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Abstract— The problem of uniquely identifying an entity
described in natural language, known as reference resolution,
has become recognized as a critical problem for the field of
robotics, as it is necessary in order for robots to be able
to discuss, reason about, or perform actions involving any
people, locations, or objects in their environments. However,
most existing algorithms for reference resolution are domain-
specific and limited to environments assumed to be known a
priori. In this paper we present an algorithm for reference
resolution which is both domain independent and designed to
operate in an open world. We call this algorithm POWER:
Probabilistic Open-World Entity Resolution. We then present
the results of an empirical study demonstrating the success of
POWER both in properly identifying the referents of referential
expressions and in properly modifying the world model based
on such expressions.

I. INTRODUCTION

A key ability for robots designed to interact with humans
is the ability to identify those entities referenced by human
interlocutors in natural language (NL); if a robot is to discuss,
interact with, or travel to some object or location referenced
by a human, the robot should have some notion of the
identity of that object or location.

There have been many recent approaches to this problem,
known as reference resolution or language grounding (e.g.,
[1], [2], [3]). However, the majority of these approaches
operate under tight domain constraints and an assumption of
full environmental knowledge. We believe it both necessary
and possible to move beyond these constraints.

First, we believe that algorithms for understanding ref-
erential expressions should be domain-independent. As a
robot may need to resolve expressions which simultaneously
refer to people, places, and objects, any algorithm it uses to
perform reference resolution should be domain independent
in nature. This entails restricting the function of such an
algorithm to guiding the search through the space of possi-
ble candidate referents, and leaving the task of “constraint
evaluation” (e.g., evaluating whether two rooms are “across”
from each other) to separate domain-dependent processes.
This functional organization will also allow reference reso-
lution and constraint evaluation mechanisms to be developed
independently, and easily integrated together.

Second, a robot must be able to handle not only the uncer-
tainty of its own knowledge, but the incompleteness of that
knowledge, as robots may need to operate in environments
where they are not familiar with every entity which could

Tom Williams and Matthias Scheutz are with the Human-Robot In-
teraction Laboratory at Tufts University, Medford, MA, USA. (williams,
mscheutz)@cs.tufts.edu

conceivably be referenced in conversation. Consider a robot
which, upon entering a building for the first time, is told by
an interlocutor “My office is down the hall across from the
kitchen.” That robot should be able to discuss and reason
about that location without knowing its precise location and
without having visited it, and should be able to find its way
to its interlocutor’s office from any other part of the building
if it later needs to travel to it.

The problem of open-world reference resolution produces
two interesting challenges: (1) determining which parts of a
referential expression refer to known vs. unknown entities,
and (2) determining how to modify a robot’s world model
or knowledge base in response to new information about
entities either known or unknown. In previous research,
we introduced novel algorithms for spatial (i.e., location-
based) reference resolution in an open world (i.e., one in
which the entire environment is not known a priori) [3]
which made first steps towards tackling these two challenges.
However, those algorithms were neither probabilistic nor
domain-independent in nature.

In this paper, we present a reference resolution algo-
rithm that (1) handles uncertain knowledge, (2) improves
on the open-world reference resolution techniques used in
our previous work, and (3) generalizes to handle resolution
of any entity. We call this the POWER algorithm, since the
combination of these abilities allows for Probabilistic Open-
World Entity Resolution.

After discussing previous approaches and presenting our
algorithm, we describe the results of an empirical study
demonstrating the success of POWER both in properly iden-
tifying the referents of referential expressions and in properly
modifying the world model based on such expressions.

II. PREVIOUS WORK

In this section, we will discuss previously presented
algorithms for reference resolution, paying special atten-
tion to whether each algorithm (1) is able to deal with
uncertain knowledge, (2) operates under open or closed
world assumptions, and (3) (if it operates under open world
assumptions) properly modifies its world model in response
to new information. As a vast number of domain-specific
approaches have been presented, we only examine those
which deal with uncertain or incomplete knowledge.

Matuszek et al. [2] used Statistical Machine Translation
techniques to translate NL directions into routes through an
open world. Information was then added to the robot’s world
model as it executed such a route, but no information was
added to the world model from the utterance directly, thus



preventing the robot from discussing or reasoning about men-
tioned locations without visiting them first. This approach did
not handle uncertain knowledge.

