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Abstract

The ultimate goal of human natural language interaction is to
communicate intentions. However, these intentions are often
not directly derivable from the semantics of an utterance (e.g.,
when linguistic modulations are employed to convey polite-
ness, respect, and social standing). Robotic architectures with
simple command-based natural language capabilities are thus
not equipped to handle more liberal, yet natural uses of lin-
guistic communicative exchanges.
In this paper, we propose novel mechanisms for inferring in-
tentions from utterances and generating clarification requests
that will allow robots to cope with a much wider range of
task-based natural language interactions. We demonstrate the
potential of these inference algorithms for natural human-
robot interactions by running them as part of an integrated
cognitive robotic architecture on a mobile robot in a dialogue-
based instruction task.

Introduction
When humans interact in natural language (NL) as part of
joint activities, their ultimate goal is to understand each oth-
ers’ intentions, regardless of how such intentions are ex-
pressed. While it is sometimes possible to determine in-
tentions directly from the semantics of an utterance, often
the utterance alone does not convey the speaker’s intention.
Rather, it is only in conjunction with goal-based, task-based,
and other context-based information that listeners are able to
infer the intended meaning, such as in indirect speech acts
where requests or instructions are not apparent from the syn-
tactic form or literal semantics of the utterance. Given that
an important goal of human-robot interaction is to allow for
natural interactions (Scheutz et al. 2007), robotic architec-
tures will ultimately have to face the challenge of coping
with more liberal and thus natural human speech.

Enabling a broader coverage of human speech acts (be-
yond imperatives expressing commands), however, is quite
involved and requires various additional mechanisms in the
robotic architecture. In this paper, we introduce novel algo-
rithms based on Dempster-Shafer (DS) theory (Shafer 1976)
for inferring intentions I from utterances U in contexts C,
and, conversely, for generating utterances U from inten-
tions I in contexts C. We select more general DS-based
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representations over single-valued probabilities because the
probability-based Bayesian inference problem to calculate
P (I|U,C) in terms of P (U |I, C) is not practically feasible,
for at least two reasons: (1) we do not have access to distri-
butions over an agent’s intentions (as we cannot look inside
its head), and (2) we would need a table containing priors
on all combinations of intentions and contexts. Instead, we
employ rules of the form u ∧ c →[α,β] i that capture inten-
tions behind utterances in particular contexts, where [α, β] is
a confidence interval contained in [0,1] which can be spec-
ified for each rule independently (e.g., based on social con-
ventions, or corpora statics when available). These rules
are very versatile in that they can be defined for individ-
ual utterances and contexts or whole classes of utterances
and contexts. Most importantly, we can employ DS-based
modus ponens to make uncertain deductive and abductive
inferences which cannot be made in a mere Bayesian frame-
work.

We start with background information on instruction-
based robotic architectures and basic Dempster-Shafer the-
oretic concepts, and then introduce the proposed algorithms
for pragmatic inference and for generating requests to dis-
ambiguate intended meanings. Then we demonstrate the
operation of the algorithms in a detailed example showing
how uncertainty is propagated at each stage of processing
and can lead to different responses by the robot. We finish
with a brief discussion of the proposed approach and possi-
ble directions for future work.

Previous Work
Over the last several years, various integrated robotic archi-
tectures with natural language capabilities have been pro-
posed for instruction-based natural language interactions
(Lemaignan et al. 2014; Kruijff et al. 2010; Chai et al. 2014;
Deits et al. 2013; Scheutz et al. 2013; Jing et al. 2012). Some
of these approaches (e.g. (Jing et al. 2012)) are focused on
compiling low-level controls from high-level, natural lan-
guage commands and constraints and do not address effi-
cient real-time interaction. Other architectures, while con-
cerned with real-time interactions, do not generally perform
pragmatic analyses to infer non-literal meanings from re-
ceived utterances (and thus are not able to systematically
handle utterances whose literal semantics do not directly re-
flect their speaker’s intentions). For instance, while the ar-



chitecture in (Deits et al. 2013) is able to use uncertainty
to resolve references in received utterances, it does not do
similar reasoning to resolve non-literal intentions. Likewise,
(Chai et al. 2014) is focused on reference resolution in the
light of referential uncertainty but not on non-literal inten-
tion understanding. Pragmatic inference is performed by the
integrated architecture presented in (Scheutz et al. 2013), but
that architecture does not explicitly represent the uncertainty
of the robot’s knowledge, and thus their pragmatic infer-
ence components are not robust to uncertain context, input,
or pragmatic rules. One integrated approach does handle
pragmatic inference with an explicit representation of un-
certainty (Wilske and Kruijff 2006), but is limited to han-
dling indirect commands and uses a rather rudimentary rep-
resentation of uncertainty. The goal of this paper is to tackle
currently unaddressed challenges posed by more liberal hu-
man language usage. This requires not only the addition of
several components for handling aspects of natural language
pragmatics, but also representational and inferential mech-
anisms to robustly capture and handle the uncertainties that
plague natural, real-world communication.

