thus
robot architectures must eventually be able to understand
truly natural human speech. And yet, despite the abun-
dance of research devoted to language understanding, most
robots capable of participating in linguistic interactions are
only able to understand relatively simple utterances (e.g.,
commands), and do not consider those utterances’ deeper
implications.

We believe that this suggests a shortcoming of the cur-
rent state of the art: humans do not typically restrict them-
selves to commands, and humans’ intentions are often not
derivable from the semantic content of the utterances they
employ. Indeed, most human language is intentionally indi-
rect and ambiguous so as to conform with social conventions
(e.g., politeness). If we desire truly natural human-robot
interactions, we must thus go beyond the command-based
paradigm characterizing most current robot architectures.

While a few architectures have made first steps toward a
deeper understanding of human utterances, these have not
attempted to represent a robot’s certainty in its beliefs or
perceptions. As human utterances are rife with both inten-
tional and incidental ambiguity, we believe such systems are
ill-equipped for use in the real world.

Our research seeks to address the shortcomings of cur-
rent architectures by developing mechanisms for natural lan-
guage understanding and generation. These mechanisms use
the robot’s goal-based, social, and environmental knowledge
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to deeply understand human utterances and to generate ut-
terances that adhere to the social conventions of human in-
teractions, exploiting the robot’s knowledge of its own igno-
rance to achieve robustness to uncertainty and to appropri-
ately generate clarification requests.

2. PRIOR WORK
Our work follows in the tradition of Searle’s speech act

theory [6], and extends the capabilities of several recent
language-capable robot architectures [2, 1, 5, 4]. Of these ar-
chitectures, few enable robots to reason about the certainty
of their own beliefs, and those that do [2, 1] are unable to
infer the intentions behind non-literal utterances such as in-
direct speech acts (ISAs). On the other hand, some architec-
tures allow robots to interpret a variety of ISAs [5, 3], but do
not explicitly represent the uncertainty of the robot’s beliefs
and thus are not robust to uncertain context. To the best
of our knowledge, only one approach has both represented
uncertainty and afforded the ability to interpret non-literal
utterances [9], but this approach is limited to understanding
indirect commands and uses a rudimentary representation
of uncertainty that is only applied to the rules used by the
robot, and not to the robot’s knowledge itself.

3. METHODOLOGY
Our proposed robot architecture is best characterized by

its use of Dempster-Shafer (DS) theoretic representations of
uncertainty, and its symmetric pragmatic reasoning compo-
nents. I will now briefly discuss each of these features.

3.1 A Dempster-Shafer Theoretic Approach
The Dempster-Shafer theory of evidence is a generaliza-

tion of the standard Bayesian probability system which as-
signs degrees of belief to sets of mutually exclusive hypothe-
ses rather than specifying probability distributions to char-
acterize individual events. The uncertainty associated with
a particular hypotheses can then be represented using a two-
valued probability interval calculated using the degrees of
belief of hypotheses that support and refute that hypothe-
sis. The use of a DS-theoretic approach provides an elegant
way to represent and reason about the uncertainty and igno-
rance of a robot’s beliefs, without committing to a particular
probability distribution which may or may not be justified.

3.2 Pragmatic Reasoning Components
Our architecture introduces a pair of pragmatic reasoning

components: a pragmatic inference component which uses a



table of pragmatic rules and knowledge of the current con-
text to deduce a set of intentions from a given utterance,
and a pragmatic generation component which uses the same
rules and context to abduce the best utterance to commu-
nicate a given intention.

Each rule representation contains an utterance form, a
set of contextual items which must be true for the rule to be
applicable, a set of intentions to infer from the rule if it is ap-
plied, and a DS-theoretic uncertainty interval representing
the robot’s confidence in the rule itself. Representing this
uncertainty explicitly makes the robot more robust to uncer-
tain contextual factors, and allows us to write rules that are
more general and versatile than the pragmatic rules used in
other proposed architectures (e.g., [5]). We will now briefly
describe the inference algorithms utilized by our pragmatic
inference and generation components.

3.2.1 Pragmatic Inference
The Pragmatic Inference component takes as input the

semantic content of an utterance and the DS-theoretic un-
certainty interval reflecting the robot’s confidence in those
semantics. It then considers each pragmatic rule applicable
for the given utterance in the current context (as determined
by the items residing in the robot’s knowledge base, each of
which has an associated interval reflecting the robot’s con-
fidence in the truth of that item). For each rule, the al-
gorithm combines its representations of the utterance and
contextual item associated with that rule, by way of a DS-
theoretic AND operation. A DS-theoretic Modus Ponens
operation is then used to obtain a representation of the in-
tention associated with the rule. The uncertainty interval
associated with this intention captures the robot’s degrees
of uncertainty and ignorance in its belief that that inten-
tion was intended by the interlocutor. DS-theoretic fusion
operators are then used to combine the results of all rule
applications into a set of inferred intentions. This algorithm
is detailed in [8].

3.2.2 Pragmatic Generation
When the robot must communicate its intentions, it must

choose an appropriate surface realization of those intentions.
This is accomplished using an abductive algorithm which
uses the same set of pragmatic rules used for inference. This
algorithm chooses as the“best”utterance the utterance most
likely to appropriately communicate the robot’s intentions,
without also communicating anything the robot does not
actually believe. The DS-theoretic approach becomes par-
ticularly useful here; since the rules used for inference are
essentially equations that relate premise and rule to conse-
quent, they can be used for both deductively and abduc-
tively. This algorithm is detailed in [7].

3.3 Integration
These components were integrated into the DIARC archi-

tecture and implemented on a Willow Garage PR2. This in-
tegration demonstrated several benefits of our approach: by
explicitly representing the uncertainty of the robot’s knowl-
edge and perceptions, the robot was able to use DS-theoretic
uncertainty assessment mechanisms to ask for clarification
when high uncertainty or ignorance was reflected in the se-
mantics of recognized speech or in the intentions produced
by pragmatic inference. This integration is detailed in [7],
and can be observed in a video at https://vimeo.com/106203678.

While an evaluation will eventually be critical, we believe it
would be premature, as it is not yet clear how best to eval-
uate such an integrated system. For instance, it is unclear
how many scenarios and rules must be examined, and how
to be sure that such data is sufficient. Instead, our approach
should be viewed as a real-time, integrated, proof-of-concept
demonstration.

4. FUTURE WORK
This work will be extended in several ways. First, we

seek to use DS-theoretic adaptation mechanisms to auto-
matically learn new rules and to adapt the uncertainties of
learned rules. We also plan to extend our approach to maxi-
mally leverage the set-reasoning capabilities afforded by the
DS-theoretic approach. Finally, research is needed to deter-
mine how best to evaluate dialogue systems in the context
of integrated robot architectures.
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