In previous work [3], we presented SPEX: The Spatial
Expert, which added new topological locations to its world
model when an utterance did not seem to refer to a known
location. This approach treated route planning as a process
separate from spatial reference resolution, thus allowing a
robot to discuss hypothetical locations without having visited
them. However, it did not handle uncertain knowledge.

Fasola and Mataric present Semantic Fields [4], an ap-
proach that represents spatial relations as probability den-
sity functions over points in a known metric map (e.g.,
“near” is a function that ascribes higher probability to points
closer to the object in question). Resolution is performed
by comparing nouns against a label knowledge base. If a
single match is found, the phrase is considered resolved. If
no matches are found, the user is prompted for clarifying
information. If multiple matches are found, the algorithm
looks to the noun’s parent clause, and uses its attached
prepositional phrase (if any) to disambiguate by choosing the
candidate with the highest semantic field score. While this
approach handles uncertain knowledge in that it finds the
most likely among multiple candidates, its use of a closed
world means that those semantic fields are not used to assess
the appropriateness of a candidate if it is the only one found.
Furthermore, this assumption of a closed world means that
the approach would not be able to resolve references to as-
yet unobserved locations or objects.

Kruijff et al. present an accident investigation robot which
incrementally builds a hierarchical topological map of the
accident scene [5]. While the robot uses a probabilistic
approach which makes use of the uncertainty of its own
knowledge, it is not able to handle open-world aspects when
performing reference resolution.

Chai et al. present a greedy algorithm for probabilistic
reference resolution in multi-modal user interfaces [6]. This
algorithm is informed by several linguistic theories (i.e.,
Conversation Implicature and the Givenness Hierarchy) and
allows recognized gestures to bias resolution. However, as
the algorithm is intended for use in a user interface in which
the only candidate referents are those which appear on the
screen, it does not attempt to handle open worlds.

Kollar, Tellex et al. present the Generalized Grounding
Graph or G3 approach [7], [8]. The G3 approach dynam-
ically instantiates probabilistic graphical models based on
the structure of incoming NL utterances. It then performs
a beam search through an initial domain of salient objects
and locations (with variables traversed in reverse order of
nesting depth) to find the set of referents that most probably
satisfy the produced PGM. Whether a place or set of places
satisfy a particular spatial relation is learned from large
labeled corpora. While G3 allows new locations to be learned
through exploration, it does not allow new locations to be
learned through dialogue, and thus like Matuszek et al.’s
approach, G3 does not allow a robot to discuss or reason
about new places without first visiting them.

Duvallet et al. present an approach which samples learned
models of spatial relations (e.g., “behind”) to create routes
which will likely lead the robot to unknown entities [1].
However, like other discussed approaches, commands are
parsed directly to actions, and thus this approach does not
appear to allow a robot to discuss or reason about new places
without first visiting them. Furthermore, this approach can
only resolve references to unknown objects if they are de-
scribed in reference to objects whose identities are provided
a priori. The ideal algorithm would be able to handle worlds
in which the identities and properties of known objects and
locations can be uncertain, and in which unknown entities
may be described with respect to other unknown entities.

III. ALGORITHM

We now present the POWER algorithm for Probabilistic
Open-World Entity Resolution.

POWER takes five parameters:
1) S0 and S1: initially identical sets of semantic con-

straints (represented as formulae such as in(X,Y ) or
color(Z, green)) imposed by the referential expression
to be resolved. These constraints may be produced by
a semantic parser such as TLDL [9] or Mink [10].
While S1 will change each time the algorithm recurses,
S0 will remain the same, so that the original set
of constraints will still be available at each level of
recursive depth.

