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Abstract

While much research exists on resolving spatial natural lan-
guage references to known locations, little work deals with
handling references to unknown locations. In this paper we
introduce and evaluate algorithms integrated into a cognitive
architecture which allow an agent to learn about its environ-
ment while resolving references to both known and unknown
locations. We also describe how multiple components in the
architecture jointly facilitate these capabilities.

Introduction
A recent area of research is location-based spatial reference
resolution, i.e., representing and resolving references to lo-
cations in the environment such as rooms, hallways, doors
and others. This is particularly important for many human-
robot interaction scenarios where humans instruct robots in
natural language to perform various tasks in the environment
(e.g., for robotic wheelchairs to transport their users to the
intended locations).

Most approaches to spatial reference resolution have fo-
cused on resolving references to known locations (e.g.,
(Hemachandra et al. 2011; Kollar et al. 2010; Zender, Krui-
jff, and Kruijff-Korbayová 2009; Shimizu and Haas 2009;
Chen and Mooney 2011; Matuszek, Fox, and Koscher
2010)). Only Matuszek et al. (2012) also resolve references
to unknown locations, parsing natural language utterances
directly into action sequences which will bring the robot to
the described location. However, this means that the robot
will only be able to obtain information about other places
relative to the locations where it received the description,
rather than being able to store the description and utilize it
from any location.

All previous approaches to spatial reference resolution
also use some form of map to represent the robot’s envi-
ronment. This map can either be provided beforehand or
built on the fly through exploration or a guided tour of the
environment. All such maps, however, have been “static”
in nature, i.e., they will not (and are not allowed to) change
from the point when reference resolution is performed. This
means, for example, that a robot will not be able to learn
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new facts about its environment while navigating to a pre-
viously referenced location (since the destination location is
typically not added to the robot’s map, it will also remain
unknown even after having been visited).

Moreover, previous approaches for spatial reference res-
olution only handle natural language commands, with the
exception of Zender, Kruijff, and Kruijff-Korbayová (2009)
where noun phrases are resolved out of the context of declar-
ative or interrogative utterances.

In this paper, we introduce algorithms for spatial refer-
ence resolution integrated into a cognitive robotic architec-
ture that significantly improve previous proposals by: (1)
systematically adding unknown places to the map, which al-
lows robots to meaningfully communicate about unknown
places without having to first discover their exact location
(e.g., by way of navigating there); (2) updating the map as
the agent discovers unknown environments, which allows
robots to have natural language interactions about new envi-
ronmental features discovered as part of navigating to a pre-
viously unknown place; and (3) generating action sequences
only when they are actually needed to visit the referenced
location (instead of going there, we proposed to store the
information in a location-independent form, which affords
the robot the capability of learning a map entirely through
dialogue).

Algorithms, Architecture and Implementation
To be able to use algorithms for spatial reference resolution
to unknown locations such that an artificial agent can con-
verse about and perform actions involving them, we employ
the Distributed Integrated Affect, Recognition and Cogni-
tion (DIARC) architecture (Scheutz et al. 2007). Figure 1
depicts the relevant DIARC components used to process nat-
ural language utterances (hereafter denoted by small caps
such as NLP for “Natural Language Processing”), with a fo-
cus on the SPatial EXpert (SPEX), which contains all pro-
posed algorithms. SPEX receives information about land-
marks from perceptual components in order to build a map
of its environment. NLP queries SPEX in order to per-
form reference resolution on utterances it receives from the
speech recognition component. NLP then sends utterance se-
mantics to the dialogue manager (DIALOGUE). DIALOGUE
uses contextual information from the belief modeling com-
ponent (BELIEF) to perform pragmatic analysis on received



Figure 1: Partial architecture diagram isolating the compo-
nents and interactions relevant to natural language spatial
cognition.

semantics. BELIEF uses these semantics to inform the Goal
Manager (GM) of new goals. The GM uses connectivity
information from SPEX for path planning, and uses action
scripts generated by SPEX when a destination has only been
described to the robot and not yet visited (and thus might not
have a precisely known location). It is necessary for the GM
to rely on SPEX in these circumstances, as the best way to
formulate a plan to these locations is by exploiting knowl-
edge gained through dialogue interactions.

