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Abstract

For situated agents to effectively engage in
natural-language interactions with humans,
they must be able to refer to entities such
as people, locations, and objects. While
classic referring expression generation (REG)
algorithms like the Incremental Algorithm
(IA) assume perfect, complete, and acces-
sible knowledge of all referents, this is not
always possible. In this work, we show how
a previously presented consultant framework
(which facilitates reference resolution when
knowledge is uncertain, heterogeneous and
distributed) can be used to extend the IA to
produce DIST-PIA, a domain-independent
algorithm for REG under uncertain, hetero-
geneous, and distributed knowledge. We also
present a novel framework that can be used
to evaluate such REG algorithms without
conflating the performance of the algorithm
with the performance of classifiers it employs.

1 Introduction

For situated agents to effectively engage in natural-
language interactions with humans, they must be
able to refer to those entities of interest to their in-
terlocutors, such as people, locations, and objects.
This task, known as referring expression generation
(REG) is typically split into two sub-tasks: content
determination (deciding which properties to use to
describe a target), and linguistic realization, (choos-
ing which words to use to communicate those prop-
erties) (Krahmer and Van Deemter, 2012). In keep-
ing with tradition, we refer to content determination
algorithms as REG algorithms.

Traditionally, REG algorithms make use of a do-
main (comprised of target referent m and a set of
distractors X), where each entity in that domain is
represented by an attribute set of properties and re-
lations that hold for that entity (Dale and Reiter,
1995). The most traditionally successful such al-
gorithm has been Dale and Reiter’s Incremental Al-
gorithm (IA), which additionally takes a preference
ordering P in which attributes are to be considered.

A variety of factors prevent many situated agents
from using algorithms from this tradition. Crucially,
to check whether an entity has a certain attribute, IA
simply checks whether that attribute is a member of
that entity’s attribute set, producing a clear and un-
ambiguous answer. But for many agents, it is imper-
ative to represent the uncertainty of knowledge. The
knowledge bases (KBs) of these agents may thus be
unable to definitively state whether or not a given
attribute holds for a given entity.

While there have been previous approaches to
generating referring expressions (REs) under un-
certainty, those algorithms have been explicitly de-
signed to refer to objects in visual scenes, and
as such are tightly integrated with visual classi-
fiers (Zarrieß and Schlangen, 2016; Roy, 2002; Meo
et al., 2014). This is problematic for least two rea-
sons: First, intelligent agents may need to generate
REs for a much wider class of entities than those
appearing in a visual scene (e.g., agents, locations,
ideas, utterances), which may not be possible if an
REG algorithm is tightly coupled with visual classi-
fiers. Second, due to this tight coupling, the evalu-
ation of these algorithms conflates the performance
of the REG algorithms themselves with the perfor-



mance of the visual classifiers they employ. For
these reasons, previous algorithms for generating
REs under uncertainty have only been evaluated rel-
ative to different versions of themselves, and not to
other algorithms or to humans. We believe it is im-
portant to be able to talk separately about the design,
efficacy, and integration of REG algorithms and the
design, efficacy, and integration of property classi-
fiers used by those algorithms. In this paper we
present an REG algorithm that is not tightly inte-
grated with specific property classifiers, but is easily
extensible to allow for arbitrary property classifiers
to be utilized within a general framework.

In addition to these two primary concerns, we
raise a third, specific to the realities of modern inte-
grated agent architectures. In many integrated agent
architectures, such as DIARC (Scheutz et al., 2013)
and ROS (Quigley et al., 2009), information may be
distributed across a number of architectural compo-
nents, rather than being stored in a single centralized
KB, meaning that no central attribute set can be ex-
pected to be ready and available for use by an REG
algorithm. While there has been much research on
merging disparate knowledge bases (Lin, 1996; Lib-
eratore and Schaerf, 1998; Konieczny, 2000), this is
not always feasible or even desirable in integrated
architectures (Williams and Scheutz, 2016).

In this paper, we address three main research chal-
lenges. First and most crucially, we address the need
for REG algorithms that take into account the gener-
ator’s uncertainty regarding entities’ attributes, and
which are not tied to a particular domain (e.g., vis-
ible objects). Second, we address the lack of a rig-
orous evaluation framework for systematically eval-
uating such algorithms, in a way that allows REG
algorithms in this class to be compared to both each
other and to humans. Finally, we address the need
for such algorithms to take into account the realities
of the distributed knowledge representation schemes
used by modern integrated agent architectures.