2) C: a Consultant for the target domain (e.g., a spa-
tial reasoning, vision processing, or belief monitoring
component). This Consultant provides an interface to
the knowledge base or world model M of its target
domain. World model M may have any sort of storage
and retrieval mechanisms (for example, if the spatial
domain is targeted, M might be a metric-topological
map, with information retrieved using some mathe-
matical process, such as semantic fields [4]), but it
is assumed to contain some number of unique atomic
entities (e.g., discrete locations).
Consultant C has three capabilities: (1) provision of
the initial domain of candidate atomic entities for a
given variable, (2) calculation of the probability that a
particular configuration of entities satisfy a given prop-
erty, and (3) modification of M based on information
provided through natural language.
For example, a spatial reasoning component may be
able to (1) provide a list of places likely to be
referenced in the current context, (2) calculate the
likelihood that a particular place can be considered a
hallway, and (3) add new places to its map based on
the utterance “I’ll meet you in the kitchen that’s at the
end of the hall”.

3) V : an ordered list of variables contained in S1, in
ascending order of certainty that the robot’s interlocu-
tor believes the robot to be familiar with the entity
corresponding to that variable. For example, in the
phrase “the room at the end of the hall”, the room
is being described in relation to the hall, so it is



reasonable to assume that the interlocutor thinks the
robot will be more familiar with the hall than with
the room, and thus the variable associated with the
room will be listed before the variable associated
with the hall. This is a critical assumption of our
approach. POWER distinguishes between old and new
information by attempting to find the first satisfactory
cut of V that divides it into a prefix of new entities
and a suffix of existing entities. It is thus critical that
such a cut is likely to exist in the ordering chosen for
V . There may be multiple methods for choosing an
ordering of V which lead to satisfactory cuts, but we
do so by arranging the variables contained in the query
in reverse order of nesting depth.

4) H: an (initially empty) priority queue of hypotheses.
Given these parameters, POWER (as seen in Algorithm 1)

performs a best-first search for the most probable satisfaction
of the variables contained in S0, recursing when no probable
hypothesis can be found.

Algorithm 1 POWER(S0, S1, C, V,H)
1: V : ordering of variables found in S1

2: S0: set of formulae
3: S1: set of formulae
4: C: consultant
5: H: an initially empty priority queue
6: A = ∅ (the set of solutions)
7: if H = ∅ then
8: v = first_unbound_variable(S1.head)
9: for all c ∈ C.initial_domain do

10: H.enqueue({{v → c}, S1.clone, 1.0})
11: end for
12: end if
13: while H 6= ∅ do
14: h = H.pop
15: s = h.constraints.pop
16: if (∃v ∈ s.vars | v /∈ h.bindings) then
17: for all c ∈ C.initial_domain do
18: H.enqueue({{v → c}, h.constraints.clone, 1.0})
19: end for
20: else
21: P (h)=P (h)∗C.apply(s, h)
22: if (P (h) > τ) (for some threshold τ ) then
23: if (h.constraints = ∅) then
24: A.add(h)
25: else
26: H.push(h)
27: end if
28: end if
29: end if
30: end while
31: if (A = ∅ and V 6= ∅) then
32: return POWER(S0, S1.tail, C, prune(S1.tail, V.head), H)
33: else
34: if (A 6= ∅ and S0 6= S1) then
35: A = C.posit(A.head, S0)
36: end if
37: return A
38: end if

The first time POWER is called, it constructs a priority
queue of hypotheses H . Each hypothesis h is a triple
(h.constraints, h.bindings, P (h)), where, h.constraints
is a set of as-yet unapplied constraints (initially S1),
h.bindings is a unique set of candidate bindings (initially
a set of mappings from the first unbound variable v in

the first formula in S1 to some set of candidate entities
provided by C) and P (h) is a probability value (initially
1.0) used as the priority function of H . Best-first search
is then performed over the space of possible candidate
hypotheses, by continuously considering the most probable
hypothesis in H until H is empty. Each time a hypothesis
h is considered, the following actions are performed:

1) POWER checks if all variables in the first constraint in
h.constraints have been assigned in h. For example,
if the first element of h.constraints is near(X,Y ),
then all variables would be considered assigned if
h.bindings = {X → 2, Y → 17}, but not if
h.bindings only contains {X → 2}.