Spatial Semantics
Producing spatial descriptions entails identifying relation-
ships between objects and modifiers, whether that is ex-
pressed in predicate semantics (as we do it), or in some
other form (e.g., spatial description clauses in Tellex et al.
2011). To identify these relationships, we use a data-driven
dependency parser which produces semantic predicates (for
details, see Cantrell et al. 2010).

Components such as SPEX interpret these semantic pred-
icates in ways that are typically more limited than humans
would interpret them. For example, a relational term like
to right(x, y) is interpreted by SPEX in the context of a
route description in the following way: when the robot is
passed a landmark y (e.g., a room or hallway), x is always
to the right from the robot’s perspective (whereas a human
might more flexibly entertain additional interpretations that
are not egocentric). To illustrate, imagine that the robot is
located as shown in Figure 2. C refers to the robot’s cur-
rent location, specifically the room in which it is located
(as opposed to its location within that room). The robot
is told “The room at the end of the hall is to the right”, or
to right(r, C) where r is the name of the room at the end of
the hall. The robot will assume that, as it is exiting C, r is to
its right. So far, that is in accord with human intuition, and
this description can apply to the labeled room on the map.
However, imagine it is instead standing in the hallway and is
given the same utterance. Now it thinks that r is to its right

as it is exiting the hallway. This is no longer true of the la-
beled room, and does not match the human interpretation of
the utterance.

With this in mind, we examine the utterance “go to the
room at the end of the hall down to the right.” The room is
the only noun to which at the end of the hall could be at-
tached; there is no ambiguity. By contrast, it is not clear
whether the hall or the room is the noun to which down
to the right should be attached. The parser chooses the
most syntactically and lexically likely relationship. How-
ever, based on SPEX’s interpretation of to right, only the
attachment to room will be successful. If it is attached to
hall, the robot will assume that, as it is exiting C into the
hallway, it will still need to find a second hallway that is
to its right and which is connected to the room in ques-
tion. Thus, the only acceptable semantic representation for
the phrase “the room at the end of the hall down to the
right” is ιx(endroom(x)∧hall(h)∧ connected to(x, h)∧
to right(x,C)). If the attachment were to the hallway, the
semantics would instead be ιx(endroom(x) ∧ hall(h) ∧
connected to(x, h) ∧ to right(h,C)). Note that SPEX and
NLP together resolve such ambiguities in fixed manner in
that “higher attachments” are always preferred in the parser.
In other words, because at the end of the hall is already at-
tached to (is dependent on) the room, attachment to the room
is preferred over attachment to the hall.1

Spatial Reference Resolution and
Exploratory Route Suggestion
SPEX aggregates information about its environment in or-
der to build a hierarchical map M stratified into two lay-
ers, similar to the mapping approaches presented in Kruijff
et al. (2007) and Kuipers (2000). The top layer Mtop =
(Vtop, Etop) is a graph with vertices Vtop and edges Etop

where each vertex v ∈ Vtop is a large-scale place such as a
room or hallway, and where each edge e ∈ Etop represents
a means to travel between such places (i.e., through a door-
way). The bottom layer Mbot = (Vbot, Ebot) is a graph with
vertices Vbot and edges Ebot where each vertex v ∈ Vbot is
a small-scale place: a specific location in a room or hall-
way, or a landmark such as a door, and where each edge
e ∈ Ebot represents a path between these places. A vertex
v in either graph is indexed by a uniquely referring iden-
tifier, and contains an adjacency list of connecting places’
identifiers and a list of properties held by the represented
place. The primary difference between the two levels is that
Mtop is only concerned with whether or not its vertices con-
nect (e.g., whether or not a room is accessible from a given
hallway), while Mbot is additionally concerned with the de-
tails of where and how its vertices connect. For this rea-
son, the metric positions of Mbot’s vertices are stored when

1Eliminating this fixed assumption about attachment prece-
dence is an important next step, because the robust formulation
of spatial semantics is critical to the success of the whole system.
Specifically, we are currently working on integrating monitoring
mechanisms that will enable the correction of false semantic inter-
pretations due to syntactic ambiguity when an interpretation can be
invalidated through perceptions in the given environment.



