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Abstract

The ability to ground conversational referents is a key require-
ment for human dialogue. This process, known as reference
resolution, has received much attention from both psycholin-
guists seeking to understand how humans process language
and computer scientists seeking to improve the performance
of language-capable agents. However, the majority of previ-
ous research has focused on what we term closed-world ref-
erence resolution, in which the set of possible referents is as-
sumed to be known a priori. In this paper we present a domain-
independent model of open-world reference resolution which
appropriately handles uncertain knowledge, and the results of
an empirical human-subject experiment conducted to verify
the model’s predictions.

Keywords: computational modeling, natural language un-
derstanding, reference resolution

Introduction
The ability to ground conversational referents is a key re-
quirement for human dialogue. This process, known as refer-
ence resolution, has received much attention from both psy-
cholinguists seeking to understand how humans process lan-
guage and computer scientists seeking to improve the perfor-
mance of language-capable agents. However, the majority of
previous research has focused on what we term closed-world
reference resolution, in which the set of possible referents is
assumed to be known a priori, and there has been little con-
sideration of what we term open-world reference resolution,
in which entities not known a priori may be referenced, lead-
ing to modification of existing knowledge and/or the creation
of new representations. For example, consider an agent who,
after entering a building for the first time, is told:

(1) I’ll be in the office across the hall from the kitchen.

The agent will need to identify which portions of the ut-
terance refer to entities he already may know about (i.e., "the
hall"), and which portions refer to entities he does not yet
know of (i.e., "the office" and "the kitchen"). The agent
will then need to modify his internal representation of the
building’s structure using the information provided about the
newly mentioned entities. New information may be commu-
nicated either intentionally (i.e., if an agent says "There is a
kitchen across from the breakroom"), or unintentionally due
to erroneous assumptions about common ground (i.e., If an
agent says "I was in the kitchen across from the breakroom"
without realizing that their interlocutor is not familiar with
the kitchen and/or the breakroom). In short, the agent must
be able to handle incomplete knowledge, one of three forms
of imperfect knowledge we identify.

One way to empirically study such human capabilities is
through computational cognitive modeling of those capabil-
ities, i.e., the development of detailed mathematical or algo-
rithmic models which can be implemented to simulate those
capabilities(Sun, 2008). The development of such models al-
lows one to make predictions as to the processes underlying
human cognition, and what is more, actually allows one to
test those predictions by comparing their model’s behavior to
human behavior. Thus one way to study human mechanisms
for open-world reference resolution is to develop a compu-
tational model that provides such resolution capabilities to a
machine.

A model of open-world reference resolution should be able
to handle at least three types of imperfect knowledge. First, it
should handle incomplete knowledge as previously discussed,
in which all candidate referents are not known a priori. Sec-
ond, it should handle ambiguous knowledge, in which multi-
ple candidate referents are known (e.g., if in Example 1 the
listener knows of two kitchens in the current hallway). This
is a general capability of all models of reference resolution,
and thus will receive limited attention in this paper. Third, a
model of open-world reference resolution should handle un-
certain knowledge, in which relations and properties are not
known with absolute confidence (e.g, if in Example 1 the lis-
tener knows of a room which it thinks to be a kitchen, but
is not entirely sure). As we will discuss, no previous model
satisfactorily models every type of imperfect knowledge.

In addition, a model of open-world reference resolution
should be domain-independent. The majority of computa-
tional models of reference resolution target a specific domain,
such as descriptions of objects or locations. However, while
different thought processes may be employed in understand-
ing Examples 1 and, say, "Jim’s uncle is a paleontologist", a
single mechanism should be used for the tasks of acquiring
and arbitrating between candidate referents in both examples.

In this work, we present a domain-independent compu-
tational model of open-world reference resolutions which
meets all the aforementioned criteria. As a first step, we se-
lect a challenging but tractable set of natural language utter-
ances to model: complex, first-mention definite noun phrases.
Definite descriptions in general are one of the most com-
mon forms in natural language (Brown-Schmidt, Campana,
& Tanenhaus, 2002), especially in domains with a limited
(i.e., tractable) number of possible candidate referents (Hanna
& Tanenhaus, 2004). First-mention definite noun phrases
(which introduce new entities into the discourse) are attrac-
tive as they exhibit the open-world aspects we seek to capture,
and are known to be particularly difficult to process (Fraurud,



1990). Finally, we seek to tackle both simple and complex
first-mention definite noun phrases, in which referents are de-
scribed in relation to one or more "anchors", thus providing
additional decision boundaries between known and unknown
knowledge.

