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Abstract—A robot participating in natural dialogue with a
human interlocutor may need to discuss, reason about, or
initiate actions concerning dialogue-referenced entities. To do
so, the robot must first identify or create new representations
for those entities, a capability known as reference resolution.
We previously presented algorithms for resolving references
occurring in definite noun phrases. In this paper we present
GH-POWER: an algorithm for resolving references occurring in
a wider array of linguistic forms, by making novel extensions
to the Givenness Hierarchy, and evaluate GH-POWER on natural
task-based human-human and human-robot dialogues.

Index Terms—natural language processing, human-robot in-
teraction

I. INTRODUCTION

A robot participating in natural dialogue with a human
interlocutor may need to discuss, reason about, or initiate
actions concerning dialogue-referenced entities. To do so, the
robot must first identify or create new representations for those
entities, a capability known as reference resolution.

We previously presented algorithms for resolving references
in definite noun phrases. Those algorithms were designed to
handle the open worlds and uncertain contexts commonplace
in natural human-robot interaction (HRI) scenarios [21]–[24].
In this paper, we present an open-world reference resolution
algorithm which can handle a wider array of linguistic forms
by using the Givenness Hierarchy (GH) [8], a linguistic frame-
work which associates the form of a referential expression
(e.g., pronominal, definite noun phrase, indefinite noun phrase)
with a presumed “cognitive status” (e.g., focus of attention,
short term memory, long term memory). This significantly
advances the state of the art of natural-language based HRI,
by (1) increasing the breadth and complexity of referential
expressions understandable by robots, (2) allowing robots to
understand such expressions in open and uncertain worlds,
and (3) bringing robot natural language understanding closer
in line with an established linguistic framework (i.e., the GH).
What is more, it is significant in its extension of the GH itself,
through the addition of guidelines which clarify how the GH
should be computationalized.

The rest of the paper proceeds as follows. In Section II
we discuss previous work: the GH, previous implementations
thereof, and an explanation of how those implementations
might be improved if clear guidelines for using the GH could

be crafted. In Section III we suggest such guidelines for the
GH and present GH-POWER: an algorithm which uses those
guidelines to improve on previous approaches. In Section IV
we evaluate GH-POWER using data from an empirical human-
human and human-robot experiment. Finally, we discuss direc-
tions for future work in Section V and conclude in Section VI.

II. PREVIOUS WORK

As this work is a GH-theoretic extension of our previous
work on open world reference resolution [21]–[24], we will
focus primarily in this section on the GH itself and on previous
GH-based reference resolution algorithms.

However, this work builds upon a large body of work on
human-robot dialogue processing [12], [14], and more specifi-
cally, situated reference resolution and language grounding [4],
[13], [20]. We thus direct the reader to the works cited
above, as well as to our own previous work, for a broader
understanding of how our approach relates to previous work.

A. The Givenness Hierarchy

Gundel et al.’s Givenness Hierarchy (GH), contains six levels
or tiers at which a piece of information may be cognitively
accessible [6]. As seen in Fig. 1, these are nested such that if a
piece of information attains some level of cognitive accessibil-
ity, it also attains all lower tiers. For example, any information
that is in focus is also activated (i.e., in short term memory),
familiar (e.g., previously referenced in the current dialogue, or
culturally salient), can be uniquely identified, can be referred
to, and can have its type identified, whereas information that
is at most familiar is also uniquely identifiable, referential and
type identifiable, but not in focus or activated.

In focus ⊂ Activated ⊂ Familiar ⊂ Uniquely identifiable ⊂
Referential ⊂ Type identifiable

Fig. 1. The Givenness Hierarchy

Each cognitive status in the GH is assumed to be cued by a
different set of linguistic forms, as seen in Table I. For example
the use of “it” to refer to an entity signifies that the speaker
believes that entity to be in her interlocutor’s focus of attention
(as seen in Row 1), and the use of “that N” (for some noun-
phrase N) signifies that the speaker believes the entity to be



“familiar” to her interlocutor (i.e., that it is at least in her
interlocutor’s long-term memory).

TABLE I
COGNITIVE STATUS AND FORM IN THE GIVENNESS HIERARCHY

Level Cognitive Status Form
In focus in focus of attention it
Activated in working memory this,that,this N
Familiar in LTM that N
Uniquely id-able in LTM or new the N
Referential new indef. this N
Type id-able new or hypothetical a N

While the GH itself does not make claims about how a piece
of information might acquire a particular cognitive status,
Gundel et al. present a “coding protocol” which suggests a
possible set of criteria that might be used to make such a
decision [10]. For example, the protocol suggests that the
syntactic topic of the immediately preceding sentence should
be in focus, the sentence’s speech act and the targets of
concurrent gestures or sustained eye gaze should be at least
activated, and any entity mentioned previously in the current
dialogue should be at least familiar.