Figure 2: Simulation Environment. A: Robot’s initial posi-
tion, B: The room at the end of the hallway.

they can be determined, while such information is not main-
tained for vertices in Mtop. Topological information, such
as an ordering of places within a hallway, can be extracted
from Mbot using the coordinates of Vbot. Each large-scale
place in Vtop also stores a list of places from Vbot that it
contains. This stratification is conceptually motivated by the
fact that natural language references to spatial locations are
typically concerned with large-scale places, whereas sens-
ing and planning systems are typically concerned with the
small-scale places contained within.

Information used to augment this map can come from
both perceptual components and dialogue. As the robot trav-
els through its environment, SPEX actively requests infor-
mation from various perceptual components, e.g, it requests
information about landmarks from the Laser Range Finder
(LRF) component. If LRF has detected a landmark, it re-
turns its coordinates to SPEX, as well as coordinates neces-
sary for establishing the landmark’s orientation or for nav-
igating through traversable landmarks such as doors. SPEX
then uses the algorithm summarized in detectLandmark
(Algorithm 1) to process this information.
detectLandmark seeks to determine whether a landmark

has been seen before, and if not, to build a new representa-
tion for the landmark and any new locations its observation
entails (e.g., rooms on the other sides of observed doors).
To do so, it requires the aforementioned coordinates, and a
list of predicates P describing any other properties the land-
mark might have. For example, if a camera is being used,
visual characteristics of a landmark might be included. If
SPEX does not know of a landmark in the given position or
of a previously described but as-of-yet unobserved landmark
which matches the given description, it adds the landmark
and adjacent small-scale places to the map, as well as any
large scale places entailed, such as a room assumed to be on
the other side of an observed door.

SPEX determines whether this adjoining space is a room
or hallway using the simplifying heuristic that rooms only
connect to hallways and not to other rooms. A more gen-
eral solution would be to postpone this decision until this
property can be verified through exploration. This would
require more sophisticated exploration strategies, which we
will later discuss.

When NLP sends SPEX information regarding a received
utterance, it is as a list of predicates P representing the
semantics of the utterance that convey some information
about the structure of the environment. This can be seen
in processSemantics (Algorithm 2). SPEX separates these
predicates into three categories: type predicates (predi-
cates that express the type of an entity, such as Room(x)),

Algorithm 1 detectLandmark(D, T, O, P)
1: (D,T,O are Coordinates, P is a list of Predicates)
2: for all d ∈ ν (with set of nearby doors ν ) do
3: if dist(position(d), D) < Θ /*Θ some threshold*/ then
4: update the position of d
5: return
6: end if
7: end for
8: m is a new place list
9: for all φ ∈Mbot such that loc(φ) == ∅ do

10: if ∀r ∈ P ( r(P ) ) then
11: m← m ∪ {φ}
12: end if
13: end for
14: if m == ∅ then
15: add places φD, φT , φO at coordinates D, T , O to Mbot

16: for all p ∈ P do
17: properties(φD)← properties(φD) ∪ {p}
18: end for
19: else
20: c← the room the robot is currently in
21: t← the place connected to n in c
22: o← the other place connected to n
23: loc(m[0])← D; loc(t)← T ; loc(o)← O
24: children(c)← children(c) ∪ {t}
25: connect(c, parent(o))
26: end if