Basic Notions of Dempster-Shafer Theory
Since the proposed alogorithms and architecture will use
DS-theoretic representations of uncertainty, we briefly re-
view the basic concepts of this framework for reasoning
about uncertainty, which is a generalization or extension of
the Bayesian framework (Shafer 1976).

Frame of Discernment: A set of elementary events of in-
terest is called a Frame of Discernment (FoD). A FoD is a
finite set of mutually exclusive events Θ = θ1, ..., θN . The
power set of Θ is denoted by 2Θ = A : A ⊆ Θ.

Basic Belief Assignment: Each set A ⊆ 2Θ has a cer-
tain weight, or mass associated with it. A Basic Belief As-
signment (BBA) is a mapping mΘ(·) : 2Θ → [0, 1] such
that

∑
A⊆ΘmΘ(A) = 1 and mΘ(∅) = 0. The BBA

measures the support assigned to the propositions A ⊆ Θ
only. The subsets of A with non-zero mass are referred
to as focal elements and comprise the set FΘ. The triple
E = {Θ, FΘ,mΘ(·)} is called the Body of Evidence (BoE).

Belief, Plausibility, and Uncertainty: Given a BoE
{Θ, FΘ,mΘ(·)}, the belief for a set of hypotheses A is
Bel(A) =

∑
B⊆AmΘ(B). This belief function captures

the total support that can be committed to A without also
committing it to the complement Ac of A. The plausibility
of A is Pl(A) = 1−Bel(Ac). Thus, Pl(A) corresponds to
the total belief that does not contradict A. The uncertainty
interval of A is [Bel(A), P l(A)], which contains the true
probability P (A). In the limit case with no uncertainty, we
get Pl(A) = Bel(A) = P (A).

Inference and Fusion: Uncertain logical inference can be
performed using DS-theoretic modus ponens (denoted �)
(Tang et al. 2012). We will use the DS-theoretic AND (de-
noted ⊗) to combine BoEs on different FoDs (Tang et al.
2012), and Yager’s rule of combination (denoted

⋂
) to com-

bine BoEs on the same FoD (Yager 1987). We choose to use

Tang’s models of modus ponens and AND over other pro-
posed models due to the counter-intuitive results of those
models, and because those models do not allow uncer-
tainty to be multiplicatively combined. More details about
the strengths and weaknesses of various options for DS-
theoretic uncertain inference can be found in (Williams et
al. 2014). Yager’s rule of combination is chosen because it
allows uncertainty to be pooled in the universal set, and due
to the counter-intuitive results produced by Dempster’s rule
of combination (as discussed in (Zadeh 1979)).

Logical AND: For two logical formulae φ1 (with
Bel(φ1) = α1 and Pl(φ1) = β1) and φ2 (with Bel(φ2) =
α2 and Pl(φ2) = β2, applying logical AND yields φ1 ⊗
φ2 = φ3 with Bel(φ3) = α1 ∗ α2 and Pl(φ3) = β1 ∗ β2.

Modus Ponens: For logical formulae φ1 (with Bel(φ1) =
α1 and Pl(φ1) = β1) and φφ1→φ2 (with Bel(φφ1→φ2) =
αR and Pl(φφ1→φ2) = βR, the corresponding model of
modus ponens is φ1�φφ1→φ2 = φ2 withBel(φ2) = α1∗αR
and Pl(φ2) = Pl(φR).

Measuring Uncertainty: We will use the “uncertainty
measure” λ discussed in (Williams et al. 2014) to compare
the uncertainties associated with formulae φ and their re-
spective confidence intervals [α, β]:

λ(α, β) = 1 +
β

γ
log2

β

γ
+

1− α
γ

log2
1− α
γ

where γ = 1 + β − α.

