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Abstract

What knowledge needs to be learned to acquire a novel task? What background knowl-
edge does an agent need to use newly acquired knowledge effectively? This chapter 
considers the functional roles of knowledge in task learning. These roles of knowledge 
span interaction with other entities and the environment and core functional capabili-
ties of the  reasoning system itself (i.e.,  architecture). Perspectives are offered on the 
defi nition of “task” and the relationship between task and knowledge. In addition, three 
specifi c challenges central to the role of knowledge in interactive task learning (ITL) 
are examined: the identifi cation of  architectural primitives (basic functional and rep-
resentational building blocks) needed for ITL, requirements for enabling  shared un-
derstanding (“ common ground”) between learner and instructor, and conditions that 
support projection and  anticipation of future states. In conclusion, specifi c research 
questions are put forth to address these challenges and advance ITL as a fi eld of inquiry.

Introduction

What knowledge needs to be learned to acquire a novel task? What  background 
 knowledge does an agent need to use newly acquired knowledge effectively? 
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Answering these questions requires some consideration of the functional roles 
of knowledge in task learning. These roles include interaction with other enti-
ties, interaction with the environment, and the core functional capabilities of 
the reasoning system itself (i.e., the agent architecture).

This chapter offers an introductory consideration of these functional issues. 
We begin by defi ning tasks, elaborating on the relationship of task and knowl-
edge, and then suggesting a formulation of the interactive task learning (ITL) 
challenge that emphasizes the role of knowledge. We focus primarily on a hu-
man teaching an artifi cial agent a new task but also consider other confi gu-
rations of learner and instructor (for a general treatment of the topic of task 
instruction, see Shah et al., this volume). Thereafter we consider three goals or 
challenges which we regard as fundamental for understanding the functional 
role of knowledge in ITL:

1. Identify the basic building blocks of ITL  functionality, both computa-
tional and representational. Can the fi eld come to understand which 
building blocks are required? Is it reasonable or feasible to assume that 
such building blocks can be found?

2. Enable the development of a common,  shared understanding during 
interaction (i.e.,  common ground) (Clark and Brennan 1991). Several 
chapters in this volume (e.g., Mitchell et al., Levinson, Chai et al., and 
Thomaz et al.) emphasize the importance of achieving common ground 
during interaction. Here, we explore the computational implications 
of this requirement, both in terms of “ background  knowledge” (gen-
eral knowledge of the world that learner and instructor bring to the 
interaction) and dynamic shared understanding within the instructional 
interaction.

3. Support rapid, pervasive  anticipation and  prediction of future states. 
Both interaction and learning benefi t functionally from the ability to 
anticipate (or to “predict”) future states. What are the expected benefi ts 
of prediction capabilities for ITL? What are the requirements for pre-
diction within the context of ITL systems?

ITL represents a scientifi c challenge that can only be addressed by multiple 
researchers, from diverse areas of expertise, over many years. How might 
we better identify  common goals and work together to achieve them? First, 
we must acknowledge and capture some of the diverse perspectives on the 
goals of ITL, before considering community perspectives on the endeavor 
and the potential for shared tools. We recommend that common, shared 
learning tasks would aid improved communication and sharing of results, 
and we outline the notion of challenge problems for the community, includ-
ing one specifi c example. To this end, we summarize our analysis and pres-
ent a number of high-level research challenges for the community of ITL 
researchers.
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The Nature of Tasks for Interactive Task Learning

The breadth and depth of tasks that one could ask a human or agent to perform 
are considerable. This raises the question of whether there is a general defi ni-
tion of “task” that can encompass this breadth and depth, or whether “task” is a 
cluster concept where instances only bear a family resemblance (in deference 
to Wittgenstein). Cluster concepts have clear (noncontroversial) instances, 
clear non-instances, and a large set of border cases where even experts will 
not agree on whether they ought to belong to a given class. For the concept of 
“task,” composing and sending out a set of customized emails about an upcom-
ing event is a clear instance. Eye-blinking is a clear non-instance. Here, we 
attempt to defi ne “ task” in two different ways. First, we outline a conceptual 
defi nition of “task,” with the caveat that the proposed defi nition is incomplete 
and may raise objections; still, we hope that it will help the research commu-
nity understand which kinds of new learner behaviors are targeted for an ITL 
system. Second, we provide a list of specifi c and diverse examples of tasks.

What Is a Task?