Algorithm 2 processSemantics(P)
27: (P is a list of Predicates)
28: i←Map(String 7→ Identifier[ ])
29: for all p ∈ P do
30: if p is a type predicate then
31: i(p→ type)← i(p→ arg0) ∪ {new list n}
32: end if
33: end for
34: for all typepredicatep ∈ P do
35: buildBindings(p, i)
36: end for
37: if ∃ l ∈ i such that size(l) == 0 then
38: return createP laces(P, i)
39: else if ∃ l ∈ i such that size(l) > 1 then
40: return ambiguous
41: end if
42: return i(P [0]→ arg0)[0]

descriptive predicates (predicates that describe an entity,
such as Color(x,Green)), and relational predicates (pred-
icates that describe relations between entities, such as
Connects(x, y)). This separation is useful since each type
of predicate plays a different role in the process of reference
resolution. When SPEX receives a predicate list from NLP,
it attempts to determine the identities of any locations ref-
erenced in the utterance (i.e., specified in a type predicate
with name “Room”, “Door” or “Hall”). For each landmark
or large-scale location referenced by a type predicate in P ,
SPEX constructs a list of candidate identifiers n (Algorithm
2, 31). For example, the type predicate Room(r) will result
in the creation of a list which initially contains the identi-
fiers of all known rooms (while this is acceptable when the



Algorithm 3 getScript(S, D)
43: (S is the id of the source, D is the id of the destination)
44: A is a new action script
45: if S,D are small scale places with the same parent then
46: if locationKnown(D) then
47: add instruction to A to move to position(D)
48: else
49: useCluesToP lanMotion(S,D,A)
50: end if
51: else if S,D are small scale places with connected parents then
52: if locationKnown(D) then
53: add instructions to A to approach and move through the

door which leads to D
54: else
55: useCluesToP lanMotion(S,D,A)
56: end if
57: else if ¬locationKnown(D) then
58: I0, I1 are new lists of identifiers
59: I1 ← reverse(route fromD to the closest point to it whose

location is known)
60: D ← first(I1)
61: I0 ← planRoute(S,D)
62: for all i ∈ concatenate(I0, I1) do
63: add instruction to A to move to i
64: end for
65: end if
66: return A

number of possible locations is small, it quickly becomes in-
tractable as the number of locations grows, and we are there-
fore considering various strategies to improve efficiency).

SPEX then uses the descriptive and relational predicates
to eliminate bad candidate locations from these lists. Once
SPEX has reduced each list to its smallest size, it examines
each list (Algorithm 2, 37). The size of the lists can be used
to classify the level of ambiguity in the utterance. If a list
is empty, then the description corresponds to a previously
unknown place. In practice, this may be incorrect since the
description could actually refer to a known location in a way
that is not currently determinable (e.g., if the robot knows
of a certain door, but does not know that the room beyond
it is the cafeteria, then it will not be able to automatically
resolve a reference to “the cafeteria”), but this discrepancy
will need to be resolved during exploration or during further
dialogue. If the received semantics came in the context of
an assertion about the world as opposed to a query regarding
its structure, SPEX adds a new entry to the appropriate map
level, and then adds to this new entry any relevant properties
from P . In the case of the room at the end of the hall, the list
corresponding with the referenced room is empty, so SPEX
creates a new large-scale place to represent the room, along
with small-scale places in Mbot representing the door which
must connect it to the hallway and the places on either side
of this door. SPEX then gives the newly created door the
property (end of hall(d, h)), indicating where in the hall it
is located. This is necessary since SPEX would otherwise not
be able to identify the door as being at the end of the hall, as
its coordinates are as of yet unknown.

If a list contains a single identifier, such as in the case of
the list associated with the hallway, SPEX assumes this is the

identifier of the referenced location and modifies that place’s
connections and properties accordingly.