Here, φ is deemed more uncertain as λ(α, β) → 0. We
introduce an “uncertainty threshold” Λ (set to 0.1) where
utterances with λ(α, β) < Λ will require clarification from
an interlocutor.

Algorithms and Architecture
A cognitive robotic architecture capable of going beyond
direct command-based instructions needs several high-level
components in addition to typical NL components (such as
speech recognizers, parsers, etc.) that work in concert to ex-
tract intended meanings and generate informative clarifica-
tion questions and feedback as needed. Figure 1 depicts how
these new components are inserted into the architecture we
extend (i.e., the Distributed Integrated Affect, Recognition
and Cognition (DIARC) architecture (Scheutz et al. 2007)).

When an interlocutor speaks to the robot, speech is pro-
cessed via the standard NL pipeline (speech recognizer, syn-
tactic and semantics parser) resulting in candidate semantic
expressions φ, each with its own uncertainty interval [α, β]
attached. While a typical command-based system (e.g., (Dz-
ifcak et al. 2009)) would attempt to act on the semantic in-
terpretation with the highest confidence (and fail if it is not
actionable), in the proposed architecture semantic represen-
tations are further processed in a pragmatic inference com-
ponent, which attempts to apply modulatory pragmatic rules
to utterance and semantic representations to infer the inten-
tions of the speaker.



Figure 1: partial architecture diagram. Highlighted are the
components that form the natural language pipeline: Au-
tomatic Speech Recognition (ASR), Natural Language Pro-
cessing (NLP), Natural Language Generation (NLG), Text-
to-Speech (TTS), Pragmatic Inference (PINF), Pragmatic
Generation (PGEN), and Dialogue, Belief and Goal Man-
agement (DBGM). Also shown are relevant components that
interact with the DBGM: the SPatial EXpert (SPEX), Task
Planner (PLANNER), Motion Planner (MOTION), Manipula-
tion (MANIP), Laser Range Finder (LRF), and Vision (VI-
SION).

The semantic interpretation is passed to our new com-
ponent for Pragmatic Inference (PINF), which uses contex-
tual and general knowledge to determine the intention un-
derlying the literal semantics. By using pragmatic rules
indexed by utterance and context, PINF can determine, for
example, that asking if one knows the time should be in-
terpreted not as a “yes-no question”, but as an indica-
tion that the speaker would like to be told what time it
is. The resulting intention or intentions can then be re-
turned to DIARC’s “Dialogue, Belief, and Goal Manager”
(DBGM), which is responsible for dialogue management
(Briggs and Scheutz 2012), storing beliefs in its knowledge
base, performing inference on those beliefs, tracking and
managing goals (Brick, Schermerhorn, and Scheutz 2007;
Scheutz and Schermerhorn 2009), and determining what ac-
tions to take in pursuit of its goals. If an utterance is deter-
mined to be a command or request, the DBGM will instan-
tiate a new goal and determine how best to accomplish that
goal. If the DBGM determines that it should respond to an in-
terlocutor, the intention it desires to communicate is passed
to our new component for Pragmatic Generation (PGEN),
which determines the best way to effectively and politely
communicate that intention. From this point on, informa-
tion flows in the standard fashion through natural language
generation and speech synthesis. Next, we will provide the
details for the core algorithms of PINF and PGEN.

Pragmatic Inference
The goal of pragmatic analysis is to infer intentions based
on (1) the semantics of incoming utterances, (2) the robot’s
current context, and (3) the robot’s general knowledge. This
process is depicted in Algorithm 1, which takes three param-
eters: (1) a BoE of candidate utterances {ΘU ,mu} provided
by NLP, (2) a BoE of relevant contextual items {ΘC ,mc}
provided by the DBGM, and (3) a table of pragmatic rules

Algorithm 1 getIntendedMeaning({ΘU ,mu},{ΘC ,mc},R)
1: {ΘU ,mu}: BoE of candidate utterances
2: {ΘC ,mc}: BoE of relevant contextual items
3: R: Currently applicable rules
4: S = ∅
5: for all r ∈ R do
6: S = S ∪ {(mu ⊗mc)�mr=uc→i}
7: end for
8: G = group(S)
9: ψ = ∅