The remainder of the paper will proceed as follows: first,
we will define our model at a computational level of analysis
(Marr, 1982). We will then discuss the model with respect
to our explicit modeling goals (i.e., handling of imperfect
knowledge, and domain independence), as well as its rela-
tion to previous work. Next, we will present an empirical
human-subject experiment conducted to verify our model’s
predictions. Finally, we will conclude with discussion of pos-
sible directions for future work.

Model Definition
In this section, we first define our model’s parameters, and
then define the model itself at a computational level.

Parameters
1. S: A set of formulae describing the semantic con-

straints imposed by a referential expression. For the
resolution of Example 1, S might take a form such as
{room(X)∧room(Y )∧hall(Z)∧o f f ice(X)∧kitchen(Y )∧
across_ f rom(X ,Y,Z)}.

2. M: A world model containing some number of atomic en-
tities whose relationships can be described using formu-
lae such as those contained in S. It is important to note,
however, that we make no claims over the actual informa-
tion storage or retrieval methods for M. For the resolution
of Example 1, M might consist of a cognitive map whose
atomic entities are various locations, and for which formu-
lae such as across_ f rom(X ,Y,Z) can be assessed.

3. V : A sequence of variables used in S, for which each vari-
able Vi (from i = 0 to |V | − 1) is defined in reference to
variable Vi+1, For the resolution of Example 1, this might
be {X ,Y,Z} if it is determined that the office (X) is defined
in reference to the kitchen (Y ), and that the kitchen is in
turn defined in reference to the hallway (Z).

Computational Model
We model the problem of open-world reference resolution as,
given S, M and V , the problem of finding (1) the longest suffix
Θ of sequence V for which there exists a probable mapping
between variables in Θ and entities in M, and (2) the most
probable mapping for Θ. A mapping is deemed probable if
its probability (as assessed in M) is above some threshold τ.
Intuitively, we wish to find the longest suffix because new in-
formation is typically defined relative to old information, and
thus we would expect to be able to make a cut at some point
in V that partitions it into two sub-sequences which contain
new and old entities, respectively.

When seeking a probable mapping for sequence Θ, the
model must consider the hypothesis space of possible bind-
ings between the subset of variables from V that exist in suffix

Θ and atomic entities in M. This hypothesis space is denoted
as HΘ. The model must evaluate the probability of each map-
ping in HΘ on the basis of P(s|h) for each s in the subset of
formulae from S that use variables found in suffix Θ, denoted
as SΘ. For example, if no probable mapping is found when
V = {X ,Y} and S= {room(X),hall(Y ),across_ f rom(X ,Y )},
the next step would be to check for a probable mapping when
Θ = {Y} and SΘ = {hall(Y )}.

We are thus able to define our model using a set of four
equations:

Φ(HΘ,SΘ,M) = argmax
h∈HΘ

P(SΘ|H) (1)

P(SΘ|h) = ∏
s∈SΘ

P(s|h) (2)

Θ j = {V j ◦ · · · ◦V|V |} (3)

resolve(V,S,M) = Φ(HΘi ,SΘi ,M) |
i = min{ j | P(SΘ j |Φ(HΘ j ,SΘ j ,M))> τ}

(4)

Here, Equations 1 and 2 indicate that the process Φ of se-
lecting the best hypothesis h is equivalent to finding the hy-
pothesis with the highest probability, which in turn is calcu-
lated by finding the sum of the probabilities of each formula
in S being true under hypothesis h. The process of assessing
these formula-level probabilities will differ depending on the
domain of M and type of formula. For example, very differ-
ent processes might be used for evaluating the probabilities
of two locations being across a hall from each other and for
evaluating the probabilities of two people being brothers.

Equation 3 simply serves as shorthand indicating that suffix
Θ j consists of the elements of V starting at element j. Finally,
Equation 4, states that the best hypothesis overall is the best
hypothesis for suffix Θi, where i is the smallest number such
that the probability of that suffix’s best hypothesis is greater
than some threshold τ.

Discussion and Related Work
As stated in the Introduction, we are interested in creating
a model of reference resolution which handles incomplete,
uncertain and ambiguous knowledge, and which is domain-
independent. We will first discuss the degree to which we
have achieved each of these goals, and then discuss models
which have sought to handle other aspects of reference reso-
lution which we do not account for.