This brings up one of the difficult problems which SPEX
must deal with. If the robot is given a description of a place
whose location it does not know, SPEX needs to create a rep-
resentation of that place without specifying its metric loca-
tion. If it is informed of some series of connected rooms and
hallways, their topological representations should be linked
to the known map only if their locations are known relative
to some known place. If the robot is later able to determine
the precise location of one of the rooms, its child locations
inMbot can then be given metric positions. In the case of the
room at the end of the hall, SPEX creates place representa-
tions in Mbot for the door and the points of access on either
side of it, but sets a property in each of these representations
indicating that its coordinates are unknown. The identifiers
for these places are then placed into a list of unknown places
which is considered whenever a new place is seen.

If there are multiple candidate identifiers for a described
place, SPEX informs NLP that more information is needed
to disambiguate between the candidates (40) – determining
whether and how to choose between multiple candidates is
an interesting area for future research. SPEX could, for ex-
ample, return a distribution representing the relative likeli-
hoods of the various candidates, and allow NLP to decide for
itself how to resolve this ambiguity, or it could create and
assert the conveyed information for all candidate locations,
along with some diminished confidence value. This would
also be useful if NLP needed to partially assert two alternate
semantic interpretations of a received utterance.

Another important capability that we address in SPEX is
the generation of actions to reach locations whose metric lo-
cations are unknown. Since the semantics in the case of “the
room at the end of the hall down to the right” involve clues
about the location of the place (i.e., it is at the end of a hall-
way, in a room “to the right” of the current one), SPEX is
able to produce a possible action sequence to reach the tar-
get location. This process is summarized in Algorithm 3.
When SPEX is asked for an action script which, when exe-
cuted, will take the robot between two locations S and D, it
creates a new action script A, and adds actions to this script
based on the properties and connectivity of S and D. If S
and D are in the same room and D’s coordinates are known,
the script returned by SPEX only has to contain an instruc-
tion to travel to D. If S and D are on opposite sides of
a door, SPEX adds to A additional instructions to approach
and move through the separating door. If D’s location is un-
known, SPEX adds appropriate instructions to A using what
little it does know about D. For example, if SPEX knows
that D is to the left down the hall, from S, it will add in-
structions to turn left and traverse the hallway. If none of
these cases hold, then S and D must be separated from each
other by one or more rooms. If this is the case, then SPEX
finds the shortest known path from S to c (the closest point
to D whose location is known), and adds to A an instruction
to navigate to each place along this path.If D’s location is
unknown, then similar instructions are added to A for each
location along the shortest path from D to c. The distinction
between these two parts of the overall route is made because
they use different heuristics due to the difference in avail-
able information between them. That is, while planning the
first part of the route, SPEX can use the metric positions of



locations to find the physically shortest route. While plan-
ning the second part, however, the only heuristic it is able to
use while planning at this stage is the number of places the
robot will need to travel through. Finally, the action script is
returned. For the example sentence of the room at the end of
the hall, the action sequence is formalized in this manner:
[moveTo, self, exitposition]
[exitRoom, self]
[moveTo, self, entryposition]
[moveTo self, currentroom]
[turnRel, self, ang]
[traverse, self]
[informSpexEnd, AtEndOfHall]
[moveTo, self, destination]

Note that since SPEX is unable to directly detect
“end-of-hall-ness”, the created script includes a request
(informSpexEnd) to be informed when the exploration
of the hallway is completed. SPEX finally alerts DIARC’s
Goal Manager (GM) component of any new places it learned
of and the connections between them.

When the GM receives the above script and and issues ex-
ecution, the robot exits the room, turns in the direction in-
dicated, and starts driving down the hall. When the robot
reaches the end of the hallway, the GM informs SPEX that the
exploration has finished. SPEX checks whether any nearby
location is close enough to be construed as being “at the end
of the hall.” It then examines all places connected to the cur-
rent hallway, and checks to see if any of them have “end-of-
hall-ness” listed among their properties (in this case, the pre-
viously described room does). Assuming one place fits this
description (the system does not currently attempt to solve
the case of multiple places being good candidates), SPEX
consolidates its representations of the recently encountered
place and the described place, placing into a consolidation
map the identifier of the place that is consolidated away, in
case the old reference is used by some other component.