10: for all group gi ∈ G do

11: ψ = ψ ∪ {
|gi|⋂
j=0

gij}

12: end for
13: return ψ

R. Each rule ruc→i in R is indexed by an utterance u and
a set of contextual items c, and dictates the mass assigned
to Bel(i) and Pl(i) when the robot believes that utterance
u was heard and that contextual items c are true. Here i
is a logical formula representing the intention the interlocu-
tor was expressing through utterance u. When these con-
textual items involve the shared context of the robot and its
interlocutor, they are couched in terms of the interlocutor’s
beliefs. This is critical, as the intentions of the robot’s inter-
locutor are dependent not on the robot’s beliefs, but on his or
her own beliefs. This allows the robot to correctly interpret
its interlocutor’s intentions when cognizant of discrepancies
between its own beliefs and its interlocutor’s beliefs, and to
identify information of which its interlocutor may want to
be informed. This is important for both pragmatic inference
and generation, as this paradigm implicitly assumes that the
robot’s interlocutor communicates according to the same ta-
ble of rules known to the robot (however, it is straightfor-
ward to keep separate rule tables for individual interlocutors
if required).

When an utterance is heard, each rule ruc→i ∈ R is exam-
ined (line 5), andmuc is determined by performingmu⊗mc

(line 6), where mu specifies the degree to which utterance u
is believed to be heard, andmc specifies the degree to which
each of the rule’s associated contextual items is believed to
be true. DS-based modus ponens is then used to obtain mi

from muc→i and muc (line 6).
While previous approaches (e.g., (Briggs and Scheutz

2013)) look for a single applicable rule in order to produce
a single likely intention, we instead consider all applicable
rules. This is particularly important for complex contexts or
abstract context specifications, where multiple rules might
be applicable. Moreover, the robot might have rules that ap-
ply to its particular context as well as to a more general con-
text, and it may be more appropriate to consider the com-
bined implicatures of all applicable rules rather than only
considering, for example, the most specific applicable rule.
Since we may consider multiple rules, multiple intentions
may be produced. And multiple rules may also produce the
same intentions, possibly with different levels of belief or



disbelief. To be able to generate a set of unique intentions
implied by utterance u after considering all applicable prag-
matic rules, we thus group intentions that have the same se-
mantic content but different mass assignments (line 8) and
use Yager’s rule of combination (line 11) to fuse each group
of identical intentions, adding the resulting fused intention
to set ψ. This set then represents the set of intentions implied
by utterance u and is returned to the DBGM, where its level
of uncertainty is assessed: for each intention i ∈ ψ on un-
certainty interval [αi, βi], a clarification request is generated
if λ(αi, βi) < Λ. For example, consider a scenario in which
the robot is unsure which of two contexts it is in. In the first
context, a particular statement should be interpreted as a re-
quest for information, and in the second context, it should be
interpreted as an instruction. In this case, the robot will ask
“Should I <perform the intended action> or would you like
to know <the intended information>?” This demonstrates
the ability for the robot to exploit propagated uncertainty to
identify and resolve uncertainties and ambiguities.

A similar process is also seen directly before pragmatic
inference: after NLP produces set of surface semantics s,
those semantic interpretations are analyzed using the λ am-
biguity measure. If λ(αP , βP ) < Λ for semantic predicate p
with uncertainty interval [αP , βP ], a request to verify what
was said is sent to NLG, which generates and communicates
a realization of the form “Did you say that <s>” in which
case the uncertain semantics are not passed on for pragmatic
analysis.

Pragmatic Generation
When the robot needs to communicate information, it must
choose appropriate surface realizations of the semantic facts
in intends to convey. However, for reasons of social con-
vention such as politeness, it may be inappropriate to ex-
press semantic facts in the most direct manner. For exam-
ple, one may find it rude if the robot were to say “I want to
know what time it is. Tell me now.” To allow the robot to
generate socially acceptable utterances based on pragmatic
considerations, we introduce an abductive inference algo-
rithm called pragmatic generation, which, much like prag-
matic inference, uses the robot’s current context and its set
of pragmatic rules to determine the best utterance to com-
municate intentions. The “best” utterance is determined to
be the utterance that, according to the robot’s set of prag-
matic rules, would be most likely to communicate the given
intention properly (e.g., without communicating any other
information that the robot does not believe to be true). A
DS-based approach is particularly useful here, because rule-
based pragmatic inferences are determined by equations that
relate the premise and rule to the consequent and can thus,
exactly because they are equations, be used for inferences
in both directions, deductive and abductive. We can thus in-
fer the best utterance to convey a given intention in a given
context from the same rules we use for inferring the best in-
tention given an utterance in the same context. Moreover,
we can perform pragmatic generation recursively: if a prag-
matic rule matches the high-level structure of an utterance,
it may be necessary to further abduce the best way to phrase
individual clauses of the utterance that were left open by the