a) If an unassigned variable v is found (e.g. Y
in the example above), then h is replaced with
a set of new hypotheses, each of which, in
addition to the bindings already in h, contains
a unique assignment to v from the set of
possible candidate assignments. For example,
if C.initial_domain = {2, 15, 17, 18}, then
the examined hypothesis with set of bindings
{X → 2} may be replaced with four new
hypotheses with respective sets of bindings
{X → 2, Y → 2}, {X → 2, Y → 15},
{X → 2, Y → 17}, and {X → 2, Y → 18}.

b) If no unassigned variables are found, the first
constraint in S1 not yet applied in h is applied
by asking C for the degree to which the con-
straint applies under the candidate bindings in
h, multiplying the result with h’s previous like-
lihood, and removing the applied candidate from
h’s list of unapplied candidates. For example,
if location 2 is very close to location 17 (e.g.,
with a high probability such as 0.95), the hypoth-
esis ((near(X,Y ), room(Y )), {X → 2, Y →
17}, 0.8) would be replaced with (( ), {X →
2, Y → 17}, 0.76) (as 0.8 ∗ 0.95 = 0.76). If the
resulting likelihood is lower than some threshold
τ (e.g., 0.1), h is removed. Otherwise, if every
constraint has now been applied in H , it is added
to the list of candidate solutions. Otherwise it is
put back into the queue.

2) Once H is empty, the set of candidate solutions A
is examined. If A is nonempty or if both A and V
are empty, then A is returned. Otherwise (i.e., if A is
empty but V is nonempty) the resolution process is
repeated with the first variable v of V removed and all
constraints containing v removed from S1.

3) If a nonempty set of solutions was returned and no
constraints have been pruned away, then that set is re-
turned. Otherwise, the best hypothesis and the original
query are passed to C, which posits new entities (e.g.,
locations) for each variable referenced in S0, but not
appearing in the best hypothesis, and uses the formulae
in S0 to posit appropriate properties for these new
entities. Finally, a new, complete solution is returned.



IV. EVALUATION

To evaluate our algorithm, we used the experimental
paradigm proposed in [11], which was employed to evaluate
models of reference resolution under various types of un-
certainty, as summarized below. While many approaches to
reference resolution are targeted at a spatial domain (e.g., [1],
[2], [3]), our evaluation targets the domain of descriptions of
people. This domain was chosen for several reasons. First,
even for this relatively simple domain, a wide variety of
responses are seen; performing an evaluation on the spatial
domain would cause humans results to be even more varied
due to different levels of spatial reasoning ability. Similarly,
the performance of POWER with respect to reference resolu-
tion would be conflated with the performance of any spatial
reasoning heuristics used by its spatial reasoning consultant.
Finally, while POWER is intended to be used as part of a
robot architecture, we believed a full situated evaluation to
be unnecessary, as previously presented domain-dependent
algorithms already proven to work in robot architectures
could be used as consultants for POWER, and the purview
of POWER extends beyond such contexts due to its domain-
independent design.

The experimental paradigm we used was designed by
first considering the various types of uncertainty which may
arise when resolving referential expressions. (1) In cases of
incomplete knowledge (IK), an utterance might seem to refer
to an entity not yet known to the robot. (2) In cases of
uncertain knowledge (UK) an utterance might use properties
to describe an entity which a robot is not sure actually
has those properties. (3) In cases of ambiguous knowledge
(AK) an utterance may seem to be equally likely to refer
to multiple known entities. (4) And of course, an utterance
may seem to uniquely identify an entity (a case we refer
to as certain knowledge (CK)). These categories can apply
to either the target of a referential expressions or to one or
more of its anchors, i.e., the entities referenced in order to
disambiguate the target. For example, in “The room at the
end of the hall”, “the hall” disambiguates “the room”.

The experimental paradigm proposed in [11] thus defines
sixteen categories of uncertainty by crossing the four cat-
egories concerning an expression’s target (i.e., IKT, UKT,
AKT, CKT) with the four categories concerning an expres-
sion’s anchors (i.e., IKA, UKA, AKA, CKA), as well as
sixteen referential expressions which each probe one of these
categories within the context of a provided knowledge base.
This knowledge base and set of category-expression pairs are
shown, respectively, in Table I and Column 1 of Table II.

