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Abstract. Understanding Indirect Speech Acts (ISAs) is an integral
function of human understanding of natural language. Recent attempts
at understanding ISAs have used rule-based approaches to map utter-
ances to deep semantics. While these approaches have been successful in
handling a wide range of ISAs, they do not take into account the un-
certainty associated with the utterance’s context, or the utterance itself.
We present a new approach for understanding ISAs using the Dempster-
Shafer theory of evidence and show how this approach increases the
robustness of ISA inference by (1) accounting for uncertain implication
rules and context, (2) fluidly adapting rules given new information, and
(3) enabling better modeling of the beliefs of other agents.
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1 Introduction

People do not often directly express their intentions. For various social rea-
sons (e.g. politeness [2]) they instead use linguistic strategies such as Indirect
Speech Acts (ISAs), i.e., utterances whose intended meanings differ from their
literal meanings. Two approaches have been proposed for handling ISAs in com-
putational systems. The inferential approach reasons about possible intended
meanings by considering observed speech acts in the current context as part of
a broader plan that captures the agent’s goals and intentions [9]. In contrast,
the idiomatic approach leverages the fact that certain ISA forms are convention-
alized, i.e., that they are directly associated with an inferred meaning, largely
independent of context [15]. Both approaches have advantages and disadvan-
tages: the inferential approach requires the ability to infer interlocutors’ possible
plans, which can be quite computationally expensive, while the idiomatic ap-
proach is limited to ISAs for which conventionalized meanings exist. We contend
that there are three capabilities necessary for robust understanding of conven-
tionalized ISAs through the idiomatic approach:
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C1: Uncertainty. An agent must not assume perfect knowledge of the con-
texts in which an indirect interpretation applies. The conventionalized meaning
of an ISA is not always the intended meaning; sometimes “I’d love some cake” is
simply a statement expressing a desire, and not an indirect request for someone
to give you cake. Since an agent might not always be able to determine the true
intended meaning of an utterance, it should ascribe a level of confidence to each
of its interpretations, based on the contextual factors that provide evidence for
each interpretation. Furthermore, it is important that an agent be able to rep-
resent and reason about its own uncertainty and ignorance, and be able to act
appropriately when uncertainty is identified.

C2: Adaptation. Since an agent should be able to learn new ISAs, and since
it may not know the precise scenarios in which new ISAs should be used, an agent
should be able to learn and adapt new rules, using feedback from interlocutors
to adjust its beliefs as to when the rules it knows apply. For example, consider
the following dialogue:
DATA: Are you certain you do not wish to talk about your mother?
GEORDI: Why do you ask that?
DATA: You are no doubt feeling emotional distress as a result of her disappearance. Though you

claimed to be “just passing by,” that is most likely an excuse to start a conversation about this
uncomfortable subject. Am I correct?

GEORDI: Well, no. Sometimes “just passing by” means “just passing by.”
DATA: Then I apologize for my premature assumption. . .
GEORDI: Data, maybe you gave up too fast.
DATA: I do not understand.
GEORDI: When I said “just passing by” means “just passing by,” I didn’t really mean it.
DATA: My initial assumption was correct. You do wish to speak of your mother.

Short dialogue from Star Trek: The Next Generation. “Interface”

In the space of this short dialogue, an agent (i.e., the android “Data”) must make
several adaptations. First, he must alter his beliefs about the ISA “just passing
by” based on feedback from Geordi that the ISA’s literal meaning had been the
correct interpretation. Then, he must at least partially revert to his previous
beliefs, as well as alter his belief as to when said(X,Y )→ means(X,Y ).

C3: Belief modeling. An agent should be able to model interlocutors’
beliefs: the interpretation of an ISA uttered by an interlocutor should be based
not on the robot’s beliefs about, for example, its capabilities and obligations, but
rather on its interlocutor’s beliefs.

In this paper, we present a novel approach that addresses the three afore-
mentioned capabilities to robustly handle idiomatic ISAs. We first give a brief
overview of Dempster-Shafer (DS) theory and DS rule-based inference before
presenting the DS theoretic approach to ISA understanding. We then compare
this approach to previous work, and conclude with an outlook for future work.