Colloquially, modern human life is replete with tasks. We run errands to buy 
groceries and fuel. We cook dinner, set the table, and wash the dishes. We 
schedule meetings, take notes, write summaries. We dance, play a piano, and 
sing. We play football, shoot basketball, run for fi tness. We play cards and 
games. We tend lawns and gardens, monitor for plumbing leaks, and repair 
those leaks when we fi nd them. We move boxes and cartons, plan recreational 
activities, and balance a banking account. We call or text a friend. We help our 
young children dress and eat. We surprise our partners with some token of our 
affection.

Because so much of human activity can be characterized as tasks, we can 
ask: What is not a task? Is recognizing a face a task? Is daydreaming a task? Is 
earning an undergraduate degree a task? Is ocean surfi ng a task?

Table 3.1 lists the primary characteristics that we feel are central to the 
notion of “task” in ITL. This characterization is not defi nitive. It is meant to 
convey the direction of current focus in research, as well as the ambition to 
move to tasks that are more complex, more meaningful to the public (outside 
our research laboratories), and more broadly inclusive of what it may mean to 
learn a new task or to instruct another agent in learning a task.

The properties of tasks listed in Table 3.1 allow us to consider the questions 
introduced earlier. Is daydreaming a task? The answer would be “no,” because 
there is no (deliberate) goal for daydreaming; that is, daydreaming may have 
functional benefi ts in some cases, but the essence of daydreaming is typically 
a wandering away from more purposeful behavior or thought. Similarly, facial 
recognition, by itself, is not a task. Facial recognition in humans can be con-
sidered a single-step process at the cognitive level that occurs very quickly 
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(Bruce and Young 1986). It would be diffi cult for a human to articulate how 
one should recognize faces in comparison to other objects. However, there are 
very simple tasks that could include facial recognition as a component: fi nding 
and choosing smiling faces in an image would be a task according to the char-
acteristics enumerated in Table 3.1. Earning an undergraduate degree is not a 
task, according to the listed characteristics, because of the lengthy timescale 
required to achieve this task. However, there are many individual tasks that 
would be important to the pursuit of a degree, such as taking class notes or 
performing algebraic manipulations while solving an equation in differential 
calculus.

Some tasks can be described as a skill that involves, for example, dexter-
ity (e.g., bipedal walking, drumming, or swinging a tennis racquet to hit a 
ball). Such tasks are largely continuous in nature and hard to analyze in terms 
of symbolic complexity. Such skills/tasks can play the role of  primitives in 
more complex tasks, as they have an instrumental role in structuring other 
tasks. However, the distinction between skills and tasks of defi nable symbolic 
complexity is fuzzy. In essence, there is a paradox between task and skill: 
the more familiar or adept a learner becomes with a task, the less prominent 
the corresponding task structure knowledge becomes in the learner’s memory 
when executing the task: the task then becomes a “skill” for the learner. For 
example, when a young adult is learning to drive, the many steps associated 
with successfully controlling a vehicle are explicitly in mind and consciously 
attended to during driving. A person who has been driving for many years, 
however, will likely not regard these individual steps at all. Unless the learner 

Table 3.1 Characteristics of  tasks for interactive task learning.

Dimension Description
Task goal(s) A state of the world that the agent should achieve, maintain 

(homeostatic goal), or perform as a result of the task. Task goals 
can be seemingly simple (pick up a block) or complex (continu-
ally monitor a space station for leaks); they can also condition or 
modify the performance of the task (move with control and grace).

Multiple steps A task generally requires that the agent perform a series of 
separable actions under its own control. In some cases, repeated 
 task performance might lead to more succinct representations 
of behavior   (Laird et al. 1986; Mitchell et al. 1986; Taatgen and 
Lee 2003) and could result in single-step execution, even if the 
task is learned as a multistep process.

Temporal bounds Human-scale tasks are generally ones that are performed on a 
timescale of minutes to hours.

Instructible tasks A human must be able to articulate/express how the task should 
be executed, verbally or nonverbally (e.g., instructions might 
include demonstrations). This dimension does not imply that a 
human is necessarily able to perform the task.
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needs to teach or describe the task to someone else, the symbolic task structure 
used during the learning phase is a piece of  task knowledge that is not usually 
activated in routine task performance. Thus, the “complex” skill can now play 
the role of the primitive in a task of higher complexity. “Driving to the market” 
can be considered a single step in the execution of the task to buy groceries at 
the market.