The GH and its coding protocol thus provide:
1) data structures necessary for reference resolution
2) guidelines for how those data structures are populated
3) guidelines for how those data structures are accessed
These concepts represent a powerful framework for refer-

ence resolution with strong experimental justification [7]. It is
thus unsurprising that there have been several attempts to use
the GH to inform reference resolution algorithms in the fields
of Human-Robot and Human-Agent Interaction. We will now
describe the two implementations which, until now, have made
the most extensive use of the GH.

B. GH-Based Reference Resolution Algorithms

The first implementation of the GH that we will examine
is that presented by Kehler et al. [11], in which they propose
the modified hierarchy seen in Fig. 2. There, Kehler et al.
omit the last two levels of the GH, due to a primary interest in
interfaces with which it is unlikely for one to refer to unknown
or hypothetical entities. Kehler et al. used their modified
hierarchy to craft four rules (presented here verbatim) they
found capable of resolving all references they encountered:

1) If the object is gestured to, choose that object
2) Otherwise, if the currently selected object meets all semantic

type constraints imposed by the referring expression (i.e., “the
museum” requires a museum referent; bare forms such as “it”
and “that” are compatible with any object), choose that object.

3) Otherwise, if there is a visible object that is semantically
compatible, then choose that object (this happened three times;
in each case there was only one suitable object).

4) Otherwise, a full NP (such as a proper name) was used that
uniquely identified the referent.

In focus ⊂ Activated ⊂ Familiar ⊂ Uniquely identifiable

Fig. 2. Kehler’s Modified Hierarchy

The second GH implementation we will examine, Chai et
al. [1], expands on Kehler’s approach in two important ways:
First, Chai et al.’s implementation can identify and resolve
ambiguities (Kehler’s first rule is problematic if the target of
a gesture is ambiguous, and Kehler’s third rule is problematic
if a referential expression is ambiguous). Second, Chai et
al.’s implementation makes it possible to handle utterances
containing multiple referential expressions or gestures. To
make these advancements, Chai et al. combine a subset of
the GH with Grice’s theory of Conversational Implicature [5]
to produce the modified hierarchy seen in Fig. 3.

Gesture ⊂ Focus ⊂ Visible ⊂ Others

Fig. 3. Chai’s Modified Hierarchy

Chai et al.’s modified hierarchy contains four tiers: (1)
“Gesture”, containing entities gestured toward (because a ges-
ture intentionally singles out entities), (2) “Focus”, combining
Gundel’s in focus and activated tiers, (3) “Visible”, combining
Gundel’s familiar and uniquely identifiable tiers, and (4)
“Others”, combining Gundel’s referential and type identifiable
tiers, although this tier does not appear to be used, perhaps
due to the lack of hypothetical entities in graphical interfaces.

Chai et al. present a greedy reference resolution algorithm
using their hierarchy. This algorithm first assigns a score
between each referential expression X in an utterance and each
entity N contained in a set of vectors (Gesture, Focus, Visible),
calculated by multiplying (1) the probability of selecting N
from its vector, (2) the probability of selecting that tier given
the form of X , and (3) the “compatibility” between X and
N . Compatibility is 1 if N has all properties mentioned in
X , is of the type mentioned in X (if any), has the name
mentioned in X (if any), and was gestured to when X was
uttered (if any), 0 otherwise; it is thus binary in nature
and cannot account for uncertainty. After scoring all visible
entities, the algorithm greedily binds references to entities,
moving downward through the hierarchy of vectors. This
approach does not address all aspects of reference resolution
found in typical human-robot dialogues (nor does any other
current approach). There are, in particular, five aspects of
human-robot dialogue not captured by this approach.

First, the algorithm assumes complete certainty as to
entities’ properties. In realistic HRI scenarios, an agent may
only be able to say that an entity has a certain property
with some probability. Furthermore, an agent could be aware
that it simply does not know whether an entity has a certain
property. Second, consider the following command:

“Get my laptop from my office, and if you see a charger
bring that too.”

The three bolded referential expressions present issues for
Chai et al.’s approach. My laptop is (presumably) not cur-
rently visible, a condition common in many HRI scenarios,
but one which cannot currently be handled using Chai et
al.’s algorithm. My office is also (presumably) not currently



visible. And, it is not an object, per se, and cannot be gestured
towards in the same way as can be objects or icons. It
is unclear whether Chai’ et al.’s modified hierarchy could
handle references to locations, which are common in many
HRI scenarios. A charger is also (presumably) not currently
visible. And, it is not even known to exist, as it is hypothetical.
In order to resolve such references, one must assume an open
world in which new entities may be added through experience
or dialogue. While many HRI scenarios are open-world in
nature, Chai et al.’s algorithm operates in a closed world.