To address these challenges, we present DIST-
PIA: an IA-inspired REG algorithm designed to
operate within our previously presented consultant
framework (Williams and Scheutz, 2016), which
provides access to uncertain, heterogeneous, and
distributed knowledge. Furthermore, we present a
novel two-stage evaluation framework in which hu-
man participants first assess the uncertainty that var-

ious attributes hold within a domain and to gen-
erate novel REs, and then evaluate the effective-
ness of REs created from both human- and machine-
generated sets of properties within that domain.

2 Previous Work

“Referring” has been referred to as the “fruit fly”
of language due to the amount of study it has at-
tracted (Van Deemter, 2016). The bulk of such study
has focused on the content determination stage of
REG. As previously noted, classic REG algorithms
(e.g., Full Brevity, the Greedy Algorithm (Dale,
1989), and the aforementioned Incremental Algo-
rithm (Dale and Reiter, 1995)) operate under a
number of simplifying assumptions (such as certain
knowledge on the part of both speaker and listener)
that are not tenable in realistic interaction scenarios.

In this section, we will not attempt to survey the
full scope of REG algorithms developed in the past
few decades (for an excellent primer, we recommend
Van Deemter (2016)’s recent book on the subject),
but will instead focus on REG algorithms that have
relaxed the constraint of certain knowledge.

Horacek (2005) presents an algorithm that rea-
sons about the certainty that a listener will be able to
recognize that a target referent has certain attributes,
choosing an utterance that minimizes recognition
failure. This is an example of audience design in
which the listener’s knowledge and capabilities are
taken into account. Horacek’s algorithm does not,
however, take into account the uncertainty of the
agent’s knowledge, which we argue must be taken
into account before audience design is considered.

In the graph-based approach presented by
Sadovnik et al. (2013), computer vision classifiers
are used to assess both the uncertainty of the agent’s
knowledge as well as for audience design. If
Sadovnik’s algorithm cannot generate an RE that
is sufficiently likely to disambiguate the target, it
is re-run using the attributes of both the target and
one of its neighbors. While this approach relaxes
the assumption of completely certain knowledge, it
imposes others, as it is specifically tailored to use
vision-based techniques alone. Furthermore, by
giving equal weight to the attributes of target and
anchors, the algorithm generates REs that curiously
under-describe the target relative to anchors (e.g.,



“The person on the right of a person who is not
Asian and has eye glasses and is smiling and has
bangs and whose mouth is not closed”).

Finally, Fang et al. (2013) (see also (Fang et al.,
2015)) present an approach which more systemati-
cally handles attributes by expanding a hypergraph
of properties until the selected properties disam-
biguate the target referent. When choosing how to
expand this hypergraph, Fang chooses the attribute
of minimal cost, taking into account the uncertainty
of the agent’s knowledge as well as the preference
of that attribute (in the sense used by the IA). While
this approach moves in the right direction, it once
again assumes the exclusive use of computer vision
classifiers, that all entities are objects in a visual
scene, and that information about all such entities
is stored in a single, centralized data structure.

3 Consultant Framework

We previously presented a framework of “con-
sultants” that allows information about entities to
be assessed when knowledge is uncertain, hetero-
geneous, and distributed (Williams and Scheutz,
2016). Specifically, each consultant c facilitates
access to one KB k, and must be capable of at least
four functions:

1. providing a set cdomain of atomic entities from k,
2. advertising a list cconstraints of constraints that can

be assessed with respect to entities from cdomain,
3. assessing constraints from cconstraints with respect

to entities from cdomain, and
4. adding, removing, or imposing constraints from
cconstraints on entities from cdomain.

While these capabilities were designed to facil-
itate reference resolution, they can also facilitate
REG, which requires a set of distractors to rule out
(Capability 1), a list of constraints that can be used to
rule out those distractors (Capability 2), and a means
of checking whether those constraints do in fact rule
out distractors (Capability 3).

Recall, however, that the IA considers constraints
according to a preference ordering. For example, it
may be more preferable to use an entity’s type to
describe it than to use its color, more preferable to
use color rather than size, and so on. To use the
aforementioned consultant framework for REG, we
thus require a more specific second capability:

2. advertising a list cconstraints of constraints that can
be assessed with respect to entities from cdomain,

and that is ordered by descending preference.
With this modification, we now have a framework

which provides access to uncertain knowledge from
different domains and of heterogeneous representa-
tion which is distributed throughout a robot architec-
ture, and which is configured to interface well with
the IA. In the next section, we describe how we have
similarly modified the IA in order to take advantage
of this framework.