One will note that Tables I and II are each divided into
three sections: in our evaluation, participants were presented
with the information from the three sections of Table I
separately, and were asked, for each third, questions about
the corresponding third of Column 1 of Table II.

For our evaluation, 40 participants were recruited using
Amazon Mechanical Turk (18 Male, 22 Female, mean age
34.75), each of whom was paid $2.00. For each referential
expression, participants were instructed to specify whether

TABLE I: Provided Knowledge Base

ID Name Description
1 Jim Nelson Doctor (pretty sure). Friends with Sam

Greene.
2 Sam Greene friends with Jim Nelson. Probably male.
3 Jim Cruz ?
4 Mary Greene Sister of Sam Greene.
5 Frank Roberts Jon says he’s a painter, but Craig says he’s

an author . . . ? Lives next door to Nicolas.
6 Martin Francis Painter, lives next door to Heidi.
7 Kristy Roberts Might be the daughter of Frank Roberts.

Unsure.
8 Heidi Wilkerson Chemist, lives next door to Martin.
9 Nicolas Morris Chemist, lives next door to Frank.
10 Craig Horton Chemist, might work with Heidi? Probably

doesn’t work with Nicolas, but who knows.
11 Ted Wells Baker. Possibly brothers with Phillip and/or

Troy.
12 Phillip Wells Brewer. Possibly brothers with Ted and/or

Troy.
13 Troy Wells Byron’s friend. Possibly brothers with Phillip

and/or Ted.
14 Laurie Rodgers Byron’s friend. Girlfriend of one of the Wells

brothers.
15 Sally Owens Teacher. Sibling of Willie Owens. Laurie’s

neighbor.
16 Willie Owens Customs officer. Possibly female. Sibling of

Sally Owens.
17 Byron Todd Could be a podiatrist . . . or maybe a pedia-

trician.

Knowledge Base provided to participants (as originally presented in [11]).
Words indicating uncertain information are presented in bold.

each person referenced in that expression already appeared
in the knowledge-base or whether they represented a new
person, and to list any modifications which should be made
to the list of known persons in light of the information in the
examined referential expression. For example, for “Tabitha’s
mother”, which probed condition IKT:IKA, participants were
asked (1) if “Tabitha’s mother” referred to anyone on the list
of known persons, and if so who, (2) if the “Tabitha” in
“Tabitha’s mother” referred to anyone on the list of known
persons, and if so who, and (3) whether any modifications or
additions needed to be made to the list of known persons in
light of this new informative description. The most frequent
human response in each condition is shown in Column 2
of Table II. Here, referents deemed by participants not to
already be in the knowledge base are denoted “?”.

POWER was then provided with the same knowledge
encoded in logical form, with confidence values indicative
of any ambiguity attached to those statement. For example,
POWER was told that Kristy was the daughter of Frank with
probability 0.5. POWER was then queried with the same
referential descriptions as were given to participants, encoded
into logical form, with hand-annotated variable orderings.

The behavior of POWER is summarized in Column 3
of Table II. When multiple likely candidate hypotheses
were found, each is listed. For these particular descriptions,
whenever there are multiple candidate hypotheses, they all
happen to be equally likely. Referents deemed not to be in
the knowledge base are denoted “?”. For those referents,
POWER added new entries to the knowledge base, with prop-



TABLE II: Evaluation Results

Category and Expression Most Frequent
Human Response

POWER
Responses

CKT:CKA
The doctor’s friend’s sister (Sis.:4,Fr.:2,Doc.:1) (Sis.:4,Fr.:2,Doc.:1)
CKT:AKA
Jim’s friend (Fr.:2, Jim:1) (Fr.:2, Jim:1)
IKT:AKA
Jim’s daughter (Dau.:?, Jim:1) (Dau.:?, Jim:1)

(Dau.:?, Jim:3)
IKT:IKA
Tabitha’s mother (Mot.:?, Tab.:?) (Mot.:?, Tab.:?)
AKT:AKA
The chemist’s neighbor (Nei.:6, Chem.:8) (Nei.:6, Chem.:8)

(Nei.:5, Chem.:9)
IKT:UKA
Craig’s coworker’s neighbor’s
son

(Son:?,Nei.:6,
Co.:8,Craig:10)