Third, a robot may need to resolve references to events,
speech acts, or other entities that cannot physically exist, as
seen in Examples 1 and 2. However, Chai et al.’s algorithm
cannot handle references to nonexistent entities.

(1) Can you repeat it?

(2) Can you repeat that?

Fourth, because Chai’s modified hierarchy combines the first
two levels of the GH, Chai et al.’s algorithm cannot distinguish
between Examples 1 and 2 even if it could handle references
to physically nonexistent entities. When Example 1 is used to
respond to the utterance “I’m sorry, but I failed to complete the
task”, “it” unambiguously refers to “the task”. However, this
is not the case when Example 2 is used. The GH predicts that
when a form associated with the activated level is used, one
should prefer an activated referent (such as a speech act) to an
in-focus referent (such as the focus of the previous sentence),
because if the speaker had meant to refer to an in-focus entity
she could have used an in-focus-cueing form (e.g., “it”). Thus,
while Example 2 could refer to either the speech act or failed
task, the speech act should be preferred1.

Fifth, natural human-robot dialogues may contain complex
noun phrases such as “Do you see the red block on that blue
block?” Because Chai et al. use a greedy algorithm (instead
of, e.g., their previous graph matching approach), it may be
unable to resolve subsequent referential expressions if the
first considered referential expression is incorrectly resolved.
Chai et al. argue that this approach is advantageous because
it may significant prune the search space. However, their
algorithm scores all entities against all referential expressions
before its greedy approach. In a realistic HRI scenario, this
may not be practical, as a robot may know of hundreds
of entities. Furthermore, checking whether certain properties
hold for all entities may be cost prohibitive. For example,
while determining whether a given person is a man may
be accomplished by a simple database look-up, determining
whether two rooms are across from each other may require
more expensive computation. An algorithm which performed
such assessments lazily (i.e., only when needed, perhaps as
the search space was pruned) could be much more efficient.

1Gundel et al. have empirically verified that these two hierarchical levels
are distinguished between in a wide variety of languages beyond English,
including Eegimaa, Kumyk, Ojibwe, and Tunisian Arabic (each of which is
genetically and typologically unrelated to the other three.) [7]

C. A Need for GH Usage Guidelines

Thus far, we have described reasons for extending Chai et
al.’s modified hierarchy and algorithm. But to make the needed
extensions, we must first extend the GH itself: each extension
we have discussed thus far can be related to an area for which
the GH lacks clear usage guidelines. No existing GH-based
approach can handle uncertain information, perhaps because
the GH neither specifies how uncertainty is handled nor provide
guidelines for how intra-tier ambiguity is resolved.

GH-based approaches must be extended to better resolve
multiple referential expressions occurring in the same utter-
ance, in order to avoid incorrect greedy decisions. This is
because the GH does not provide guidelines for how multiple
related referents are simultaneously resolved.

Chai et al.’s approach cannot handle references to entities
that are unknown, hypothetical, intangible or not present. This
is the result of Chai et al.’s omission and combination of GH
tiers, and their use of a purely top down traversal. This may
have been avoided if clear guidelines had existed for traversing
the tiers of the GH and for guiding intra-tier search using
salience arising from linguistic, visual or gestural factors.

We thus believe that a GH-based reference resolution algo-
rithm for human-robot dialogue requires the following.
Clear guidelines for:

1) Determining the order in which to peruse the tiers of
the Givenness Hierarchy that allow gestured-towards or
gazed-upon entities to take some degree of precedence.

2) Resolving complex referential expressions.
3) Choosing between candidates found within a given tier.

Assumptions of:
1) Uncertain information (i.e., the properties of an entity

may not be certain or known)
2) An open world (i.e., the existence of an entity may not

be certain or known)
3) Global resolution (i.e., a referential expression may refer

to an entity which is not currently visible)
4) Domain independence (i.e., a referential expression may

refer to any entity, regardless of type or tangibility).

III. PROPOSED EXTENSION TO GH-BASED APPROACHES
TO REFERENCE RESOLUTION

We now present (1) our suggestions for guidelines 1-3,
and (2) a reference resolution algorithm which uses those
guidelines and which operates under assumptions 1-4.