According to the conception of “task” proposed here, surfi ng is a task (com-
prised of individual skills): It has a goal (riding a wave). There are multiple 
steps in the process of surfi ng (e.g., identifying a “good” wave, moving from 
prone to standing, guiding the board along the wave, maintaining balance). A 
single instance of surfi ng takes place over a few minutes. Surfi ng instructors 
can make a living by teaching others to surf.

The characteristics in Table 3.1 not only help us characterize the concept 
“task,” they also call out what may need to be learned when an agent and in-
structor undertake ITL. A surfi ng instructor can describe the goals of surfi ng, 
help the learner break down wave-riding into a series of largely decomposable 
steps, and guide the learner in practice. Although the timescale of performance 
in surfi ng is only a few minutes, learning to surf may require many days or 
weeks of practice, some of which is guided by the instructor. The important 
observation is that the timescale of learning to perform a task at a high level of 
profi ciency (e.g., consider surfi ng or playing chess) may be several orders of 
magnitude larger than the time required to perform the task once.

Practitioners within this emergent research domain have diverse and some-
times divergent perspectives on the nature of ITL and the goals and priorities 
of research within the fi eld. Mitchell et al. (this volume) provide a high-level 
defi nition with which others (including some of the authors of this chapter) 
may not fully agree. For example, some of us assert that a key characteristic 
of ITL is that the instructor agent has a goal to increase (make more effi cient) 
the speed of learning on the part of the learner agent. This more strongly em-
phasizes the role of the instructor in ITL than the defi nition offered by Mitchell 
et al. This disagreement about edge cases (i.e., whether they should or should 
not count as instances of some concept) is the hallmark of a “cluster concept” 
outlined above.

Although disagreement remains about what constitutes ITL at its boundar-
ies, there is also broad agreement about its core. The notion that tasks have 
goals is a guiding idea to classify activities that may or may not be tasks (e.g., 
recognizing particular faces). Moreover, in general, we have chosen in this 
chapter to exclude task-learning scenarios where there is little ongoing interac-
tion between the teacher and the learner (e.g., single instructions or instruc-
tional videos): we regard “ interaction” as an exchange between two agents, 
rather than one-way communication (additionally, regardless of who these 
agents are, simply interacting with the environment is not suffi cient). These 
defi nitions exclude  learning contexts where the learner acquires competence 
in performing a task from unsupervised interactions with a  task environment, 
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which is a feature of some recent advances in machine learning, such as the 
ability of Deep Mind to learn to play  Atari  video games (Mnih et al. 2015).

Finally, we acknowledge that a discussion of the functional knowledge 
requirements for ITL results necessarily in imprecision, as is inherent to all 
central concepts involved in ITL. “Task,” “learning,” and “interaction” as well 
as concepts involved in spelling out those concepts (e.g., “knowledge”) are 
themselves cluster concepts.

Examples of Domains and Tasks

To explore the notion of “task” for ITL further, we outline specifi c examples 
of ITL which the fi eld could and should attempt to address. We deliberately 
include examples of tasks that are “atypical” to those currently at the center 
of most ITL research. Our intent is to suggest that the span of tasks which ITL 
should be able to address is broader than the array of tasks the fi eld is currently 
addressing. In some cases, suggested tasks will introduce new requirements for 
ITL capabilities. For each learning task, we also introduce a domain of usage 
in which the specifi c task to be learned could be introduced, with the goal of 
highlighting why the learner’s performance of that task could not simply be 
“programmed” into the original performance system.

Function Composition in User Interfaces

Personal assistants that can automate the tedium of administrative tasks—
scheduling meetings (Allen et al. 2007), making travel arrangements (Knoblock 
2004), completing “paperwork”—have been a long-time goal of researchers in 
both artifi cial intelligence (AI) and human–computer interfaces (Lehman and 
Carbonell 1989). Such personal assistants may have powerful built-in  func-
tionality, but to be maximally useful in everyday contexts, they must be able 
to learn to perform specifi c tasks required by the individual user. Today’s ex-
isting  personal assistants (e.g., Apple Siri, Google Now, Amazon Alexa) are 
limited to preprogrammed tasks (e.g., enter calendar entry). The devices in 
which these assistants are embedded, however, have the needed infrastructure 
already in place (e.g., voice commands, application programming interfaces to 
apps) on most target platforms to extend their capabilities toward task learning 
and instruction.