2 Indirect Speech Act (ISA) Modeling
Suppose a robot were told “I would love a coffee.” This utterance was likely
generated due to some intention to communicate something to the robot. This
intention was likely formed due to some contextual factors, whether environmen-
tal (e.g., the interlocutor was tired) or dialogic (e.g., the robot had just asked
the interlocutor “Would you like a coffee?”).
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We see two distinct ways to model these contextual effects. (A) They could be
modeled as part of the user’s intentions; the relationship between the robot and
its interlocutor may, e.g., cause the interlocutor to form the intention to avoid
production of utterances that could be insulting to the robot. (B) Alternatively,
context could directly affect utterance production, and the information the in-
terlocutor intends to communicate as well as the context that dictates whether
and how the information is conveyed could be treated as separate factors lead-
ing to the production of the utterance. We have chosen approach (B), using a
graphical model with random variables C, U and I such that I depends on C
and U depends on C and I. Here, C, I and U represent distributions over pos-
sible contexts, intentions and utterances, respectively. From this model, we are
interested in inferring the interlocutor’s intentions given the current context and
the produced utterance. The Bayesian approach to this inference problem would
be to calculate P (U, I, C) = P (U |I, C) · P (I|C) · P (C). To calculate P (I|U,C)
given an utterance u and context c, one would then formulate:

P (I|U = u,C = c) =
P (U = u|I, C = c) · P (I|C = c) · P (C = c)∑

i∈I
P (U = u, I = i, C = c)

.

However, P (U |I, C) is at least as hard to calculate as P (I|U,C), for two
reasons. First, we do not have access to the distribution over an interlocutor’s
intentions as we cannot look inside his or her head. Second, one would need a
table containing priors on all combinations of intentions and contexts; a table
that could not be realistically represented unless sparse representations were
used. Even if such a table could be constructed, it is unclear where its values
would come from. An example of a Bayesian approach to utterance interpretation
can be found in [3]. However, this work appears to only engage in speech act
classification and not semantic analysis of utterances.

3 DS-Based Inference for ISAs
Because the direct Bayesian approach of inferring P (I|U,C) by way of P (U |I, C),
P (I|C), and P (C) (i.e., the conditional probability of utterances occurring given
intentions and context, the conditional probability of intentions given context,
and the prior distribution of contexts) does not make the inference problem any
easier, we instead tackle P (I|U,C) directly. To do so, we create rules of the form
u∧ c⇒[α,β] i. Here, u is an utterance, c is a context, i is an intention, and [α, β],
where 0 ≤ α ≤ β ≤ 1, is the uncertainty interval associated with the rule.

3.1 Dempster-Shafer (DS) Theory

DS theory is an uncertainty processing framework often interpreted as an exten-
sion of the Bayesian framework [13,8]. Its notions of belief and plausibility bear
a close relationship to the inner and outer measures in probability theory [4].
Basic Notions in DS Theory

Frame of Discernment. In DS theory, the discrete set of elementary
events of interest related to a given problem is called the Frame of Discern-
ment (FoD). We take the FoD to be the finite set of mutually exclusive events
Θ = {θ1, θ2, . . . , θN}. The power set of Θ is denoted by 2Θ = {A : A ⊆ Θ}.
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Basic Belief Assignment. A Basic Belief Assignment (BBA) is a mapping
mΘ(·) : 2Θ → [0, 1] such that

∑
A⊆ΘmΘ(A) = 1 and mΘ(∅) = 0. The BBA

measures the support assigned to propositions A ⊆ Θ only. The subsets of A
with nonzero mass are referred to as focal elements, and comprise the core FΘ.
The triple E = {Θ,FΘ,mΘ(·)} is called the Body of Evidence (BoE).

Belief, Plausibility, and Uncertainty. Given a BoE {Θ,F ,m}, the belief
Bl : 2Θ → [0, 1] is Bl(A) =

∑
B⊆AmΘ(B). So, Bl(A) captures the total support

that can be committed to A without also committing it to the complement
Ac of A. The plausibility Pl : 2Θ → [0, 1] is Pl(A) = 1 − Bl(Ac). So, Pl(A)
corresponds to the total belief that does not contradict A. The uncertainty of A
is [Bl(A),Pl(A)].

Conditional Fusion Equation (CFE). The evidence from two sources
having the BBAs mj(·) and mk(·) can be fused using various fusion strategies.
A robust fusion strategy is the Conditional Fusion Equation (CFE) [11].