A. Guidelines for the Givenness Hierarchy

In Section II-C, we noted the lack of clear guidelines
for how GH tiers should be traversed, and that both strictly
top-down and strictly bottom-up approaches can be problem-
atic. We thus suggest the following set of inter-tier traversal
guidelines: referential forms cuing the in focus tier prompt
a search of FOC: the entities in focus; referential forms
cuing the activated tier prompt a search of ACT: entities that
are activated (but not FOC) followed by a search of FOC;
referential forms cuing the familiar and uniquely identifiable



tiers follow the same pattern as referential forms cuing the
activated tier, and then search the data structure associated
with the tier they cue (i.e., FAM or LTM). This is in line with
[9], in which Gundel et al. argue that for definite noun phrases,
referents in one’s current perceptual environment are preferred
to those found by searching Long Term Memory (LTM). These
guidelines are summarized in Table II, which lists search plans
for forms cueing the first four levels of the GH.

TABLE II
SEARCH PLANS FOR GH TIERS 1-4

Level Search Plan
in focus FOC
activated ACT → FOC
familiar ACT → FOC → FAM
uniquely id’able ACT → FOC → LTM

Unfortunately, Table II does not differentiate between refer-
ential expressions of the form this N used to cue the activated
tier (e.g., “Pick up this spoon”) and those used to cue the
referential tier (e.g., “This spoon I saw was amazing”). While
it may be possible to use factors such as tense to tell when one
is using the referential-cueing sense, we believe that a first step
towards appropriately handling the referential-cueing sense
would be to treat all uses of this N as activated-cueing so long
as a suitable referent can be found at the activated or in focus
tiers, and otherwise treating such a use as referential cueing. A
first step might also use a single process to handle referential
and type-identifiable cues, as both lead to the construction of
new representations. These suggestions yield Table III. Note
that in this table, it is assumed that the form “this N” is always
associated with the referential tier, which now deals with both
the activated and referential senses of this form.

TABLE III
SEARCH PLANS FOR COMPLETE GH

Level Search Plan
in focus FOC
activated ACT → FOC
familiar ACT → FOC → FAM
uniquely id’able ACT → FOC → LTM
referential ACT → FOC → HYP
type id’able HYP

We previously noted that the GH lacks clear guidelines
for choosing between candidates found in a given tier. Note
that while the GH coding protocol suggests that the target of
sustained eye gaze or gesture should be considered activated,
in practice it may not be possible to disambiguate precisely
which entity is being gazed or gestured towards.

We thus suggest that all entities in an interlocutor’s field
of view be considered activated. As activated is roughly
equivalent to short term memory (STM), this represents the
possibility of any entity in the vicinity of an interlocutor’s
gaze being in her STM. Suppose each entity in FOC and
ACT were assigned a salience score calculated by function
Γ, using features such as intensity, length, and recency of
gaze and gesture, visual salience, and linguistic salience (c.f.
[6]). Suppose further that function Φ(P,E) could determine
the joint probability that properties P described entity E.

root

needs

medkit

a
det

commander

the
det

subj dir-obj

dec

Fig. 4. Example Parser Output

Then, the best candidate c could be chosen from tier T in
the following way: (1) sort T in descending order of Γ-score;
(2) calculate Φ(S, c) for each candidate c ∈ T and property set
S until, e.g., a candidate with sufficient probability is found:
this will be the candidate with the highest Φ score.

We now use the above guidelines in coordination with
the GH to yield GH-POWER: a reference resolution algorithm
which extends the state of the art of human-robot dialogue.

B. Algorithm

GH-POWER combines our proposed GH extensions with
POWER, a domain-dependent open-world reference resolution
algorithm [22], [23]. We will first discuss how utterances are
parsed and analyzed, then describe the data structures we
use. Finally, we will describe how those data structures are
used to resolve references in parsed utterances. All capabilities
described in these sections are performed by components of
the Distributed, Integrated, Affect, Reflection and Cognition
(DIARC) architecture [17], as implemented in the Agent
Development Environment (ADE) [15], [16].

1) Parsing: Each utterance is first sent to the C&C
parser [3], which uses the Combinatory Categorical Grammar
formalism [19] to generate a dependency graph. That graph is
converted into a tree such as that seen in Fig. 4, which shows
the tree produced for “The commander needs a medkit”.

From the structure of this tree one may extract: (1) a set of
formulae representing the surface semantics of the utterance,
(2) a set of “status cue” mappings for each referenced entity,
and (3) the type of utterance which was heard. From the tree
shown in Fig. 4, for example, one would extract:

1) The set of formulae
{needs(X,Y ) ∧ commander(X) ∧medkit(Y )}.

2) The set of status cue mappings
{X → uniquely id’able, Y → type id’able}.

3) The utterance type “STATEMENT” (indicated by the
label “dec” on the arc pointing to the root node).