ITL could be the means by which a user instructs a personal electronic de-
vice (e.g., computer, tablet, smart phone) to perform automatically increas-
ingly complex sequences of actions to achieve high-level user goals (e.g., fi ll 
out an expense report from stack of receipts). Such functionality is already 
being explored in everyday tasks, such as ordering coffee (Azaria et al. 2016). 
Such task learning offers tremendous potential benefi ts, from increased work 
productivity to enabling access to support services for those with cognitive 
impairments.
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The interaction for function composition could be as follows: Users give a 
verbal description of a target task as they perform it, associating the various 
components and arguments with the actions performed and values entered. 
Alternatively, the system starts by being able to perform basic actions (e.g., 
typical application menu commands, keyboard entry) from voice commands 
and is instructed step-by-step how to perform more complex ones.

Call Centers and Field Linguistics: Learning to Interact Socially in 
New Cultural Contexts

Increasing the effi ciency of  call centers can provide signifi cant cost savings 
(Gray et al. 1993). Customer satisfaction often declines when automation re-
places human operators in call centers, leading to caller frustration and anger. 
Rather than canned, automated responses, it would be preferable to have call 
center agents that can adapt to the customers’ needs, to the affect that they have 
on the customer, and to the social context of the caller.

The rudiments for this type of capability might be able to be programmed 
in advance. However, since cues and dynamics of interaction differ according 
to social and cultural context, it would be advantageous to have an ITL system 
that could conduct basic diagnostics and remediation, adapting when neces-
sary to the specifi c cultural (and even subcultural) cues so as to customize the 
response to the caller. This approach would benefi t the call center by enabling 
greater scalability (one core system customizable to many different sociocul-
tural contexts) and mitigate the problem of cultural and gender bias that has 
been observed in some AI systems   (Caliskan et al. 2017).

The  social  interaction learning task would involve an instructor and a 
learner (an agent), tasked with learning to respond appropriately to specifi c 
cultural cues of future callers. The learner would need to learn such things 
as  turn-taking and  interruption strategies,  theory of mind of the entity with 
which it is interacting, and how to respond appropriately to  affective states or 
displays. One of the advantages of ITL over  preprogramming is that the agent 
would receive ongoing  feedback and thus improve its ability to recognize and 
to adapt to specifi c caller cues (a kind of “on the job” training). It is not in-
tended for the learner to learn how to understand or generate the content of the 
communications, other than that it may need to learn to extract cues from the 
content for aid in making social decisions.

Another use case for such  social  learning could be robots and virtual agents 
being developed to support  fi eld linguists. The task of a fi eld linguist begins 
with segmentation and discovery of the sound system of a new language. What 
are the distinctions that make a difference to meaning? These can include per-
ceptual distinctions that are not initially in the linguist’s repertoire. The linguist 
needs to discover how sounds are combined in fl exible ways into wordlike 
units, centered on word stems. The structure is inherently combinatorial, with 
the task being the discovery of alternates for roles and fi llers at multiple levels, 
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including identifi cation of word stems and the possible suffi xes, affi xes, and 
infi xes. The knowledge representation in a language comprises multiple lev-
els, including phonemes (sounds units), morphemes (units of meaning), words, 
phrases, sentences, and syntax as well as embodied actions such as  pointing 
and  gaze.

Evaluation of competence is revealed through transcription of corpora. 
Much of the task of the  fi eld linguist involves the transcription of recorded lan-
guage material. For ITL, sets of corpora could form a challenge domain with 
a range of tasks for human and agent learners, which include construction of 
learning examples and other tasks that reveal the sources of variability in how 
information is communicated, multilevel structure, and discovery of slot-and-
fi ller syntax in multiscale structures.

More generally, although there are thousands of human natural languages 
in use today, only several hundred are supported through current information 
technology tools. An agent designed to act as a surrogate or aid for language 
study by a fi eld linguist would also benefi t from being able to be quickly cus-
tomized to specifi c cultural and social patterns of interaction. While it may 
be possible to encode an expert system that could support the dynamics and 
nuance of interaction for a particular language, this approach is infeasible due 
to the funding and technical expertise that would be required. A mature ITL 
solution that allowed an expert in the language to teach its aid rapidly and 
without technical know-how would scale to the diverse needs of the thousands 
of human languages.

Robotic Assistants: Fast Customization for Emerging Tasks

Robotic systems offer signifi cant capability for performing tasks that are repet-
itive, dangerous, or beyond human capability. While robotic systems may have 
much inherent capability “out of the box,” their function will likely need to be 
modifi ed or extended, either to amortize the cost of the robot under changing 
 task performance requirements or because the specifi c behavior in a perfor-
mance environment can only be fi nalized or specialized in situ. Consider the 
following three examples of ITL in the robotic domain:

1.  Industrial manufacturing: For any assembly task, we would like to in-
struct the robot how to manipulate parts to assemble the prescribed 
structure (e.g., a piece of furniture, a car, an airplane wing): how to pick 
up parts; how to insert them into, connect, or mount them onto other 
parts; how to place and reorient parts, and so on. An ITL robot could 
be instructed or receive demonstrations to support changing assembly 
requirements.