4 Algorithm and Walkthrough

In this section, we present DIST-PIA, the Dis-
tributed, Probabilistic Incremental Algorithm1,
a modified version of the Incremental Algo-
rithm (IA) (Dale and Reiter, 1995). For each
property p in the list of properties attributed to
the target referent, IA checks whether p is not
attributed to any distractors; if so, p is added to the
list of properties to communicate, and the ruled-out
distractors are removed from the set of distractors.
This process terminates when all distractors are
eliminated or there are no properties left to consider.

When information is uncertain and distributed
across multiple KBs, however, the assumptions
made by the IA are unlikely to hold. It is unlikely,
for example, that the set of properties that hold for
each entity will have been helpfully precomputed.
As such, an REG algorithm operating under un-
certain and distributed knowledge cannot rely on
simple set-membership checks, but must instead
explicitly check how probable it is that an entity has
a particular property.

In this section, we present DIST-PIA, the Dis-
tributed, Probabilistic Incremental Algorithm which
uses the aforementioned consultant framework to do
just that. And we provide a walkthrough of this al-
gorithm in an example scenario. Each step of this
walkthrough is summarized in a row of Tab. 1 and
denoted in the walkthrough in bold (e.g., (1)).

To illustrate the behavior of DIST-PIA, we will
use an architectural configuration with three dis-
tributed consultants C for representing people (p),
locations (l), and objects (o). If DIST-PIA (DP here-
after) is required, using this architecture, to refer to
entitym = p5, it will begin by creating an empty de-

1A preliminary description of this algorithm also appears
in (Williams and Scheutz, 2017a).



Notation
C A set of consultants {c0, . . . , cn}
cΛm The set of formulae {λ0, . . . , λn} advertised by the

consultant c ∈ C responsible for m.
M A robot’s world model of entities {m0 . . .mn} found

in the domains provided by C.
D The incrementally built up description, comprised of

mappings from entities M to sets of pairs (λ,Γ) of
formulae and bindings for those formulae.

DM The set of entitiesm ∈M for which sub-descriptions
have been created.

dM The set of entitiesm ∈M involved in sub-description
d.

P The set of candidate (λ,Γ) pairs under consideration
for addition to a sub-description.

Q The queue of referents which must be described.
X The incrementally pruned set of distractors

Algorithm 1 DIST-PIA(m,C)
1: D = new Map() // The Description
2: Q = new Queue(m) // The Referent Queue
3: while Q 6= ∅ do
4: // Consider the next referent
5: m′ = pop(Q)
6: // Craft a description d for it
7: d = DIST-PIA-HELPER(m′, C)
8: D = D ∪ {m→ d}
9: // Find all entities used in d

10: for all m′′ ∈ dM \ keys(D) do
11: // And add undescribed entities to the queue
12: push(Q,m′′)
13: end for
14: end while
15: return D

scription D = ∅ and a queue of referents to describe
Q = {p5} (Tab. 1 Row (1); Algorithm 1, Lines 1-
2). Because there are still referents left to describe
(Line 5), DP calls on its helper function DIST-PIA-
HELPER (DPH hereafter) to craft a sub-description
for p5, which is popped off of Q (Line 7).

DPH begins by asking the consultant respon-
sible for p5 for a set of distractors X (e.g.,
{p1, p2, p3, p4}) and a set of properties P to con-
sider (e.g., cΛ

m = jim(X-p), jill(X-p), man(X-p),
woman(X-p), lives-in(X-p,Y-l)), each of which
DPH pairs with an empty set of bindings (Algo-
rithm 2, Lines 1- 4). From this list, DPH pops
the first unconsidered property (i.e., jim(X − p))
and its (empty) set of bindings. jim(X − p) has
exactly one unbound variable, so DPH will use (2)
consultant p’s apply method (as per Capability 3) to

Algorithm 2 DIST-PIA-HELPER(m,C)
1: d = ∅ // The Sub-Description
2: X = M \m // The Distractors
3: // Initialize a set of properties to consider: those advertised

by the consultant c responsible for m
4: P = [∀λ ∈ cΛm : (λ, ∅)]
5: // While there are distractors to eliminate or properties to

consider
6: while X 6= ∅ and P 6= ∅ do
7: (λ,Γ) = pop(P )
8: // Find all unbound variables in the next property
9: V = find_unbound(λ,Γ)