2) Data Structure Population: GH-POWER uses four data
structures: FOC, ACT, FAM, and LTM, corresponding with
the first four levels of the GH (levels five and six do not
have associated structures, as they involve construction of new
representations). Here, we describe how these data structures
are populated, as summarized in Table IV. Lines marked with
a star denote information which is not yet, included in each
data structure, representing future work.

Before clause n of some natural language utterance is
processed, the contents of FOC and ACT are reset (FAM



TABLE IV
CONTENTS OF RELEVANT DATA STRUCTURES

Level Contents

FOC
Main clause subject of clause n-1
Syntactic focus of clause n-1
* Event denoted by clause n-1

ACT

* Entities visible in int.’s region of attention
All other entities referenced in clause n-1
* Focus of int.’s gesture, if any
* Focus of int.’s sustained eye gaze, if any
* Speech act associated with clause n-1
* All propositions entailed by clause n-1

FAM All entities referenced in clause n-1
* The robot’s current location

LTM All declarative memory

is reset after each dialogue, and LTM is never reset). FOC,
ACT and FAM are then updated using the rules listed in
Table IV. Linguistically, this entails placing the main clause
subject, syntactic focus, and event denoted by clause n-1 into
FOC (each of which may be extracted from the syntactic
representation of clause n-1), placing the speech act and any
propositions entailed by clause n-1 into ACT, and placing all
entities referenced at all in clause n-1 into both ACT and
FAM. In addition, each location visited by the robot and
its interlocutor should be placed into FAM, and any entities
within the interlocutor’s region of attention should be placed
into ACT. Each data structure is then sorted according to
Γ-score. Although the ideal scoring function would account
for a variety of extra-linguistic factors, we currently use the
function Γ(e) = α1 ∗ m(e) + α2 ∗ s(e) + α3 ∗ r(e) where
m(e) ∈ [0, 1] represents whether e is in a main clause, s(e)
measures the syntactic prominence of e, r(e) measures the
recency of mention of e, and α1, α2, α3 are monotonically
decreasing coefficients prioritizing the three measures.

3) Reference Resolution: To resolve the references in a
given clause, that clause is first viewed as a graph whose
vertices and edges are the variables and formulae used to
represent the semantics of that clause2. This graph is then
partitioned into connected components. For each partition,
Alg. 1 (GH-POWER) is used to resolve all references found
in that partition, producing a set of variable-entity bindings.

GH-POWER takes four parameters: (1) S (the semantics of
clause n), (2) M (the status cue mappings for clause n), (3)
GH (containing FOC, ACT , and FAM ), and (4) POWER
(a module for Probabilistic, Open-World Entity Resolution, to
interface with LTM, as described in [23]). GH-POWER first
collects the variables appearing in S and sorts them with
respect to the tier they are cued towards. For example, if
X → infocus and Y → familiar appear in M , then X
will appear before Y (Alg. 1 line 2). GH-POWER then initiates
cache-table C which stores a memoized list of variable-to-
entity bindings for each combination of variables in V and
tiers in {FOC, ACT, FAM, HYP} (line 3).

2To properly handle declarative and imperative utterances, we omit the
formula associated with the main clause verb from consideration. Future work
will consider the main clause verb using common-sense reasoning.

Algorithm 1 GH-POWER(S,GH,POWER)
1: S: set of formulae, M : set of status cue mappings, GH: FOC, ACT,

and FAM data structures, POWER: a Probabilistic, Open-World Entity
Resolver

2: V = [v|v ∈ vars(S)] sorted by M(v)
3: C = create_cache_table(V, {FOC,ACT,FAM,HYP})
4: Θ = create_plan_table(M)
5: H = ∅
6: for all P ∈ Θ do
7: Pd = [p|p ∈ P, tier(p) = LTM ]
8: Vp = new list
9: for all p ∈ (P \ Pd) do

10: (v, t) = (var(p), tier(p))
11: if C[v, t] == ∅ then
12: if (t == HY P ) then
13: C[v, t] = {((v → "?")→ 1.0)}
14: else
15: C[v, t] = ASSESS(S, v, t, POWER)
16: end if
17: end if
18: Vp = v ∪ Vp
19: H = ASSESS_ALL(S, Vp, (H × C[v, t]), POWER)
20: if H == ∅ then
21: BREAK
22: end if
23: end for
24: if Pd! = ∅ then
25: for all h ∈ H do
26: h = resolve(POWER, bind(S, h), order(vars(Pd))))
27: end for
28: end if
29: H = [h|h ∈ H, prob(h) >= τresolve]
30: if |H |> 0 then
31: BREAK
32: end if
33: end for
34: if |H |6= 1 then
35: return H // AMBIGUOUS or UNRESOLVEABLE
36: else
37: return assert(POWER, bind(S,H[0]))
38: end if