(Son:?,Nei.:6,
Co.:8,Craig:10)

CKT:IKA
Marion’s daughter Kristy (Kri.:7,Mar.:?) (Kri.:?,Mar.:?)
UKT:UKA
Craig’s coworker’s neighbor’s
daughter

(Dau.:?,Nei.:6,
Co..:8,Craig:10)

(Dau.:?,Nei.:6,
Co.:8,Craig:10)

UKT:CKA
Troy’s girlfriend (GF:14,Troy:13) (GF:14,Troy:13)
AKT:CKA
The baker’s brother (Bro.:12,Baker:11) (Bro.:12,Baker:11)

(Bro.:13,Baker:11)
AKT:IKA
The chemist, Billie’s father (Fat.:?,Bil.:?) (Fat.:?,Bil.:?)
UKT:IKA
Michelle’s daughter, Willie (Wil.:16,Mic.:?) (Wil.:?,Mic.:?)
IKT:CKA
Sally’s wife (Wife:?,Sally:15) (Wife:?,Sally:15)
UKT:AKA
The Wells boy’s girlfriend (GF:14,W.B.:13) (GF:14,WB:11)

(GF:14,WB:12)
(GF:14,WB:13)

CKT:UKA
Troy Wells, the podiatrist’s friend (Troy:13,Pod.:17) (Troy:13,Pod.:17)
AKT:UKA
The podiatrist’s friend (Fr.:13, Pod.:17) (Fr.:13, Pod.:17)

(Fr.:14, Pod.:17)

From left to right: (1) Each condition and the referential expression used to probe
that condition, (2) the most frequent human response for that condition, (3) The set
of responses provided by POWER for that condition (with multiple rows used when

multiple responses were returned). Cases in which the most frequent human
resolution response matched one of POWER’s resolution responses are bolded in

Column 1.

erties and connections based on the most likely hypothesis.

V. RESULTS

In Column 1 of Table II we depict in bold each category
for which the most frequent human resolution response
matched one of POWER’s returned resolution responses,
which occurred in 14 of the 16 conditions (87.5%). The two
conditions in which POWER failed are examples of false
negatives, in which POWER thought there was no probable
match for a referenced entity. These are strictly better than
the false positives which would have been unavoidable had
the algorithm not accounted for open-world operation. False
negatives are strictly better in part because they can be
more easily recovered from: if it is later established that
a posited hypothetical entity is in fact the same as some
known, grounded entity, those two representations may be
consolidated. Recovering from the discovery of an error of
mistaken identity is much harder, as it would require source
tracking whenever information is added to a knowledge base.

We also compare world model modifications suggested
by participants with those made by POWER. Modifications

made by POWER were straightforward: if POWER believed
a referenced person did not yet exist in the knowledge base,
it added a new representation for that person. For example,
for “Jim’s friend”, POWER created a new representation and
gave it a property indicating it was friends with Jim. In all
but one condition, the most common human suggestions for
world-model modification followed this pattern, and thus the
most frequent human response for world model modification
matched that of POWER in 13 of the 16 conditions (81.25%).

VI. DISCUSSION

We will now examine the conditions in which POWER
produced incorrect results. In condition CKT:IKA, POWER
produces an incorrect response due to, we believe, a violation
of its assumption that unknown entities are always referenced
with respect to known entities. This type of violation occurs
when a speaker makes incorrect assumptions about their
addressee’s beliefs. We believe that POWER would be able
to handle this condition if it was extended to (1) consider
whether newly posited anchors were highly probable matches
to other known entities, (2) generate a clarification request as
to whether those matches were valid, and (3) consolidate the
relevant representations if an affirmative response is returned.

In condition UKT:IKA, participants seem to have as-
sumed, as in condition CKT:IKA, some failure in belief
modeling on the part of the speaker. In this condition, how-
ever, this assumption was made despite high uncertainty as
to whether the known Willie was even of the same gender as
the described Willie, perhaps due to the relative uniqueness
of the name. In order for POWER to successfully handle
this condition it would need to acknowledge that certain
properties, such as being named “Willie”, are relatively
unique, perhaps by modeling properties’ prior probabilities.