Uncertain Logic. Uncertain logic, a DS-based extension of classical logic
which deals with propositions whose truth is uncertain, handles expressions of
the following form [7,6]:

ϕ(x), with uncertainty [α, β], 0 ≤ α ≤ β ≤ 1, (1)
where ϕ(x) is a proposition which contains a reference to individual x, x ∈ D =
{x1, x2, . . . , xn}, a finite set of individuals. A DS model for expression (1) can
be defined over the logical FoD Θϕ,x = {ϕ(x) × 1, ϕ(x) × 0}, which contains
two mutually exclusive elements: our confidence that the proposition ϕ applies
and does not apply to x, respectively. When no confusion can arise, we represent
these two elements as {x, x}. Then the information in (1) can be captured by the
following DS model over Θϕ,x: m(x) = α; m(x) = 1− β; m(Θϕ,x) = β − α. In
general, we could also model the uncertainty of propositions ϕi ∈ {ϕ1, . . . , ϕM}
applying to particular elements xj ∈ Θx, i.e.,

ϕi(xj), with uncertainty [αi,j , βi,j ], 0 ≤ αi,j ≤ βi,j ≤ 1, (2)
via a model defined over the FoD Θϕi,xj = {ϕi(xj)×1, ϕi(xj)×0} = {xi,j , xi,j}.
CFE-Based Logical Operators: We can now define logic operations such as
NOT (¬), AND (∧), and OR (∨) [7,6]. Whenever possible we define operations
in a simple unquantified first-order logic model (e.g., based on (1)) instead of
(2)), but extension to more complex cases and simplification into propositional
logic are straightforward.

Logical Negation. Logical negation of uncertain proposition ϕ(x) in (1)
and its corresponding DS model are ¬ϕ(x), with uncertainty [1− β, 1− α], and

m(x) = 1− β; m(x) = α; m(Θϕ,x) = β − α. (3)
Logical AND/OR. Consider M logic predicates, each providing a state-

ment regarding the truth of x with respect to the proposition ϕi(·) in (2). Then,
the corresponding DS models for ϕi(x) are, for i = 1, 2, . . . ,M :

mi(x) = αi; mi(x) = 1− βi; mi(Θϕi,x) = βi − αi. (4)

The DS model for the logical AND and OR of the statements in (4) can be
defined as:

m∧(·) =
M⋂
i=1

mi(·); m∨(·) =
(
M⋂
i=1

mc
i (·)

)c
, (5)
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respectively, where
⋂

denotes an appropriate fusion operator. When the CFE
(with appropriate parameters) is used as the fusion operator, consistency with
classical logic can be achieved [7]. In the case of CFE-Based Logical Operators,
logical AND when M = 2 is defined as:

m(x) = α; m(x) = 1− β; m(Θϕ1,x ×Θϕ2,x) = β − α, (6)

where α = min(α1, α2) and β = min(β1, β2), and logical OR is defined as:

m(x) = α; m(x) = 1− β; m(Θϕ1,x ×Θϕ2,x) = β − α, (7)

where α = max(α1, α2) and β = max(β1, β2). Hereafter, m1 ⊗ m2 denotes
the DS model corresponding to the uncertain logic operation ϕ1(·) ∧ ϕ2(·).

Logical Implication. Given two logic statements ϕ1(·) and ϕ2(·), an impli-
cation rule in classical logic takes the form ϕ1(x) ⇒ ϕ2(y) ≡ ¬ϕ1(x) ∨ ϕ2(y) ≡
¬ (ϕ1(x) ∧ ¬ϕ2(y)) , where xi ∈ Θx and yj ∈ Θy.

As shown in [6], the DS model for the uncertain implication ϕ1(·) ⇒ ϕ2(·)
over the true-false FoD {1,0} may be defined using (7) and (3):

mϕ1→ϕ2(1) = αR; mϕ1→ϕ2(0) = 1− βR;
mϕ1→ϕ2({1,0}) = βR − αR, (8)

where αR = max(1 − β1, α2) and βR = max(1 − α1, β2). Thus, the implication
rule’s uncertainty interval is [αR, βR]. This DS model provides us with an impor-
tant inference tool. Suppose DS models for the implication rule and antecedent
are known. We then obtain the following DS model for the consequent [6]:

α2 =


αR, if αR > 1− β1;
0, if αR = 1− β1;
no solution, otherwise;

and β2 =

{
βR, if βR > 1− α1;

no solution, otherwise.
(9)

Inference. Inference in uncertain logic shares the fundamental principles of
classical logic, and adds the possibility of attaching, tracking, and propagating
uncertainties that may arise on premises and/or rules. The model in (9) can be
used as an uncertain Modus Ponens (MP) rule [7]. We use m2 = m1 �m12 to
express that the BBA m2 is obtained after applying MP when the BBAs of the
antecedent m1 and the implication m12 = mϕ1→ϕ2

are known.