Evaluation
We ran three sets of evaluations of SPEX. In the first two,
SPEX alone was evaluated, and in the third, the integrated
architecture was tested. In order to abstract away from prob-
lems with other parts of the architecture such as NLP, SPEX
was provided with a starting location and gold standard se-
mantics for the utterance being tested which uniquely identi-
fied a location; the robot was not asked, for example, to go to
“the room at the end of the hall” in an environment in which
several rooms existed at the hallway’s end. If these types
of requests and environments had been included in testing,
performance would have decreased.

In the first evaluation, SPEX was given a full map of an
environment, and 64 resolution tests, which represented all
ways that a set of utterances (such as “the room to your im-
mediate left when exiting the break room”, “the room at the
right end of the hallway” and “the third room on the right
facing left from your current position”) could be success-
fully resolved in the environment. For example, “the room to
your immediate left” was evaluated from all starting points
that had a room on their immediate left. SPEX generated the
correct reference for 64/64 (100%) of the tests.

In the second evaluation, SPEX was given a partial map of
the same environment; 44% of the large-scale locations were
removed, along with all contained small-scale locations and
any connecting doors. SPEX was then given all 34 tests
from the original set of tests whose starting location was still
known. Since some destinations were unknown in this set,
success in the case of an unknown destination was qualified
as generating a new place representation and returning a plan
which would successfully take the robot from its current lo-
cation to the location. SPEX passed 34/34 (100%) of these
tests.

Finally, the complete architecture using SPEX was tested
in a simulated environment on a set of utterances. We used
a simulated MobileRobots Pioneer robot, although the re-
mainder of the architecture ran in the same configuration that
it would on the real robot. We first gave the command “Go to
the room at the end of the hallway down to the right” to the
robot in the simulated environment pictured in Figure 2. The
robot exited the room and proceeded to the right end of the
hallway. Examining SPEX’s map showed that SPEX had suc-
cessfully consolidated its representations of the rooms the
robot had heard referenced in natural language and observed
at the end of the hall. Thus, the original reference was suc-
cessfully resolved to its physical location.

We also evaluated some basic exploratory functionality
for resolving ambiguous statements. Consider the command
“Go to the room at the end of the hallway.” In an unknown
environment, this will result in the GM asking SPEX for an
action script, which will need to be formed using the use-
CluesToPlanMotion (Algorithm 3, 49) function. When this
function tries to determine which end of the hallway it needs
to send the robot to, it will determine that the room could be
at either end of the hallway. It thus chooses one of the ends
and adds the necessary instructions to the action script. It
then creates a new script to return to the choice point and
travel to the other end of the hallway, and stores this second
script in an “alternate plan” list indexed by the destination
point. SPEX then returns the first action script. When the
system follows this script and travels to the first end of the
hallway, the last action it will execute will be to move to the
destination point. If the reference is successfully resolved, it
will move to that point. If it is not, the GM will once again
ask SPEX for an action script. SPEX will check its alternate
plan list and see that there is a plan waiting for that desti-
nation, and will remove and return it to the GM. Assuming
the robot’s interlocutor did not give an instruction to go to a
nonexistent location, this plan will lead it to the target loca-
tion. We tested this in the manner of the first two steps of
evaluation and achieved successful results, as evidenced in
the produced action scripts:

[moveTo, self, spex12]
[turnRel, self, -1.5708]
[traverse, self]
[informSpexEnd, AtEndOfHall]
[moveTo, self, spex14]

[moveTo, self, spex12]
[traverse, self]
[informSpexEnd, AtEndOfHall]
[moveTo, self, spex14]



Discussion
The above evaluations showed that SPEX is able to success-
fully resolve spatial references to both known and unknown
locations as long as the spatial semantics picks out places
uniquely. Storing the information gleaned from natural lan-
guage and through exploration in a location-independent
format affords the robot improved capabilities. Specifically,
it allows the robot to (1) travel to previously described lo-
cations, (2) describe how two unknown locations are posi-
tioned relative to each other, (3) pause an action sequence
and then later resume it from another location, and (4) return
to a known location after visiting an unknown one. Finally,
augmenting the robot’s world model based only on descrip-
tions allows a robot to learn a map purely through dialogue
if it is able to extract sufficiently accurate semantics repre-
sentations, while none of the approaches mentioned in the
introduction would able to learn a map of their environment
without physical exploration from dialogue alone.