2.  Disaster site monitoring, including routine tasks such as counting con-
tainers (e.g., containers of nuclear waste), recording their ID tags, and 
performing gamma measurements on some of them. The International 
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Atomic Energy Agency is currently seeking to identify small robot-
ized rolling platforms capable of assisting the human inspector by per-
forming the following tasks: moving autonomously across a storage 
area, counting items of a specifi c geometry, recording their ID tags, 
and carrying specifi c instrument payloads. The agency has issued an 
open challenge for a robot that is partially autonomous (i.e., naviga-
tion), with the remaining functions to be teleoperated. This basic ro-
botic platform could be enhanced with ITL to enable the robot to learn 
specifi c measures needed at a particular site (e.g., where to go to take 
measurements, how to navigate the inside of structures) and to provide 
a more autonomous monitoring capability.

3.  NASA’s space robotics challenge identifi ed three tasks aimed at sim-
ulating what a robot may be required to do while assisting a NASA 
mission to Mars, whether in a preparatory capacity before astronauts 
arrive, or alongside astronauts: (a) aligning a communications array; 
(b) repairing a broken solar array; and (c) identifying and repairing a 
habitat leak. All three tasks could be instructed using natural language, 
including the details of what an object looks like. Currently, this chal-
lenge does not require robots to be instructible.

Studying Human Task Learning to Advance ITL

Here we consider four examples of  human task learning that might be apt 
subjects for advancing ITL: playing card games, tying a knot, dancing the 
 Argentine tango, and playing  BrainQuest. These  examples of human task 
learning appear relatively straightforward. They can be taught by humans to 
other humans without requiring the instructor to have a high level of task pro-
fi ciency or training in instruction. Currently, these tasks present challenges (to 
lesser and greater degrees) to existing artifi cial (nonhuman) agents. Thus, they 
are useful in identifying directions that  future research may wish to take.

Playing card games. An agent needs  to play a new card game, which can 
include a software simulation with high-level sensors and actuators (e.g., mov-
ing cards, fl ipping them, reading them). Some aspects of the new card game 
may rely on preexisting concepts (e.g., tricks, piles, cards-in-your-hand, dis-
cards) and actions (e.g., play a card, draw a card) whereas others may be new. 
As the agent is introduced to a new game, it may need to construct both novel 
task operators and new terms that describe or summarize task states (e.g., a 
“good hand”). Once the agent understands the basic rules, it might also be 
given other instructions, such as suggested strategies or indications as to what 
“good” moves are. Thus, learning a new card game may involve the use of 
existing knowledge to support the  acquisition of new task knowledge. These 
are core requirements in ITL (discussed further below).

Tying a knot. This task can be used to test a number of aspects of ITL due to 
the range of task complexity. One could begin with an easy knot (an overhand 
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knot) and proceed to increasingly complex knots, such as bowline or highly 
complex decorative knots. In addition,  knot tying involves a hierarchy of task 
primitives: one type of knot learned previously is part of the tying of a more 
complex one and actually forms a necessary step of it (i.e., there is depen-
dency). Currently, robots exist that have learned to tie different types of knots 
based on direct demonstration or manipulation (Schulman et al. 2016). These 
robots offer direct comparisons of the benefi ts of interactive instruction and 
generality of the resulting agent capabilities.

 Knot tying presents challenges for verbalization (verbal instruction) and 
thus provides an opportunity to test different instruction modalities and their 
effects on learning (e.g., use of analogies in language, use of visual demon-
stration alone, or combinations of verbalization and  demonstration). A basic 
requirement for instruction is the establishment of  common ground (e.g., the 
“tail of the rope” vs. the “standing edge,” the notion of a “loop”); term creation 
is needed. Knot tying is a highly interactive task: the learner needs immediate 
 feedback while performing the task, and it is crucial to know at which part 
of the process things went wrong. Knot tying would also stress the temporal 
constraints and social aspects of the interaction: the learner may easily become 
frustrated and the teacher may fi nd it challenging to communicate the same 
information in different, more effective ways.