Algorithm 2 ASSESS(S, V, T, POWER)
1: S: set of formulae, V : variable of interest, T : tier of interest, POWER:

a Probabilistic, Open-World Entity Resolver
2: Sv = [s|s ∈ S, vars(s) = {V }]
3: H = ∅
4: for all t ∈ members(T ) sorted by Γ(t) do
5: h = (V → t)→

∏
s∈Sv

assess(POWER, bind(s, (V → t)))
6:7: if prob(h) >= τassess then
8: H = H ∪ h
9: end if

10: end for
11: return H

Algorithm 3 ASSESS_ALL(S, V,H, POWER)
1: S: set of formulae, V : variables of interest, H: set of hypotheses,
POWER: a Probabilistic, Open-World Entity Resolver

2: Sv = [s|s ∈ S, head(V ) ∈ vars(S), [∃v ∈ tail(V )|v ∈ vars(s)]]
3: H′ = ∅
4: for all h ∈ H do
5: prob(h) = prob(h) ∗

∏
s∈Sv

assess(POWER, bind(s, h))
6: if prob(h) >= τassess then
7: H′ = H′ ∪ h
8: end if
9: end for

10: return H′

Before GH-POWER begins trying different variable-entity



assignments, it must determine in which data structures to look
for those entities, determined by the plan associated with each
level of the hierarchy seen in Table III.

(3) The ball in this red box

To handle multi-variable expressions, GH-POWER creates
a table Θ, storing all multi-variable plan combinations. For
example, if the referential expression seen in Example 3 is
parsed as: {ball(X) ∧ box(Y) ∧ red(Y) ∧ in(X,Y)} with status
cue mappings {X→ {uniquely id’able, Y→ referential}, then
Table V of joint search plans will be created. After Θ is created

TABLE V
SAMPLE JOINT SEARCH PLAN TABLE

Y X
ACT ACT
ACT FOC
ACT LTM
FOC ACT
FOC FOC
FOC LTM
HYP ACT
HYP FOC
HYP LTM

(line 4), an empty set of candidate hypotheses H is created.
GH-POWER then examines Θ one row at a time until a solution
is found or the end of the table is reached. For each table entry
P , GH-POWER first separates variables for which it must query
LTM from all other variables (line 7). It then initializes an
empty list Vp to hold variables that have been examined thus
far for entry P (line 8). Next, it iterates over each (variable,
tier) pair in that row, as we now describe.

Consider row one of Table V. GH-POWER would first
examine the first entry in this row, which says to look for Y ’s
referent in ACT . If C does not already contain hypotheses
for var(p) and tier(p) (i.e., Y and ACT ), a new one is
created: if tier(p) = HY P , this hypothesis binds var(p) to
“?”. Otherwise, GH-POWER uses ASSESS to search tier(p) for
the most likely entity to assign to var(p) (line 15).

ASSESS takes four parameters: (1) S (the set of formulae),
(2) V (the variable of interest), (3) T (the tier in which to
look for possible referents for V ), and (4) POWER. ASSESS
creates, for each entity t ∈ T , a new hypothesis which maps
V to t, with probability equal to the product of probabilities of
each formula s ∈ S which only refers to V (Alg. 2 lines 2-6).
For example, if Example 3 is heard and there is one entity in
ACT (e.g., obj_13), ASSESS would consult POWER to see to
what degree obj_13 could be considered to be a box, and to
what degree it could be considered to be red, and then create
a hypothesis mapping Y to obj_13 with probability equal to
the product of the two probabilities returned by POWER.

Once all formulae containing only var(p) are examined,
all those containing both var(p) and any other previously
examined variables are examined (line 19) using Alg. 3
(ASSESS-ALL). For Example 3, this would involve inquiring to
what degree the candidate entities for X could be considered
to be “in” each candidate entity for Y . After each variable

is considered, all candidate bindings whose likelihoods fall
below a certain threshold are removed. If this leaves no hy-
potheses with probability above τ_assess, GH-POWER breaks
out of its loop and considers the next row of the table.

For example, if resolving Y produces hypothesis list

{((Y → obj_13)→ 0.8), ((Y → obj_12)→ 0.75)},

and resolving X produces the hypothesis list

{((X → obj_5)→ 0.9)},

these are combined into:
{((Y → obj_13, X → obj_5)→ 0.72),

((Y → obj_12, X → obj_5)→ 0.675)}.