Symbolic Dempster-Shafer Operators: In [14], Tang et al. produce another
candidate set of operators for Logical AND, OR, Implication, and Modus Ponens
(their operator for logical negation is equivalent to that defined by Núñez et al).
Logical AND/OR. Tang et al. define the DS model for logical AND as:

m(x) = α1 ∗ α2; m(x) = 1− (β1 ∗ β2);
m(Θϕ1,x ×Θϕ2,x) = (1−m(x))−m(x),

(10)

and OR as:

m(x) =
α1 + α2

2
; m(x) =

(1− β1) + (1− β2)
2

;

m(Θϕ1,x ×Θϕ2,x) = (1−m(x))−m(x),

(11)
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Logical Implication. Tang et al. define logical implication as

m(x) =
(1− α1) + α2

2
; m(x) =

β1 + (1− β2)
2

;

m(Θϕ1,x ×Θϕ2,x) = (1−m(x))−m(x),

(12)

allowing the consequent to be calculated as
α2 = α1 ∗ αR; β2 = βR. (13)

This as well can also be used as an uncertain Modus Ponens rule [14].
3.2 Inferring Intentions
Let ΘU = {u1, u2, . . . , uNu} be the set of all utterances an agent may inter-
pret, and ΘC = {c1, c2, . . . , cNc} be the set of all contextual items. Also, let
ΘI = {i1, i2, . . . , iNi} be the set of atomic intentions an interlocutor may be try-
ing to communicate. Using the uncertain logic framework described above, we
can define the BBAs mu(·),mc(·),mi(·) over the FoDs ΘU , ΘC , ΘI × {1,0} re-
spectively. The information required to calculate mi(·) is available to the agent:
its natural language understanding system can provide a distribution over possi-
ble utterances heard (yieldingmu), its knowledge base can provide a distribution
over different contextual items being believed (yielding mc), and information re-
garding the uncertainty of (u ∧ c)⇒ i can be encoded in a table M indexed by
utterance u and contextual item c, defining a BBA muc→i. Using these three
BBAs, we can obtain a model for the uncertainty of intention i through MP by
computing mi(·) = ((mu ⊗mc)�muc→i) (·) defined over the FoD ΘI × {1,0}.

While recent approaches to ISA understanding (e.g., [1]) use only the first
applicable rule found, we instead combine multiple applicable rules, as multiple
rules may produce different beliefs regarding the same hypothesis. For example,
one rule may produce an inference that an interlocutor does not want coffee as he
rarely drinks it, while another may produce an inference that he does because
he just stated how tired he was. Fusing these results yields a single inference
that paints a better picture of the agent’s confidence. We can obtain a DS model
produced by n applicable rules of the type (u ∧ c)⇒ i by combining n BBAs:

mψ(·) =
⋂

u∈Θu,c∈Θc

((mu ⊗mc)�muc→i) (·), (14)

where ∩ refers to some generic fusion operator (e.g., the CFE). Since each BBA
resulting from the application of MP in the equation above is defined over the
FoD ΘI × {1,0}, so is the resulting fused DS model mψ.

3.3 Algorithm

Given the BoEs {ΘU ,mu} and {ΘC ,mc}, which encode the uncertainty
as to the truthfulness of utterance u and context c respectively, and a list
of applicable rules R, Algorithm 1 infers the intended meaning of u. The
algorithm first collects the consequents resulting from the application of u
and c to rule r into the set S, and then groups these consequents us-
ing group(S) such that the consequents in each group are all on the same
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Algorithm 1 getIntendedMeaning({ΘU ,mu},{ΘC ,mc},R)
1: {ΘU ,mu}: BoE of candidate utterances
2: {ΘC ,mc}: BoE of relevant contextual items
3: R: Currently applicable rules
4: S = ∅
5: for all r ∈ R do
6: S = S ∪ {(mu ⊗mc)�mr=uc→i}
7: end for
8: G = group(S)
9: ψ = ∅
10: for all group gi ∈ G do

11: ψ = ψ ∪ {
|gi|⋂
j=0

gij}

12: end for
13: return ψ

FoD (for example, a consequent wants(jim, coffee)[0.1, 0.3] would be in the
same group as wants(jim, coffee)[0.7, 0.9] but in a different group than
wants(jim, tea)[0.4, 0.6]. This allows the constituents of each group to be fused
using the CFE, or to be processed using MP. Finally, the fused consequents
resulting from this step are collected into ψ, which is returned.