POWER’s world model modifications differed from those
suggested by human participants in both UKT:IKA and
CKT:IKA, as would be expected. However, POWER’s mod-
ifications also differed from humans in condition UKT:UKA,
probed by the utterance “Craig’s coworker’s neighbor’s
daughter”. In this condition, the response that no modi-
fication of the list was needed was more popular (by a
single participant) than the response which aligned with that
given by POWER (i.e., that “Craig’s coworker’s neighbor’s
daughter” or “Martin’s daughter” should be added to the list).
One may wonder why, for this question, the most popular
human response for world model modification did not align
with the most popular human resolution response. Curiously,
several participants reported that “the daughter” did not
already appear in the list, yet responded that no modification
of the list was necessary. If these inconsistent responses are
ignored, than the most popular human response aligns with
the response provided by POWER. We would thus argue
that for this condition, POWER provided a more appropriate
response than that provided by human participants.

We would also like to discuss how we perceive POWER
being used, in the context of previous approaches: it is
important to recognize that POWER could be used in con-
junction with many of the existing approaches we previously



discussed. In many cases, the core functionality of such
algorithms (e.g., those presented by Williams, Fasola, Kruijf,
and possibly Chai) could be wrapped into POWER consul-
tants, possibly with an intermediate layer to mediate between
known and unknown entities if the algorithm did not already
operate in an open world or contain mechanisms for adding
new information to its world model. POWER could then be
used as the mechanism for search guiding, and the previously
presented domain-specific approaches could be used for
constraint evaluation and knowledge-base construction and
maintenance. We believe this would be especially useful for
powerful but domain-specific mechanisms such as Semantic
Fields. The algorithms presented by Matuszek, Kollar and
Duvallet would be less easily integrated since they parse
language directly to actions and thus cannot use natural
language descriptions alone to modify their world models.

Our evaluation also shows that our model is not limited
to resolving references from the spatial domain, but could
be used with any other domain, such as references to
objects, events, or people. This is an important feature, as
robots capable of natural language understanding will be
expected to understand utterances which reference entities
beyond simple locations. Moreover, POWER is not limited
to resolving references in robotic domains; it could just as
easily be applied to any intelligent agent capable of natural
language interaction. However, whether POWER will scale
in the domains of interest to such agents, which could have
large numbers of referents, is still an open question.

Finally, we have verified the performance of POWER
in the context of an integrated robot architecture where
it was incorporated into the Natural Language Processing
component of the DIARC architecture [12] and run on
a simulated robot. POWER was able to correctly resolve
referential expressions embedded in sentences such as “Jim
would like the red box from the room across from the
kitchen.” While this was successful, we note that it would
have been more advantageous if POWER had used multiple
consultants for this type of multi-domain resolution, as we
will discuss in the next section.

VII. CONCLUSIONS

In this paper, we have presented POWER: a domain-
independent algorithm for Probabilistic Open World Entity
Resolution which represents an important new framework in
which existing technologies (i.e., previous domain-specific
approaches) can be adapted to operate in an open world.

We see several important directions for extending
POWER. First, it should be adapted to use multiple
consultants (and thus multiple domains) simultaneously.
This would allow the integration of previously disparate
approaches intended to apply to different domains.
This would also serve as a useful mechanism for robot
architectures which store information pertaining to different
domains in different architectural components (and possibly
on different machines), as it would allow reference resolution
to be performed without needing to consolidate information
from separate domains into a single knowledge base.

POWER can also be improved by drawing upon findings
from the psycholinguistics literature. For example, recent
work has suggested that human natural language processing
is incremental in nature, and that great performance gains can
be achieved by making reference resolution incrementalized
and parallelized [13]. It would be interesting to compare
POWER’s performance when semantic constraints are exam-
ined incremental as they are heard with performance when
semantic constraints are examined according to other heuris-
tics, e.g., constraint-ordering heuristics inspired by variable-
ordering heuristics used in constraint-satisfaction problems.
Similarly, it would be interesting to examine the effects of
different values of the τ threshold. Finally, future work will
include user studies in which the performance of POWER is
tested on a physical robot.
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