Algorithm 2 getSemantics({ΘI ,mi},{ΘC ,mc},R)
1: {Θi,mi}: BoE of candidate intentions
2: {ΘC ,mc}: BoE of relevant contextual items
3: R: Currently applicable rules
4: S = ∅
5: for all r ∈ R do
6: u = (mi ⊗mc)�mr=uc→i
7: for all (bs, bv) ∈ getBindings(u) do
8: if marked(bv) then
9: u = adapt(u, getSemantics(

buildBoE(bs), {ΘC ,mc}, R))
10: end if
11: end for
12: u′ = checkEffects(

getIntendedMeaning({ΘU ,mu}, {ΘC ,mc}, R))
13: S = S ∪ u′
14: end for
15: return S

high-level rule.
As with pragmatic inference, the pragmatic generation al-

gorithm (see Algorithm 2) takes the robot’s current context
{ΘC ,mc} and the set of currently applicable rules R. In-
stead of the BoE of possible incoming utterances {ΘU ,mu},
the algorithm takes a BoE of possible intentions desired to
be communicated {ΘI ,mi}, as determined by the DBGM.
For each applicable rule ruc→i ∈ R, the algorithm performs
an uncertain modus ponens operation producing a BoE in-
dicating which utterance would most likely generate the de-
sired intention according to rule r (line 6).

The algorithm then examines the structure of the re-
sulting utterance (line 7) to determine whether it should
recurse on subsections of the utterance, recursing on the
semantics bs associated with each variable bv marked as
suitable for recursion. For example, for the utterance
Want(self,Know(self, or(X,Y ))), it may be necessary
to recurse on the portions of the utterance bound to X
and Y . Once the results of any such recursions (line 9)
are integrated into the representation of the utterance to
communicate u, the set of intentions ψ that would be im-
plied by utterance u are calculated (on line 12) by call-
ing getIntendedMeaning({ΘU ,mu}, {ΘC ,mc}, R) (i.e.,
Algorithm 1) with the candidate utterance and the current
context and rule set. The belief and plausibility of u are then
modulated by Bel(pi) and Pl(pi) for pi ∈ ψ. This prevents
the robot from accidentally communicating some proposi-
tion that it does not actually believe to be true. Finally, the
set of candidate utterances S is returned, from which an ut-
terance is chosen to communicate, e.g., by choosing the can-
didate with the highest degree of belief.

Demonstration
To demonstrate the operation of the proposed inference al-
gorithms for natural human-robot interactions, we consider
a dialogue interaction that occurs as part of a Search-and-
Rescue Task. The interaction starts with an interlocutor
(“Jim”) telling the robot “Commander Z needs a medical



kit.” The utterance and semantic representation produced by
NLP for this statement is

Statement(Jim, self, needs(commander_z,medkit))[α, β].

We will now examine how the dialogue between Jim and
the robot plays out under three different combinations of
values for α and β, corresponding with low, medium, and
high of uncertainty accrued by the early NL components (up
to semantic parsing). These three conditions are denoted1

Ulow (with uncertainty interval [0.95, 1.00]),
Umed (with uncertainty interval [0.62, 0.96]), and
Uhigh (with uncertainty interval [0.31, 0.81]).

Furthermore, we will assume three settings that differ
with respect to the robot’s assumptions regarding its inter-
locutor’s beliefs about who is subordinate to whom. In the
first case (denoted Cjim), the robot believes that Jim be-
lieves that the robot is subordinate to him. In the second
case (denoted Crobot), the robot believes that Jim believes
that he is subordinate to the robot. In the third case (denoted
Cunk), the robot is unsure who Jim believes to be the sub-
ordinate between the pair of them. The differences in these
scenarios are reflected in differences in the knowledge base
of the robot at the start of the task:

Cjim locationof(breakroom,medkit)[0.80, 0.90]
Believes(Jim, subordinate(self, Jim))[0.80, 0.90]
Believes(Jim, subordinate(Jim, self))[0.10, 0.20]

Crobot locationof(breakroom,medkit)[0.80, 0.90]
Believes(Jim, subordinate(self, Jim))[0.10, 0.20]
Believes(Jim, subordinate(Jim, self))[0.80, 0.90]