10: if |V |> 1 then
11: // If there’s more than one, create copies of that prop-

erty under all possible variable bindings that leaving
unbound exactly one variable of the same type as the
target referent

12: for all Γ′ ∈ cross_bindings(λ,Γ, C) do
13: // And push them onto the property list
14: push(P, (λ,Γ′))
15: end for
16: // Otherwise, if it is sufficiently probable that the

property applies to the target referent...
17: else if apply(cm, λ,Γ ∪ (v0 → m)) > τdph then
18: // And it’s sufficiently probable that it does not apply

to at least one distractor...
19: X̄ = [x ∈ X | apply(cx, λ,Γ ∪ (v0 → x)) > τdph]
20: // Then bind its free variable to the target referent,

and add it to the sub-description...
21: if X̄ 6= ∅ then
22: // And remove any eliminated distractors
23: d = d ∪ (λ,Γ ∪ (v0 → m))
24: X = X \ X̄
25: end if
26: end if
27: end while
28: return d

ask how probable it is that jim(X−p) applies to p5.
Suppose the returned probability is above threshold
τdph (e.g., 60%). Because the chosen property does
indeed apply to the target referent, DPH uses the
same method to determine whether it also applies
to any distractor x in X . Suppose this is only the
case for p2. The remaining distractors {p1, p3, p4}
(3) will be removed from X and (4) jim(p5) will
be added to sub-description d (Lines 17- 26).

DPH will then repeat this process with other prop-
erties. Suppose it is insufficiently probable that
jill(X − p) holds (5): it will be ignored. Suppose
it is sufficiently probable that man(X − p) holds
(6), but that it is also sufficiently probable that it ap-
plies to the lone remaining distractor, p2 (7): it will



# Act Description m Sub-description Distractors Property Property List
1 P ∅ p5 ∅ {p1, p2,

p3, p4}
∅ {jim(X-p), jill(X-p),man(X-p),

wom(X-p), l-in(X-p, Y -l)}
2 A ∅ p5 ∅ {p1, p2,

p3, p4}
jim(X-p) {jill(X-p),man(X-p), wom(X-p),

l-in(X-p, Y -l)}
3 E ∅ p5 ∅ {p2} jim(X-p) {jill(X-p),man(X-p), wom(X-p),

l-in(X-p, Y -l)}
4 d ∅ p5 {jim(p5)} {p2} ∅ {jill(X-p),man(X-p), wom(X-p),

l-in(X-p, Y -l)}
5 A ∅ p5 {jim(p5)} {p2} jill(X-p) {man(X-p), wom(X-p), l-in(X-p, Y -l)}
6 A ∅ p5 {jim(p5)} {p2} man(X-p) {wom(X-p), l-in(X-p, Y -l)}
7 E ∅ p5 {jim(p5)} {p2} man(X-p) {wom(X-p), l-in(X-p, Y -l)}
8 A ∅ p5 {jim(p5)} {p2} wom(X-p) {l-in(X-p, Y -l)}
9 B ∅ p5 {jim(p5)} {p2} l-in(X-p, Y -l){l-in(X-p, l1), l-in(X-p, l2), l-in(X-p, l3)}
10 A ∅ p5 {jim(p5)} {p2} l-in(X-p, l1) {l-in(X-p, l2), l-in(X-p, l3)}
11 E ∅ p5 {jim(p5)} ∅ l-in(X-p, l1) {l-in(X-p, l2), l-in(X-p, l3)}
12 d ∅ p5 {jim(p5),

l-in(p5, l1)}
∅ ∅ {l-in(X-p, l2), l-in(X-p, l3)}

13 D {jim(p5), l-in(p5, l1)} ∅ ∅ ∅ ∅ ∅
14 P {jim(p5), l-in(p5, l1)} l1 ∅ {l2, l3} ∅ {som(X-l), cam(X-l),mass(X-l),

in(X-l, Y -l)}
15 A {jim(p5), l-in(p5, l1)} l1 ∅ {l2, l3} som(X-l) {cam(X-l),mass(X-l), in(X-l, Y -l)}
16 E {jim(p5), l-in(p5, l1)} l1 ∅ ∅ som(X-l) {cam(X-l),mass(X-l), in(X-l, Y -l)}
17 d {jim(p5), l-in(p5, l1)} l1 {som(l1)} ∅ ∅ {cam(X-l),mass(X-l), in(X-l, Y -l)}
18 D {jim(p5), l-in(p5, l1),

som(l1)}
∅ ∅ ∅ ∅ ∅

Table 1: WALKTHROUGH SUMMARY.
Column Two summarizes action taken: Prepare, Assess, Eliminate, Bind, d-append, or D-append.
Some predicates are abbreviated, and predicate/binding tuples are rewritten as bound predicates.