If ASSESS determines that in(X,Y ) has probability 0.2 for
the first of these hypotheses and 0.9 for the second, the two
hypotheses are updated to

{((Y → obj_13, X → obj_5)→ 0.144),

((Y → obj_12, X → obj_5)→ 0.6075)}.
If τ_assess is set to 0.6, for example, then the first of these
hypotheses would be removed.

GH-POWER now considers all variables set aside to be
searched for in LTM. If any such variables exist, GH-POWER
considers each candidate binding in H (line 26). For each, S
is bound using h’s variable bindings, and an ordering of the
variables Vh to be queried in LTM is created based on the
prepositional attachment observed in S. The bound semantics
and variable ordering are then used by the POWER algorithm
[23] to determine (1) whether any of the variables in Vh refer
to unknown entities, and (2) which entities in LTM are the
most probable referents for each other variable in Vh. The set
of hypotheses H is then updated using these results.

Finally, once a solution is found or all table rows are
exhausted, the number of remaining hypotheses is examined.
If more or less than one hypothesis was found, GH-POWER
returns the set of solutions. This signifies that the referential
expression was either ambiguous or unresolvable. If only
one hypothesis remains, GH-POWER uses that hypothesis’
variable bindings to update the set of semantics S, and then
uses POWER to assert a new representation for each variable
bound to “?” (line 38). For example, if resolving Example
3 produces a single hypothesis with probability 0.7 in which
X is bound to obj_4 and Y is bound to “?”, POWER will
create a new object (perhaps with identifier 5) with prop-
erties {box(obj_5), red(obj_5), in(obj_4, obj_5)} and return
{((Y → obj5, X → obj4) → 0.7)}. Once all partitions have
been processed in this way, the results are combined into a
comprehensive set of candidate binding hypotheses.

IV. VALIDATION AND EVALUATION

In this section, we verify that the proposed algorithm and
GH extensions do indeed improve on previous approaches, and
then perform an experimental evaluation on real-world human-
human and human-robot dialogues collected by Schreitter et
al. [18]. In those dialogues, human instructors demonstrated



to human or robot listeners how to connect two sections of
tubing and then affix the tubing to a box.

A. Validation

We first evaluated several test cases within the previously
described experimental context, to demonstrate the success of
GH-POWER in addressing our concerns with previous GH-
based approaches to reference resolution:. In each case, the
algorithm was provided with a knowledge base containing
information about the robot’s environmental and task context
(possibly modified according to that case), and was incremen-
tally fed the relevant utterances for that case.

(1) Previous approaches could not handle uncertainty. We
confirmed that when the robot believed there was 70% prob-
ability that one tube could be referred to as flexible, and
40% probability that the other tube could be referred to as
flexible, GH-POWER resolved “The flexible tube” to the first
tube. (2) Previous approaches could not handle open worlds.
We confirmed that when the robot only knew of red and yellow
markers, GH-POWER posited a new entity when resolving
“Find the blue marker.” (3) Previous approaches could not
handle references to hypothetical entities. We confirmed that
when the robot knew of a box on a table in front of it and
was asked to resolve “Imagine a box.” and “Describe the box”,
“the box” was resolved to the imaginary box. (4) Previous ap-
proaches could not resolve references to unobservable entities.
We confirmed that when the robot believed it was learning a
task, GH-POWER correctly resolved “the task” in “describe
the task”. (5) Previous approaches have had trouble resolving
complex noun phrases. We confirmed that when a tube on a
triangular table was in “familiar” and a tube on a round table
was in “activated”, GH-POWER correctly resolved “the tube”
in “Pick up the tube that is on the triangular table”.

B. Evaluation

In addition to validating that GH-POWER significantly ex-
tended the set of cases handled compared to previous al-
gorithms, we evaluated it on the corpus of human-human
and human-robot dialogues collected by Schreitter et al. As
participants’ utterances in that experiment were originally in
German, these were first translated to English. As we are not
currently attempting to handle disfluencies, these utterances
were then “cleaned up”, removing disfluencies and parenthet-
ical statements. For example, an utterance with word-for-word
translation “So then put you the grasp you here at the marker
at the red and yellow one” was “cleaned up” to “So then you
grasp here at the red and yellow marker.”

A knowledge base containing the relevant properties of the
16 objects and agents involved in the task was constructed
and provided to GH-POWER. Then, each task-relevant utter-
ance (excepting, e.g., “Hello.”) was provided to GH-POWER
in sequence, and the results of resolution were compared
against “gold standard” resolution results provided by human
annotators. The human-robot corpus contained 32 task-relevant
utterances, the human-human corpus contained 110.