Our approach is similar to that of [1], who express each rule as a tuple
(C̃, Ũ , [[U ]]C) where C̃ is a set of contextual constraints, Ũ is an utterance form,
and [[U ]]C is a set of belief updates to be made if Ũ and C̃ match the current
utterance and context. Rules are sequentially compared against utterances and
contexts. If a matching rule is found, its consequent is immediately returned.
As only one rule is ever applied, specific rules are written for particular combi-
nations of contextual items, and are arranged in descending order of specificity.
This differs from the DS-theoretic approach, in which the consequents from all
applicable rules are combined; instead of a single rule encoding all pieces of
context that evidence a given intention, multiple rules are used.

4 Evaluation
We will now present an evaluation of our algorithm and demonstrate the capa-
bilities facilitated by our approach. The evaluation of a system at this stage of
the natural language pipeline is difficult, as the performance of the algorithm is
tightly coupled with the performance of components that precede it in the nat-
ural language pipeline (e.g., speech recognition, parsing, semantic analysis). We
thus take the same approach to evaluation as previous work, i.e., through a case
study that demonstrates the behavior of our algorithm. We will now show how
our algorithm works towards the capabilities necessary for robust understanding
of conventionalized ISAs, and then compare our algorithm to previous work.

4.1 Handling Uncertainty
Consider a robot speaking with interlocutor Jim. Suppose Jim says to the robot:
"I need coffee". From the robot’s perspective, this utterance is represented as
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Stmt(jim, self, needs(jim, coffee)). In this representation, the three arguments
represent the speaker of the utterance (in this case, Jim), the receiver (in this
case, the robot ("self")), and the conveyed message (in this case, Jim needs cof-
fee). Suppose the robot knows two pragmatic rules. In both rules, [αRi , βRi ]
represents the belief and plausibility of rule i.

First, if B believes A is a barista, then telling A that B needs coffee indicates
that B wants A to believe that B wants A to get them coffee.

r
0
[αR0

,βR0
] =

(Context : believe(B, barista(A)))
(Utterance : Stmt(B,A, need(A, coffee)))(

Intention : want(B, believe(A,want(B, get_for(A,B, coffee))))
)

Second, if B believes C is thirst quenching, telling A that B needs C indicates
that B wants A to believe that B is thirsty.

r
1
[αR1

,βR1
] =

(Context : believe(B, quenches(C, thirst)))
(Utterance : Stmt(B,A, need(A,C)))

(Intention : want(B, believe(A, thirsty(B))))

Our approach affords the first capability of an ideal system, i.e., the abil-
ity to handle uncertain contextual and dialogical information, and to recognize
and reason about one’s own ignorance. To demonstrate this, suppose the robot
strongly believes the following:

(a) Jim believes coffee is thirst quenching: bel(jim, quenches(coffee, thirst))

[1.0, 1.0], (b) Jim just said he needs a coffee: Stmt(jim, self, need(jim, coffee))

[0.9, 0.9], and (c) Jim may or may not think the robot is a barista:
bel(jim, barista(self) [αb, βb].

Applying rules r0 and r1 will produce a BBA that encompasses information
from two consequents, namely:

c0 = want(jim, bel(self, want(jim, get_for(self, jim, coffee))))
c1 = want(jim, bel(self, thirsty(jim))).

The degree to which c0 and c1 are believed depends on the logic models and
operators that are being used. In our example, we use Núñez and Tang’s opera-
tors (see Section 3.1 above). Although Núñez’ logic models can be parameterized
to enforce certain logic properties, for ease of explanation we only consider the
CFE-based classically consistent uncertain logic operators defined in [7]. Table 1
contains some cases that illustrate how the uncertainty in the two consequents
changes depending on the set of logic models and fusion operators, the degree
to which the robot believes the interlocutor believes the robot is a Barista (b),
and the degree to which the robot believes the two rules r0 and r1 hold.