be ignored. Suppose it is insufficiently probable that
woman(X − p) holds (8): it will be ignored. Fi-
nally, DPH will consider lives-in(X − p, Y − l).
Unlike the previous properties, this has two unbound
variables. DPH will thus use (9) cross_bindings
to create a set of candidate variable bindings for
this property, each of which leaves exactly one vari-
able for which p is responsible unbound. Suppose l
knows of locations l1, l2, and l3: cross_bindings
will return (lives-in(X − p, Y − l), {Y → ls1}),
(lives-in(X−p, Y −l), {Y → ls2}), and (lives-in(X−
p, Y − l), {Y → ls3}) , each of which will be added
onto P for DPH to consider. (Lines 10- 15).

Suppose it is sufficiently probable (10) that
(lives-in(X − p, l1)) applies to p5 but not to the
lone remaining distractor (p2), allowing p2 to be
ruled out (11). lives-in(X − p, Y − l) will be
added (12) to d and {p2} will be removed from
X . Since X is now empty, the sub-description
p5 → {jim(p5), lives-in(p5, l1)} will be re-
turned (13) to DP (Line 28). Notice that this
sub-description refers to an entity (l1) which itself

needs to be described. Accordingly, l1 will be added
to Q (14), and because it is the only entity on the
queue, immediately popped and sent back to DPH .

As before, DPH begins by asking the consul-
tant responsible for l1 for a set of distractors X
(e.g., {p2, l3}) and a set of properties P to con-
sider (e.g., cΛ

m = somerville(X-l), cambridge(X-
l), massachusetts(X-l), in(X-l,Y-l)), which it con-
siders one at a time. Suppose it is sufficiently
probable that somerville(X − l) applies to l1 (15)
but not to distractors l2 or l3 (16): it will be
added (17) to d, {l2, l3} will be removed from
X , and l1 → {somerville(l1)} will be returned
(18) to DP. Finally, since Q is empty, DP will
return {p5 → {jim(p5), lives-in(p5, l1)}, l1 →
{somerville(l1)}} (Algorithm 1, Line 15). It will
be the responsibility of the next component of the
natural language pipeline to translate this into an RE
along the lines of “Jim, who lives in Somerville”2.

2The integration of DIST-PIA with the remaining natural
language components of our robot architecture is described in
our other recent work (Williams and Scheutz, 2017b).



5 Evaluation

Traditional REG evaluation metrics (e.g., Dice (Gatt
et al., 2007) and MASI (Passonneau, 2006)) compare
algorithm- and human-chosen attributes by mea-
suring the distance (e.g., set difference) between
machine- and human-generated attribute sets. Re-
cently, however, this methodology has come under
criticism, as the semantic similarity of two attribute
sets does not imply similarity between the effec-
tiveness of those two sets. That is, this methodol-
ogy does not necessarily assess how well a gener-
ated RE actually allows a target to be picked out
by a hearer – the presumed purpose of REG algo-
rithms (Van Deemter and Gatt, 2009). Recently,
there has been a shift towards task-based evaluations
(e.g., (Byron et al., 2009; Koller et al., 2010; Viethen
and Dale, 2006)), in which algorithms are compared
by how well they allow some task to be achieved.

The previously discussed uncertainty-handling
REG algorithms have mainly used task-based
evaluations in which an image provided to par-
ticipants is also provided to the algorithm. This
necessarily conflates the evaluation of the algorithm
with the evaluation of the visual classifiers used to
process that image. Furthermore, it prevents direct
comparison between the algorithm and both other
algorithms (unless they use identical classifiers)
and humans. It is thus imperative to develop a new
evaluation framework that allows an REG algorithm
to receive information about attribute uncertainty
without visually processing the scene.