Incomplete Knowledge
Because we model open-world reference resolution as the
problem of finding (1)the longest suffix of a variable sequence
and (2) the most probable variable-to-entity mapping for that
sequence, our model produces, as a side effect, a prefix se-
quence of variables which are not mapped to any entities. If
an agent creates abstract representations for the unknown or
hypothetical entities corresponding to these unmapped vari-
ables (using the formulae in S containing those variables),
she will be able to discuss and reason about those entities



without having physically experienced them. This is a signif-
icant advancement from previous approaches, which either
operate under an entirely closed-world assumption (i.e., that
all possible candidates are known a priori) or which trans-
late utterances directly to actions which must immediately
be carried out before an agent is able to discuss or reason
about the described entities (Matuszek, Herbst, Zettlemoyer,
& Fox, 2012; Duvallet et al., 2014). To the best of our
knowledge, this capability has only been previously achieved
by (Williams, Cantrell, Briggs, Schermerhorn, & Scheutz,
2013). However, that approach makes a number of strong
domain-dependent assumptions, and assumes full certainty of
its knowledge.

Uncertain and Ambiguous Knowledge
Like most previous computational models (excepting, e.g.,
(Matuszek et al., 2012) and (Williams et al., 2013)), ours
uses a probabilistic approach, and is thus able to resolve ref-
erences in the face of uncertain knowledge. This allows a
model to better arbitrate between multiple ambiguous candi-
dates on the basis of certainty. However, as no existing ap-
proach to our knowledge explicitly represents an agent’s ig-
norance, we believe that all current approaches fall short of
the ideal. We believe that modeling of an agent’s ignorance is
critical, as it facilitates arbitration between exploration (e.g.,
through dialogue, focused attention, or physical exploration)
and exploitation (i.e., choosing and acting on the most likely
candidate referent). In future work, we hope to come closer
to this ideal through the use of a Dempster-Shafer theoretic
knowledge representation scheme. A Dempster-Shafer theo-
retic approach is attractive as it offers an elegant representa-
tion of uncertainty which differentiates between uncertainty
from ambiguity and uncertainty from ignorance, in a way
which does not require commitment to a particular probabil-
ity distribution. This will also enable better integration with
our Dempster-Shafer theoretic models of pragmatic analy-
sis and generation (Williams et al., 2014; Williams, Briggs,
Oosterveld, & Scheutz, 2015).

Domain Independence
Our model is not defined with respect to any particular do-
main. This is in contrast to most previous computational
models of embodied reference resolution, which choose a
particular domain to target, such as descriptions of routes
(Matuszek et al., 2012; Fasola & Matarić, 2013; Kruijff,
Janícěk, & Zender, 2012; Duvallet et al., 2014), locations
(Williams et al., 2013), interface elements (Chai, Prasov,
Blaim, & Jin, 2005), or tabletop-objects (Scheutz, Krause,
& Sadeghi, 2014; Kruijff, Kelleher, & Hawes, 2006).

An exception to this is the G3 model used by (Kollar,
Tellex, Roy, & Roy, 2014). This model is in principle do-
main independent, but must be trained on a particular chosen
domain, and only models closed-world reference resolution.
While Kollar et al. use beam-search for the most probable sat-
isfaction of the variables contained in the model, we instead
use best-first search, as a large number of viable candidates

may exist at each step. When resolving a reference to some
"room", for example, it would be imprudent to discard places
that did not fall in the top ten most likely to be considered
"rooms" since there may be hundreds of places that satisfy
this constraint to a high degree.

Both our model and the G3 model have the shortcoming of
only handling a single domain at a time, however: G3 must
be trained on a target domain, and our model currently as-
sumes that all entities referenced in an utterance are mem-
bers of the same domain, as indicated by the use of a single
world model M. The ideal model of reference resolution, on
the other hand, would be able to interpret expressions such
as "the man we had lunch with in that little cafe last week",
which refers to entities from multiple domains. This capabil-
ity is the focus of our ongoing work.

Of course, domain-independence and handling of imper-
fect knowledge are not the only important aspects of refer-
ence resolution which must be modeled: we will next exam-
ine models of reference resolution from the psycholinguistics
literature, which have mainly focused on concerns such as
incrementality.