Cunk locationof(breakroom,medkit)[0.80, 0.90]
Believes(Jim, subordinate(self, Jim))[0.50, 0.60]
Believes(Jim, subordinate(Jim, self))[0.40, 0.50]

In all conditions, the robot uses the following set of prag-
matic rules (here intentions are represented as “Goal” and
intentions to know are presented as “ITK(A,B)", e.g., (Per-
rault and Allen 1980)):

1. Stmt(A,B,Want(A, bring(C,D,E)))→
Goal(C, bring(C,D,E))[0.95, 0.95]

2. AskWH(A,B, or(C ′, D′))→
ITK(A, or(C ′, D′))[0.95, 0.95]

3. Stmt(A,B,Want(A,Know(A,C)))→
ITK(A,C)[0.85, 0.85]

4. Instruct(A,B,C)→
Goal(B,C)[0.90, 0.90]

5. if Bel(A, subordinate(B,A)):
Stmt(A,B, needs(C,D))→
Goal(B, bring(B,D,C))[0.80, 0.90]

6. if Bel(A, subordinate(B,A)):
Stmt(A,B, needs(C,D))→
not(ITK(A, locationof(E,D)))[0.80, 0.90]

1All beliefs and plausibilities listed in this section are rounded
to two decimal places for the reader’s convenience.

7. if Bel(A, subordinate(A,B)):
Stmt(A,B, needs(C,D))→
ITK(A, locationof(E,D))[0.80, 1.00]

8. if Bel(A, subordinate(A,B)):
Stmt(A,B, needs(C,D))→
not(Goal(B, bring(B,D,C)))[0.80, 1.00]

In Uhigh, λ(0.31, 0.81) < 0.1, so the robot responds “Did
you say that Commander Z needs a medkit?” In Umed,
λ(0.62, 0.96) > 0.1, and in Ulow λ(0.95, 1.00) > 0.1, and
thus the semantics are passed on to PINF, which yields the
following intentions for each combination of U and C con-
ditions:

Cjim

Ulow Goal(self, bring(self,medkit, commander_z))[0.88, 0.95]

ITK(Jim, locationof(X,medkit))[0.05, 0.12]

Umed Goal(self, bring(self,medkit, commander_z))[0.88, 0.93]

ITK(Jim, locationof(X,medkit))[0.07, 0.12]

Crobot

Ulow Goal(self, bring(self,medkit, commander_z))[0.05, 0.12]

ITK(Jim, locationof(X,medkit))[0.88, 0.95]

Umed Goal(self, bring(self,medkit, commander_z))[0.07, 0.12]

ITK(Jim, locationof(X,medkit))[0.88, 0.93]

Cunk

Ulow Goal(self, bring(self,medkit, commander_z))[0.47, 0.67]

ITK(Jim, locationof(X,medkit))[0.33, 0.54]

Umed Goal(self, bring(self,medkit, commander_z))[0.50, 0.62]

ITK(Jim, locationof(X,medkit))[0.38, 0.50]

These intentions are then passed to the DBGM, which
performs different operations based on the uncertainty
condition. In Cunk, the high level of uncertainty neces-
sitates a clarification request, so the DBGM forms intention i:

ITK(self, or(ITK(Jim, locationof(X,medkit)),
Goal(self, bring(self,medkit, commander_z))))[1.0, 1.0].

Bel(i) and Pl(i) are both 1.0, since the robot can be sure
of its own intentions. Given i, PGEN produces:

ITK(self, or(Want(Jim,Know(Jim, locationof(X,medkit))),
Want(Y, bring(self,medkit, commander_z))))[0.95, 1.0].

NLG then translates this intention to “Would you like to
know where to find a medkit? or would you like me to bring
commander z a medkit?”

Suppose Jim responds “I’d like to know where to find
one.” In Uhigh, λ(0.31, 0.81) < 0.1, so the robot responds
“Did you say that you would like to know where a medkit
is located?” Otherwise, PINF produces:

Ulow ITK(Jim, locationof(X,medkit))[0.81, 1.0]
Umed ITK(Jim, locationof(X,medkit))[0.52, 1.0]

In Umed, no uncertainty is initially detected, but the
intention of the utterance resulting from PINF is deemed
too uncertain since λ(0.52, 1.00) < 0.1, so the robot asks
for clarification: “Would you like to know where to find a
medkit?” In Ulow, this intention is not deemed uncertain
since λ(0.81, 1.00) > 0.1, so the intention is instead added
to the robot’s set of beliefs. This behavior, and the actions



that follow, are identical to how the robot responds to the
original utterance in scenario Crobot. Since Jim has not yet
been provided an answer to his question, the robot attempts
to answer him. The robot first queries its knowledge base to
determine if it knows the answer. If it had not known the
location of a medkit, it would have generated a response
with the semantics

Stmt(self,Jim,not(Know(self,locationof(X,medkit))))[1.0,1.0].