We will now present an evaluation framework that
achieves this goal through two stages. In Stage
One, participants are shown an environment, and are
asked to provide (1) an RE referring to an indicated
entity, and (2) probability judgments that particular
attributes hold for indicated entities. The probability
judgments can be used to train REG algorithms to
assess whether various attributes hold without com-
mitting to particular classifiers. In Stage Two, new
participants are shown the same environments, along
with either human- or machine-generated REs, and
asked to indicate the described entity. This frame-
work thus allows REG algorithms to be compared to
both other algorithms and humans under uncertainty.

5.1 Stage One

In the first stage of the evaluation, participants
were each shown three randomly-ordered scenes (a
kitchen, an office, and a near-featureless room, as
seen in Fig. 1)3, one of which contained a red bound-
ing box around an object. This object was either
an object that only appeared in that scene, an object
for which an identical object appeared in a different
scene, or an object for which one of the same type
(but, for example, of a different color) appeared in a
different scene, yielding five task-relevant objects in
each scene. Each image also contained around five
salient irrelevant objects. Finally, because each par-
ticipant was simultaneously shown three scenes, the
rooms themselves also serve as anchors with respect
to which referents could be described.

Participants were told to imagine that a future par-
ticipant would tour the three rooms shown in the pic-
tures in a random order, and in one of the rooms, re-
ceive a description of an object. Participants were
told to write the description that the future partici-
pant should receive. After each participant provided
a description, they were asked to evaluate how well
the target object matched each of twenty attributes
(randomly selected from a total of 52 informally col-
lected attributes such as “is blue”, “is a marker”, and
“is in the kitchen” by re-positioning [0-100] sliders
from an initial position of 50.

Participants (56 male, 33 female; mean age 35
(sd=11.65)) were recruited through Amazon Me-
chanical Turk and paid small cash. Each participant
was shown a random target object, providing us with
an average of 10 REs per target object and 3.8 prob-
ability judgments for each attribute for each object.
Gold standard semantic parses (i.e., sets of logical
formulae representing properties and relations) were
then crafted for each human-generated RE.

Next, two consultants were created which were
provided with, respectively, a subset of the objects
and locations found in the three scenes. When these
consultants are asked for the probability that an en-
tity has a particular attribute, they return the mean
probability judgment provided by participants. Fi-
nally, each consultant was provided with a prefer-
ence ordering over properties. While this ordering

3In future work it would of course be valuable to perform a
more comprehensive evaluation with a larger variety of scenes.



Figure 1: Scenes Shown to Participants

In the scene to the left, the possible target referents in the two evaluation stages were the waterbottle, headphones, and mug; in the
middle scene, these were the laptop, chair, and notebook; in the right scene, these were the briefcase, book, and marker.

was hand constructed, we would eventually like to
learn similar orderings from data.

DIST-PIA was then used to generate attribute sets
for each of the nine target referents, as shown in
Tab. 2. We then combined these with the attribute
sets derived from human utterances, yielding an av-
erage of 9.56 (sd=3.13) unique sets of attributes per
target object. For each attribute set, we crafted one
RE using a predefined template. This conversion
from REs to logical form and back allows us to con-
trol for consistent phrasing. Because one RE was
produced for each unique property set, an average of
9.56 (sd=3.13) REs were created per target object.

5.2 Stage Two

In the second stage, a new set of participants were
shown the same images, but without bounding
boxes, shown a randomly selected human- or
machine-driven RE for that referent, and asked to
click on the described object. After each image,
participants were notified as to whether they had
clicked on the correct object.

Participants were recruited through Amazon Me-
chanical Turk (62 male, 46 female; mean age 35.07
(sd=10.14)) and paid small cash. Each of the 85
unique REs was thus shown to an average of 11.44
participants. Recall, however, that these utterances
were crafted based on property sets either chosen by
DIST-PIA or extracted from the utterances collected
from participants in Stage One. Because some of
these property sets were identical, each of the unique
REs in this section really corresponds to a cluster of
human- or machine-driven property sets. We thus
computed how accurately each property set allowed
the true target referent to be picked out. Ranking
clusters by accuracy, we can then compute an overall

accuracy percentile for DIST-PIA, i.e., the percent
of RE generators (in this case, humans) compared to
which DIST-PIA achieved higher accuracy.

5.3 Results and Discussion

Overall, DIST-PIA allowed successful identification
in 91.4% of cases. On average, the REs crafted
using DIST-PIA-chosen properties were as or more
successful than those crafted using the properties
chosen by 45.7% (sd=23.9) of human participants,
suggesting that DIST-PIA was nearly as effective as
humans in choosing properties. DIST-PIA’s perfor-
mance would further improve if given more sophis-
ticated consultants. To fairly evaluate DIST-PIA, we
provided it with consultants that only made judg-
ments based on the attributes used in our pilot study.
Even simple knowledge of what relations were sym-
metric would have increased performance.