Related Psycholinguistic Work

Among relevant psycholinguistic models of reference reso-
lution, our work is most similar to that of (Schlangen, Bau-
mann, & Atterer, 2009), which presents a Bayesian model of
reference resolution. Under this model, a default a decision
of "undecided" is maintained until a candidate with posterior
probability above some adaptive threshold is found. In con-
trast, when the best hypothesis our model can find is below
the threshold τ, it is treated not as "undecided", but rather
as an indication that the referent of the utterance should be
considered to be "new", and that the supposedly "given" por-
tion of the noun-phrase (i.e., the referent’s anchor) should be
examined to determine if it too should be considered to be
"new". (Here we use the "given/new" dichotomy tradition-
ally employed at the sentence level (e.g., (Haviland & Clark,
1974; Clark, 1975))). However, (Schlangen et al., 2009), ex-
ploit the benefits provided by an incremental approach, while
we do not. Much research has demonstrated the incremental
nature of human language understanding(Eberhard, Spivey-
Knowlton, Sedivy, & Tanenhaus, 1995), and shown how
incremental language understanding facilitates fast process-
ing and disambiguation of statements in, e.g., visual search
tasks (Spivey, Tyler, Eberhard, & Tanenhaus, 2001; Krause,
Cantrell, Potapova, Zillich, & Scheutz, 2013). While the in-
cremental aspects of language processing were not the focus
of our model, we aim to adapt an incremental, parallel ap-
proach like that seen in (Scheutz et al., 2014) in the future.
In that work, Scheutz et al. used an incremental, parallel
model of language-guided visual search. By effecting a sim-
ilar approach, we could extend our model to handle the in-
cremental aspects of natural language, increase performance
through parallelization, and overall better model the cognitive
processes in which we are interested.



Experiment
In the previous sections, we presented a model for domain-
independent, probabilistic, open-world reference resolution
of complex, first-mention definite noun-phrases, and dis-
cussed our model with respect to our modeling goals, and our
model’s relation to previous work. In this section, we present
an empirical human-subject experiment to verify our model’s
predictions.

For this experiment, participants were recruited using
Amazon Mechanical Turk. The pool of subjects who finished
the task consisted of 40 participants (18 Male, 22 Female)
with mean age 34.75. Participants were paid $2.00 to per-
form the task. Each participant was asked to consider three
sets of referential statements. For each of the three sets of
statements, they were provided with the corresponding third
of the following knowledge base shown in Table 1.

ID Name Description
1 Jim Nelson Doctor (pretty sure). Friends with

Sam Greene.
2 Sam Greene friends with Jim Nelson. Probably

male.
3 Jim Cruz ?
4 Mary Greene Sister of Sam Greene.
5 Frank Roberts Jon says he’s a painter, but Craig

says he’s an
author . . . ? Lives next door to
Nicolas.

6 Martin Francis Painter, lives next door to Heidi.
7 Kristy Roberts Might be the daughter of Frank

Roberts. Unsure.
8 Heidi Wilkerson Chemist, lives next door to Martin.
9 Nicolas Morris Chemist, lives next door to Frank.
10 Craig Horton Chemist, might work with Heidi?

Probably doesn’t work with Nico-
las, but who knows.

11 Ted Wells Baker. Possibly brothers with
Phillip and/or Troy.

12 Phillip Wells Brewer. Possibly brothers with Ted
and/or Troy.

13 Troy Wells Byron’s friend. Possibly brothers
with Phillip and/or Ted.

14 Laurie Rodgers Byron’s friend. Girlfriend of one of
the Wells brothers.

15 Sally Owens Teacher. Sibling of Willie Owens.
Laurie’s neighbor.

16 Willie Owens Customs officer. Possibly female.
Sibling of Sally Owens.

17 Byron Todd Could be a podiatrist . . . or maybe
a pediatrician.

Table 1: Knowledge Base provided to participants. In bold
are words indicating uncertain information.

Participants were told that their siblings were planning a
party, and that the aforementioned list was a list of people
their sister had invited. Each participant was then given a
second list corresponding to each third of the second column
of Table 2, and were told that each description in this list rep-
resented a description given by their brother of someone he
wanted invited to the party, that anyone mentioned in a de-
scription needed to be invited as well, and that it was their
job to determine, for each person mentioned in one of their
brother’s descriptions, whether or not that person already ap-

peared on their sister’s list and if so who that person was.
The sixteen referential expressions used in this evaluation

specifically probed 16 conditions we will now describe.
We delineate four categories of uncertainty that can apply

to the resolution of a given entity: 0: No valid referent can
be found (requiring modeling of incomplete knowledge), 0.5:
One valid but tenuous referent can be determined, and it is
thus unclear whether the correct referent has been found or
whether the correct referent is yet unknown (requiring mod-
eling of uncertain knowledge), 1: Exactly one valid referent
can be found, and 2: Multiple valid referents can be found
(requiring modeling of ambiguous knowledge).