Note that our approach can modulate its interpretation of utterances based on
the certainty of the relevant utterance, contextual factors, and pragmatic rules.
However, an ideal system should also explicitly reason about its own ignorance.
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Table 1. Comparison of operators under Tang and Núñez

b[α, β] r0[α, β] r1[α, β] Fusion c0[α, β] c1[α, β] λ0 λ1

1 [0.9,0.9] [0.85,0.9] [0.7,0.85] Núñez [0.85,0.90] [0.70,0.85] 0.41 0.17
2 [0.9,0.9] [0.85,0.9] [0.7,0.85] Tang [0.69,0.90] [0.63,0.85] 0.18 0.11
3 [0.1,0.1] [0.1,0.1] [0.5,0.5] Núñez N/A [0.50,0.50] N/A 0.00
4 [0.1,0.1] [0.1,0.1] [0.5,0.5] Tang [0.01,0.10] [0.05,0.50] 0.56 0.07
5 [0.5,0.5] [0.1,0.5] [0.5,0.5] Núñez N/A N/A N/A N/A
6 [0.5,0.5] [0.1,0.5] [0.5,0.5] Tang [0.05,0.5] [0.45,0.5] 0.07 0.002
7 [0.002,0.002] [0.99,0.99] [0.99,0.99] Núñez [0.99,0.99] [0.99,0.99] 0.92 0.92
8 [0.002,0.002] [0.99,0.99] [0.99,0.99] Tang [0.002,0.99] [0.80,0.99] 0.00001 0.35

Since we are using a DS-theoretic approach, we can use the consequents’ uncer-
tainty intervals to determine whether or not the agent needs to ask for clarifica-
tion. Specifically, we use the ambiguity measure defined in [6]:

λ = 1 +
β

1 + β − αlog2
β

1 + β − α +
1− α

1 + β − αlog2
1− α

1 + β − α.

For example, for the interval [0.6, 0.9], λ = 1 + 0.9
1.3 log2

0.9
1.3 + 0.4

1.3 log2
0.4
1.3 = 0.11.

λ → 0 as uncertainty grows and as α and 1 − β grow closer together. Using
this equation, we generate a clarification request if λ ≤ 0.1. This makes use of
information that is unavailable to the Bayesian approach.

We will now briefly compare Tang and Núñez’ fusion operators before dis-
cussing the other capabilities afforded by our approach. Referring to Table 1,
one of the most visible results, is that there are several cases in which Núñez’
operators do not return a solution (see rows 3 and 6). This is expected since,
based on the CFE-based classically consistent logic models, a Modus Ponens
does not return a result if there is not enough evidence in the antecedent that
supports making a conclusion. In most cases, this lack of supporting evidence is
shown as very low values for λ0 and λ1 when using Tang’s operators, with the
only exception being the case of λ0 in row 4, where the very low uncertainty in
the antecedent translates into a very low uncertainty in the consequent.

A second difference between Tang and Núñez’ operators is that Tang’s op-
erators seem to be slightly more conservative in the allocation of evidence. This
can be seen in rows 1 and 2, where the uncertainty intervals associated with c0
and c1 are wider when Tang’s operators are used.

A more important difference between these operators is evidenced in rows 7
and 8. In the scenarios depicted in these rows, the application of Modus Ponens
based on Núñez’ operators leads to a potentially problematic high confidence
in the consequents c0 and c1. Note that, in row 7, the very small uncertainty
associated with the antecedent (which suggests that it is false) is not reflected in
the resulting uncertainty for the consequent c0. Furthermore, λ0 renders a high
value, preventing the automatic request of additional evidence by the robot.
Due to the more conservative allocation of evidence of Tang’s operators, this
problem is not visible in row 8. In light of this, we prefer the use of Tang’s logical
operators in the domain of ISA understanding and pragmatic inference. Using
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Núñez’ operators in this domain could be enabled by a different parameterization
of the uncertain logic (e.g., with CFE coefficients that relax some classical logic
properties), or by incorporating additional components in the reasoning system
(e.g., additional logic rules) aimed at solving the above mentioned issue.

4.2 Adaptation
The second capability of an ideal system is the ability to adapt old rules and learn
new ones. We currently assume that the initial beliefs and plausibilities of our
rules and contextual items are given, but we do allow rules to be adapted based
on user feedback. Upon receiving a corrected rule from a user, it is compared
against all current rules. Those whose antecedents and consequents are on the
same frames as the antecedents and consequents of the new rule may be updated
using the Conditional Update Equation (CUE) as defined in [11]. For example, if
rule ri is on interval [0.8, 0.8], and a correction states that in the current context,
[αRi , βRi ]

i should be [0.5, 0.9], the CUE will update the rule’s uncertainty to
ri[0.53,1.0] (a substantial increase in uncertainty). Although the proposed approach
only allows for adaptation of rules, it could easily be extended to allow for the
addition of new rules, which would initially have very high levels of uncertainty
and would become less uncertain with exposure to applications of the rule.