Fig. 5. Reference Resolution Results

Overall, GH-POWER correctly resolved 48 of the 98
(48.98%) references found by the C&C parser in the human-
robot dialogues (HRDs), and 121 of the 270 (44.81%) in the
human-human dialogues (HHDs), for a net 45.92% accuracy.
However, 17.93% of references found by C&C (14.29% in
HRDs, 19.26% in HHDs) were not references at all, but
artifacts or parse errors. For example, the parser frequently
decided that utterances like “Right, so” referred to entities on
the right. Discarding these parse errors, GH-POWER correctly
resolved 55.96% of references (57.14% in HRDs, 55.50% in
HHDs). The remaining 44.04% of references could not be
resolved due to several reasons, shown in Fig. 5:

4.97% of references (2.38% in HRDs, 5.96% in HHDs)
were plurals (e.g. “the tubes”). GH-POWER was unable to
resolve these as it is designed to handle singular references.
Future work will be needed to generate likely groupings of
entities to which plurals might be resolved.

10.60% of references (10.71% in HRDs, 10.55% in HHDs)
referred to non-discrete entities, e.g., regions or sections of
tube. Future work will be needed to generate likely regions or
portions of entities to which such references might be resolved.

10.26% of references (10.71% in HRDs, 10.09% in HHDs)
needed gestural information to be disambiguated; while it is
an explicit design aim for GH-POWER to handle this facet
of multi-modal interaction, we do not yet make use of such
information. Future work will be needed to use gesture and
eye gaze to correctly bias entities’ salience scores.

4.64% of references (1.19% in HRDs, 5.96% in HHDs)
were incorrectly resolved due to inconsistencies regarding the
“beginning” of the task. For example, participants sometimes
started interactions with utterances similar to “I will now
describe it to you”. Because speaker and listener shared a
joint context at the start of the task, the task may have been
in the listener’s focus of attention. However, in the evaluation,
the system never “heard” the experimenter giving instructions,
and thus “the task” was considered at most activated.

3.31% of references (1.19% in HRDs, 4.13% in HHDs)
were idiomatic or colloquial. For example, “that was it” was



used to indicate task completion. This suggests that GH-
POWER may need tighter integration with pragmatic inference.

1.32% of references (1.19% in HRDs, 1.32% in HHDs)
were incorrectly resolved because the linguistic salience score
we used did not sufficiently boost the target. Future work will
be needed to investigate other salience scoring functions.

The remaining 8.94% of references (15.48% in HRDs,
6.42% in HHDs) were incorrectly resolved for various other
reasons. For example, some participants referred to some
concepts we were unprepared to handle (e.g., “The problem
here. . . ”), and some participants used indefinite noun phrases
in ways we did not anticipate (e.g., “There is a pipe there”).

V. DISCUSSION

These results suggest several promising directions for future
work towards the goal of truly natural HRI. First, while GH-
POWER handled a surprising portion of naturally occurring
references despite only using linguistic salience, this portion
could be made larger by accounting for gesture and eye gaze.
An obvious first step would be to utilize the annotated ges-
tural information contained in our evaluation corpora. These
results also suggest that plural and non-discrete references
may be relatively common in task-based dialogues; handling
each category is an interesting research question in its own
right. Future work could also investigate how common-sense
affordance-based reasoning capabilities might operate within
the GH-POWER framework, as psycholinguistic work [2] sug-
gests that affordance reasoning allows humans to eliminate
many unlikely resolution candidates.

We are also interested in the interaction between GH-POWER
and natural language generation, both with respect to the
generation of referring expressions themselves, as well as the
generation of clarification requests, either to indicate that the
robot does not know of any suitable referent, or that it needs
to know which of several referents is correct.

Most importantly, however, this work will allow us to
study the interaction between natural language processing and
cognitive processes such as memory and attention, all of which
are integrated within the GH framework. We hope that GH-
POWER will serve as a valuable starting point for studying
the interaction of these processes, both for integrated system
algorithm development and cognitive modeling research.

VI. CONCLUSION

We have presented GH-POWER: an open-world reference
resolution algorithm for human-robot dialogue based on the
Givenness Hierarchy, and shown its ability to handle the ma-
jority of references naturally occurring in task-based interac-
tions. GH-POWER improves upon the GH by formalizing inter-
tier traversal, salience-based intra-tier candidate selection, and
multiple resolution. This allowed us to make significant the-
oretical extensions to the GH and to extend the state of the
art in human-robot dialogue in several important ways. First,
GH-POWER uses the complete GH to handle linguistic forms
and resolution phenomena which could not be captured by
previous approaches. Second, GH-POWER is able to handle the

uncertain and open worlds commonplace to HRI scenarios.
Finally, GH-POWER provides a starting point for studying the
integration of cognitive processes in both robots and humans.
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