In the resolution of a referential description, these cate-
gories can apply either to the target (i.e., the intended ref-
erent) of a referential description or to one or more of its an-
chors. For example, in the referential description "The uncle
of the doctor’s brother", the uncle is the target, and the doc-
tor and the doctor’s brother are the anchors. Similarly, when
considering the subclause the doctor’s brother, the brother is
the target, and the doctor is the anchor.

Sixteen classes of uncertainty are created by classifying
referential descriptions into four classes T0, T0.5, T1, T2
based on the uncertainty status of the referential description’s
target, crossed by four classes A0, A0.5, A1, A2 based on the
uncertainty status of the referential description’s anchors.

The sixteen referential expressions we used to probe these
sixteen classes of uncertainty are listed, along with their un-
certainty class, in columns 1 and 2 of Table 2. For each
expression, our model was provided the same knowledge
encoded in logical form, with confidences attached to each
statement indicative of any uncertainty associated with that
statement. For example, the agent was told that Kristy was
the daughter of Frank with probability 0.5. All terms used to
effect these probability values are highlighted in Table 1. Our
model was then provided with the same referential descrip-
tions as were given to participants, encoded into logical form,
with hand-annotated variable orderings.

Results
The results of this experiment are summarized in Columns
3-5 of Table 2. Here, Column 3 shows the most frequent hu-
man response given for each referential expression, and the
result or set of equally-likely results returned by the model
are shown in Column 4. In both cases, referents deemed not
already on the guest-list are denoted "?". For those referents,
the model added new entries to the knowledge base and up-
dated existing entries appropriately.

Column 5 of Table 2 shows the percentage of participants
whose response aligned with each model responses, with con-
ditions in which the most frequent human response matched
a model responses displayed in bold in Column 1.

The results show that in 13 of the 16 conditions (81%), the
model gave the response that was most frequent among the
human participants. In these cases, human responses aligned
with a model-given response 71% of the time. It is important



Condition Description given to participant Most Frequent Human Response Model Responses %
A1:T1 The doctor’s friend’s sister (Sister:4, Friend:2, Doctor:1) (Sister:4, Friend:2, Doctor:1) 80.0
A2:T1 Jim’s friend (Friend:2, Jim:1) (Friend:2, Jim:1) 60.0
A2:T0 Jim’s daughter (Daughter:?, Jim:1) (Daughter:?, Jim:1) 47.5

(Daughter:?, Jim:3) 37.5
A0:T0 Tabitha’s mother (Mother:?, Tabitha:?) (Mother:?, Tabitha:?) 90.0
A2:T2 The chemist’s neighbor (Neighbor:6, Chemist:8) (Neighbor:6, Chemist:8) 22.5

(Neighbor:5, Chemist:9) 15.0
A0.5:T0 Craig’s coworker’s neighbor’s son (Son:?,Nei.:6,Co.:8,Craig:10) (Son:?,Nei.:6,Cow.:8,Craig:10) 65.0
A0:T1 Marion’s daughter Kristy (Kristy:7,Marion:?) (Kristy:?,Marion:?) 18.5
A0.5:T0.5 Craig’s coworker’s neighbor’s daughter (Daug.:?,Nei.:6,Co..:8,Craig:10) (Daug.:?,Nei.:6,Co.:8,Craig:10) 50.0
A1:T0.5 Troy’s girlfriend (Girlfriend:14,Troy:13) (Girlfriend:14,Troy:13) 55.0
A1:T2 The baker’s brother (Brother:12,Baker:11) (Brother:12,Baker:11) 70.0

(Brother:13,Baker:11) 5.0
A0:T2 The chemist, Billie’s father (Father:?,Billie:?) (Father:?,Billie:?) 97.5
A0:T0.5 Michelle’s daughter, Willie (Willie:16,Michelle:?) (Willie:?,Michelle:?) 5.0
A1:T0 Sally’s wife (Wife:?,Sally:15) (Wife:?,Sally:15) 95.0
A2:T0.5 The Wells boy’s girlfriend (Girlfriend:14,Wells boy:13) (Girlfriend:?,Wells boy:11) 5.0