Despite these improvements, SPEX has several shortcom-
ings, specifically in situations where the attempt to resolve
a spatial reference produces either no candidate places, or
several appropriate candidates. Consider the instruction
“Go to the cafeteria”: if the robot knows of no cafeterias,
what heuristics should it use to determine where to explore?
Clearly, unless the robot has some notion of where cafete-
rias are usually located (e.g., in buildings like the current
one), this will be very challenging. One strategy might be
to simply ask a human for help. If that is not feasible or not
allowed, another strategy might be for the robot to start ex-
ploring its environment, even when it has no notion of the
goal location (some strategies for this approach have been
suggested, e.g., Hawes et al. 2011). Sometimes a combi-
nation of strategies may be called for – identifying the best
strategy for a given situation is in itself a challenging open
research problem.

Another condition in which our current integrated systems
is not able to resolve references in general is when the robot
is able to identify several locations that are candidate refer-
ents. For example, if the robot is told to go to the cafeteria
and it knows of several cafeterias, how is it to determine the
intended one? This is a problem we have not yet addressed,
except for the limited fashion examined in the final part of
our evaluation, an approach that could be improved through
many techniques we are interested in investigating in future
work; prioritization of exploration based on relative likeli-
hood, the use of other experts (e.g., an Episodic Memory
Expert), the modeling of the beliefs and knowledge of other
agents, and the ability to query an interlocutor for disam-
biguating information. Many of these techniques could in
fact be used for both of the particularly difficult situations
described above.

Note that we did not include either type of situation in
our evaluation. For example, SPEX was not asked to deal
with underspecified descriptions of locations, which typi-
cally happen in natural interactions. A place could easily
be described in a way which fails to mention important de-
tails that are necessary for determining its location. In such
a case, a representation for the described place would have
beeen added to the map, but SPEX would either have beeen

unable to generate a plan to reach it, or it would have never
been able to recognize the place when it was encountered.
There are additional complications that would impact the
performance of SPEX, for example, the environmental com-
plexity (including multiple intersecting hallways with loop
closure, multi-level spatial layouts with connections among
the levels, and others). Finally, our evaluation also assumed
reliable perceptual information, but this is rarely the case in
practice. For example, if the robot is sent to the third room in
a hallway but fails to notice one of these doors, many prob-
lems will arise. In the second of our evaluations, we counted
a test case as successful if SPEX was able to generate an ap-
propriate action plan, but did not check whether the robot
made mistakes while carrying out those plans as this would
require additional action monitoring mechanisms to detect
action failures and mechanisms to recover from them.

Conclusions
We presented SPEX, an architectural component consisting
of several algorithms that are jointly capable of resolving
references to unknown locations in an indoor environment
through delayed exploration in such a manner that the un-
known location can be discussed and reasoned about without
having to visit it first. We discussed how SPEX’s capabilities
are greatly facilitated by its interaction with other compo-
nents in an integrated cognitive robotic architecture (in our
case the DIARC architecture). And we reported results from
several evaluations of SPEX alone as well as the integrated
system.

Future work will focus on handling referential ambigui-
ties due to syntactic constructions as well as the spatial com-
plexity of the environment. Moreover, we will investigate
ways in which SPEX can be used in answering questions
about hypothetical changes to the environment, such as “If
the door between the cafeteria and kitchen were unlocked,
what would be the fastest way to the atrium from here?”
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