In this scenario, the robot does know the answer as it
has locationof(breakroom,medkit)[0.80, 0.90] in its
knowledge base, so it forms an utterance with semantics

Stmt(self,Jim, locationof(breakroom,medkit))[0.8,0.9].

NLG then translates this to “A medkit is located in the
breakroom.”

Suppose the robot’s interlocutor instead responded to the
initial clarification request by saying “Bring him one.” In
Uhigh, the robot would respond by saying “Did you say that
I should bring commander Z a medkit?” Otherwise, PINF
produces:

Ulow Goal(self, bring(self,medkit, commander_z))[0.86, 1.0]

Umed Goal(self, bring(self,medkit, commander_z))[0.55, 1.0]

This intention is not deemed uncertain in either condi-
tion2 so the intention is instead added to the robot’s set of
beliefs. This behavior, and the actions that follow, are iden-
tical to how the robot responds to the original utterance in
scenario Cjim. The DBGM then determines which action
will accomplish the goal and executes that action, setting
forth to retrieve the medkit. A video of this interaction in
operation on a Willow Garage PR2 robot can be viewed at
https://vimeo.com/106203678.

Discussion and Future Work
The goal of the demonstration example on a real robot in a
real-world setting was two-fold. First, we intended to show
the potential of the proposed algorithms for making sound
deductive and abductive pragmatic inferences based on hu-
man utterances and context that go beyond the direct inter-
pretation of command-based instructions. And second, we
wanted to demonstrate that the algorithms have been fully
integrated into an operational cognitive robotic architecture
(even though space limitations did not permit us to present
any details on the DIARC architecture outside of the pro-
posed algorithms). Yet, the demonstration is clearly not an
evaluation and should not be taken as such. While an evalu-
ation of the integrated system will eventually be critical, we
believe that it would be premature at present given that we
do not even know how to best evaluate such integrated sys-
tems (e.g., how many dialogue-based scenarios would we
have to set up and how many pragmatic rules would we have

2One could argue that the uncertainty in Umed is high enough
to warrant a clarification request. One may raise Λ to achieve such
behavior, if so desired.

to examine to be able to make a case about how well the sys-
tem works and how could we be sure that the employed data
was sufficient?). Instead, the current system can be seen as
a proof-of-concept that the proposed algorithms do not only
work in principle and isolation, but in real-time as part of an
integrated robotic architecture.

As a next step towards a full evaluation in the future, we
are interested in improving several aspects of the current sys-
tem, including how pragmatic rules can be acquired in a way
that does not require the system to learn from large data sets
offline. Specifically, we are interested in using NL instruc-
tions to learn rules quickly and to use reinforcement methods
(based on feedback from human interlocutors) to adapt the
uncertainty values associated with the learned rules. This
way of allowing for online learning of pragmatic interpreta-
tions will enable adaptive trainable systems that can quickly
acquire new knowledge on the fly as is often required in
human-robot interaction domains.

We are also interested in extending PINF with plan reason-
ing capabilities so that it can better interpret non-idiomatic
indirect speech acts, and extending PGEN so that it can
use Grice’s conversational maxims when choosing which
utterance to communicate (e.g., analogous to (Briggs and
Scheutz 2013)).

Conclusion
In this paper, we presented algorithms for inferring and com-
municationg intentions, and for generating clarification re-
quests. We described how the integration of the proposed
algorithms into the a robot cognitive architecture affords ca-
pabilities and robustness in handling natural language in-
teractions that go beyond command-based instructions. We
also highlighted the benefits of using Dempster-Shafer the-
ory by stepping through the performance of the proposed al-
gorithms in a demonstration task, where the algorithms were
run in real-time as part of the DIARC integrated robotic ar-
chitecture on a PR2 robot. Future work will extend the ro-
bustness and scope of the algorithms and investigate differ-
ent methods for learning pragmatic rules effectively.
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