It is important to note that because DIST-PIA is
domain independent, it does not compete with the
classifiers used by previous approaches, which could
be integrated into our framework as consultants, al-
lowing for direct comparison of disparate classifiers.
And, while our evaluation presented all information
visually (as we needed participants to be able to un-
ambiguously select referents in an intuitive, static,
online environment) it is critical to point out that our
evaluation avoided reliance on specific visual clas-
sifiers: the generality of our consultant framework
means that, like the IA (but unlike previous REG al-
gorithms which have handled uncertainty), we could
easily use consultants that assess non-visual traits
(e.g., object costs, utterance sentiments, people pro-
fessions, room temperatures).

Finally, DIST-PIA did not “nicely overspecify” in
some conditions where humans did. For example,



Table 2: Properties Chosen by DIST-PIA

ID Properties Translation Acc. Rank
1 notebook(X) The notebook 80% 11 of 11
2 Dell(X),laptop(X),blue(Y), chair(Y),in-front-of(Y,X) The Dell laptop that the blue chair

is in front of.
85.7% 5* of 10

3 blue(X),chair(X) The blue chair. 97.8% 2 of 3
4 laptop-bag(X) The laptop-bag. 100% 1 of 5
5 textbook(X),laptop-bag(Y), behind(Y,X) The textbook that the laptop-bag is

behind.
63.6% 5 of 10

6 red(X),whiteboard-marker(X) The red whiteboard-marker. 86.7% 6 of 10
7 headphones(X) The headphones. 100% 1* of 13
8 shaker-bottle(X), headphones(Y),next-to(X,Y) The shaker-bottle next to the head-

phones.
85.7% 3* of 13

9 coffee-mug(X) The coffee-mug. 100% 1* of 10
“Accuracy” denotes percent of participants who chose the correct object when given the machine-driven RE. “Rank” compares
this with human-driven REs. * denotes a tie. For example, when “The notebook” was used, 80% of participants chose the correct
object, but all other REs for that object yielded higher accuracy. In contrast, “The textbook that the laptop-bag is behind” had only
63.6% accuracy, but this was a higher than was achieved by all but four of the unique human-driven REs for that object.

DIST-PIA’s choice of simply notebook(X) for the
first target object achieved 80% success rate, but had
the lowest ranking for that object, in part because
most humans used descriptions involving red(X) to
draw the eye away from distractors like the green
book. The traditional IA captures this effect by plac-
ing colors at a high priority. However, unlike the
traditional IA, we chose to handle the object’s “type”
(e.g., “bottle”) and variants thereof (e.g., “waterbot-
tle”) just like any other properties, so that we would
not need to specify an additional mandatory consul-
tant capability (i.e., the ability to provide the “type”
of a candidate object). This required us to place
these type-like properties at the top of the preference
orderings, to make sure that type was always used.
When presented the trade-off, we chose generality
of architectural mechanisms over performance gain.

6 Conclusion

In this paper, we make three main contributions.
First, we presented a domain independent algo-
rithm for REG under uncertainty, which separates
the problems of referring expression generation and
reference resolution from the task of property as-
sessment. Second, we presented a novel evaluation
framework which allows REG algorithms designed
for uncertain contexts to be evaluated without con-
flating the performance of the algorithm with the
performance of the classifiers used by the algorithm,
and which uses human probability judgments to bet-

ter facilitate comparison to human performance. Us-
ing this framework, we showed that DIST-PIA ex-
hibited REG capabilities comparable to those of hu-
mans. Finally, we have taken the realities of modern
integrated agent architectures into account through
our consultant framework, which allows informa-
tion to be distributed across multiple heterogeneous
KBs (Williams and Scheutz, 2016).

In future work, our thresholds should be
learned from data, and Dempster-Shafer Theoretic
uncertainty representations should be used to
better handle ignorance (Williams et al., 2015).
DIST-PIA should also be modified to incorpo-
rate audience design considerations, similar to
Horacek (2005). Finally, DIST-PIA should be
modified to use use Givenness-Hierarchy Theoretic
mechanisms (Williams et al., 2016) in conjunction
with a multi-modal reference model to generate
deictic and anaphoric REs.
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