(Girlfriend:?,Wells boy:12) 2.5
(Girlfriend:?,Wells boy:13) 2.5

A0.5:T1 Troy Wells, the podiatrist’s friend (Troy Wells:13,Podiatrist:17) (Troy Wells:13,Podiatrist:17) 85.0
A0.5:T2 The podiatrist’s friend (Friend:13,Podiatrist:17) (Friend:13,Podiatrist:17) 27.5

(Friend:14,Podiatrist:17) 20.0

Table 2: Evaluation Results. (1) Each condition, (2) the expression used to probe that condition, (3) the most frequent human
response for that description, (4) the model responses for that description (with multiple rows used when multiple responses
were returned), and (5) the percentage of human participants who provided the same answer as the model for each model
response. Cases in which the most frequent human response matched a model response are bolded in Column 1.

to note that any low percentages of agreement in these cat-
egories are not indicative of model shortcomings, but rather
of diversity of human response. In addition, in four of the
five cases in which the model produced multiple responses
deemed equally likely, the percentages of human responses
aligning with each of those responses differed by at most
10%. We discuss the fifth case below.

Overall, these results suggest that our model was success-
ful at modeling reference resolution. We will now turn our
attention, towards those few cases where human and model
responses did not align: A0:T1, A0:T0.5, and A2:T0.5. All
three are examples of false negatives, in which the model
failed to find a match it thought sufficiently probable. These
are strictly better than false positives in which the model is
overconfident in an incorrect match.

In the first two cases, participants’ answers suggested that
they were willing to overlook the fact that their "sibling’s"
directions erroneously referenced an anchor they were not fa-
miliar with because the reference’s target was uniquely iden-
tifiable by a fairly unique label. Future investigation will be
needed to determine if this response was due to the use of
proper nouns or due to a reliance on prior probabilities.

Finally, we discuss condition A2:T0.5, in which the most
frequent human response was that "the girlfriend" referred to
entry 14 (Laurie Rodgers) and that the "Wells boy" referred
to entry 13 (Troy Wells), while the model instead produced
three hypotheses it considered equally likely; one for each
known male with the surname Wells, with "the girlfriend"
considered unknown in each hypothesis. We believe that this
discrepancy is due to an unintentional connection between
survey questions: our guess is that readers assumed that since
Laurie Rodgers was likely referenced in question 9, that she

was also the referent of question 14 given the similarity be-
tween the two questions. Our model, on the other hand, per-
forms each resolution in isolation, and thus found Laurie to
be too unlikely a candidate in question 14. A similar expla-
nation can be given for the wide difference in percentage of
humans aligning with the two responses provided for condi-
tion A1:T2, which the model deemed equally likely; since
Troy Wells (entry 13) was already chosen by the majority of
participants as the referent for the previous question, he may
have seemed to be a less likely choice. If this explanation is
correct, our model’s performance might improve if integrated
into an embodied model able to account for environment-
and dialogue-related contextual factors, as also suggested by
previous psycholinguistic work (e.g., (Brown-Schmidt et al.,
2002; Hanna & Tanenhaus, 2004)).

Conclusion
We have presented a domain-independent model for open-
world reference resolution of complex, first-mention definite
noun-phrases. We discussed our model’s ability to handle
uncertain, incomplete and ambiguous knowledge, and how
this relates to previous models. We then demonstrated our
model’s ability to model the majority of a comprehensive set
of resolution test cases, yielding behavior comparable to hu-
man participants.

There are several ways we hope to improve our model
in the immediate future. First, we must investigate the test
cases in which our model’s behavior did not align with hu-
man behavior. Second, we plan to examine the performance
of our model when a Dempster-Shafer-theoretic approach to
knowledge representation is used, as it has proven to be an
effective way to represent an agent’s own ignorance. Third,



the model should be modified to simultaneously use multiple
world models. This is a modification that is underway but is
not has yet been fully evaluated. Finally, as previously men-
tioned there are a variety of suggestions from the psycholin-
guistic literature which would improve the performance of
our model, such as a parallel, incremental examination of the
semantic constraints imposed by referential expressions, and
the ability to use environment- and dialogue-related context
to arbitrate between candidates produced by the model.
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