4.3 Belief Modeling

The third capability of an ideal system is the ability to reason about other agents
beliefs. Rules such as r0 and r1 are formulated in terms of the interlocutor’s
beliefs; to determine what interlocutor J is trying to communicate, J ’s utterances
must be evaluated in the context of J ’s beliefs. For example, if J says he needs
coffee, the likelihood that he is trying to order a coffee should be modulated not
by the robot’s belief that it is a barista, but instead by J ’s beliefs; if J has no
reason to think the robot is a barista, his statement should not be viewed as a
coffee order even if the robot has barista training. Belief modeling also allows
natural representation of interlocutors’ beliefs about the robot’s abilities and
social roles. For example, the robot may need general rules (e.g., Equation 15)
that suggest that a statement such as “I need a coffee” is only an indirect request
if its interlocutor believes the robot to be able and obligated to get them coffee.

(Context : bel(B, obligated(A, give(A,B,C))))
(Utterance : Stmt(B,A,would_like(B,C)))

(Intention : want(B, bel(A,want(B, give(A,B,C)))))
(15)

4.4 Comparison to previous work

While ISAs have been studied for nearly forty years in philosophy and linguis-
tics [12,10], few computational approaches have been presented for modeling
idiomatic ISAs in situated contexts (e.g., [15,1]). We believe that the DS theo-
retic approach represents a significant advance over existing approaches.

Wilske and Kruijff’s proposal maps indirect requests to action requests [15],
and models ambiguity and adaptation: certain utterance types and dialogue
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Table 2. Comparison of new and existing work

Wilske Hinkelman Briggs DeVault Proposed
Conventional ISAs • • • •

Unconventional ISAs • •
Handles uncertain context •

Handles uncertain utterances • •
Handles uncertain rules •
Robust rule combination • •
Models agent’s ignorance • •

Adaptation of existing rules • • •
Learning of new rules •
Uses belief modeling • •

contexts will prompt a clarification request whose result determines whether the
agent will change its belief. However, such changes are all-or-nothing, which can
lead to shifts in belief of unwarranted magnitude. Wilske and Kruijff attempt
to rectify this problem by always allowing a chance for the agent to ask for
clarification, so unwarranted belief shifts can be reversed. However, this can
lead to superfluous questions (when the agent is fairly certain) and incorrect
interpretations (when the agent has a belief that is certain and incorrect).

DeVault and Stone presented COREF, a dialog system that uses observed
dialog features to learn the appropriate interpretations of utterances. While
COREF learns to identify the appropriate meaning of an utterance, this con-
sists of resolving lexical, referential, and dialog-move ambiguities in a simple
shape-identification game; COREF does not show evidence of handling ISAs.

Some systems that handle conventionalized ISAs also handle unconvention-
alized ISAs using plan reasoning [5,1]. These approaches first attempt to handle
conventionalized ISAs via rule-based systems that map incoming utterances to
deep semantics according to context, and then handle unconventionalized ISAs
using plan-reasoning. These approaches do not handle uncertainty or adaptation.

5 Conclusion

We have presented a novel approach for robustly handling ISAs using DS-
theoretic uncertain logical inference, and have shown (1) how the proposed al-
gorithm robustly deals with uncertainty in implication rules and dialogic and
environmental context, (2) how belief modeling allows the algorithm to better
resolve ISAs, and (3) how rules can be adapted. Table 2 demonstrates that this
approach comes closer than previous approaches to satisfying these capabilities.

Currently, our algorithm only handles conventionalized ISAs. A logical next
step is to use a hierarchical approach like that described by [1]. While Briggs et
al. attempt to understand an ISA inferentially only if a conventionalized form
does not exist, we would also need to attempt to understand ISAs inferentially
if idiomatic analysis only produced consequents with very low belief and/or high
uncertainty. It would also be advantageous to extend the adaptation algorithm
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to learn new ISAs when a correction is provided for which an existing rule does
not exist. Future work includes determining which set of fusion operators is
preferable, and then performing a large scale evaluation of performance under
that set of fusion operators when integrated into a cognitive robotic architecture.
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