Knot tying requires relatively little  background  knowledge. It is an activity 
that involves learners of any age, including children; thus one can test this task 
developmentally using age range or level of expertise (expert vs. novices). It 
is an integral part of many different activities in everyday life, such as tying 
one’s shoelaces, getting dressed in a suit, and connecting two items with rope 
(e.g., in sailing, climbing, fi shing, scouting, rescue activities, knitting/creative 
decorations, medical practice/surgery). Today’s robots may lack the neces-
sary dexterity to support near-term, direct reproduction of human instruction. 
However, simulations of knot tying could be developed to explore what would 
be required for a robot to master this task.

 Argentine tango. Human adults can learn new tasks in a variety of ways, 
from taking a class at a community college, to online videos or engaging a 
teacher or coach directly. Learning to perform a new physical skill is an exam-
ple of one of these tasks. As a particularly challenging example, consider the 
task of a physically embodied agent learning to dance the tango with a human 
(or other agent) as its partner. This task requires being taught the basic moves 
and sequences, and then performing those moves with a partner. When dancing 
with a partner, there will likely be a lot of nonverbal instruction (or perhaps  re-
inforcement  learning) to get the more subtle aspects of the movements that are 
dependent on the partner. However, the robot could also be verbally instructed 
about the sorts of nonverbal cues that the leading partner will present to indi-
cate the desired actions of the following partner. One interesting requirement 
for performing the tango is the aesthetics of the dance: a combination of grace, 
fl uidity, and power characterize a good tango. Thus, learning this task requires 
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performing the dance with these requirements in addition to the more basic 
expectations of rhythmic steps and stances.

 BrainQuest. Children learn new tasks from teachers, parents, and other 
children. For ITL research, various developmental stages of children offer the 
opportunity to focus on tasks that require less sophisticated and rich sources 
of knowledge, thus providing greater opportunities for a cognitive modeling 
environment to allow the architecture to “show through.” As an example, con-
sider  BrainQuest, a game that consists of cards with a question on it, typically 
accompanied by a picture. There are cards for 3- to 4-year-old children, for 
5- to 6-year olds, as well as older children. Each card introduces a little task in 
itself. Take, for example, a picture of a mother duck with fi ve ducklings and a 
chicken with six chicks. The question posed on the card is: “Which mother bird 
has six babies?” Another example is a picture of a lion, a dog, and a cat with the 
question: “I bark and I like to go for walks. Which one am I?” There is overlap 
in knowledge with other tasks, but the task is almost never exactly the same.

Examples of Desired Features for ITL Research Tasks

In the course of considering a range of tasks for ITL, we identifi ed a number of 
task features that  an agent should learn. These features are not all in agreement 
with one another. Thus, in our listing of desiderata for ITL research tasks, we 
summarize some of the rationales that one might make for including a particu-
lar task feature:

• Interactive tasks: Tasks that require interaction in performance (as well 
as in learning) are of special interest to some researchers. Interactive 
task domains (e.g., conversational personal agents such as the help cen-
ter, robots that support child learning through games and play, tango 
dancing) represent domains that are currently very diffi cult to engineer 
effectively (for a discussion of language interaction requirements, see 
Levinson, this volume). Using ITL to teach effective interactions (as in 
the help center and tango dancing domains) would benefi t the larger AI 
community because of the diffi culty of providing effective interactions 
in today’s systems.

•  Generalization and transfer: Researchers in AI and cognitive science, 
especially  cognitive architecture (Laird et al. 2017), are interested in 
exploring the generality of an agent system and the ability to perform 
successfully across a wide range of tasks   (Anderson et al. 2004; Newell 
1990).  Card playing (as highlighted above) provides a good test of gen-
erality within a limited sphere, as would the task domains proposed for 
general game playing (Genesereth and Thielscher 2014).

• “Complex enough” domains: Toy domains are attractive because the 
fi eld of ITL is relatively immature and there are many potential barriers 
to entry. However, toy domains may not offer suffi cient complexity, 
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and the lack of complexity may not always be apparent when the do-
main is chosen. Thus, there is a tension between wanting to work on 
domains that matter (below) and domains that are not overwhelming. 
One potential challenge for the fi eld would be to provide systematic 
characterization of the complexity of the task learning and performance 
domains, to enable more informed and deliberate selection of research 
domains.

• Domains that “matter”: Developing an ITL research system will re-
quire a signifi cant investment and be conducted over many years. 
Because of this, it may be benefi cial to focus on tasks which “matter”; 
that is, domains (and tasks within them) that offer direct benefi t to the 
larger world, if the research led to fi eld-testable prototypes and fi eld-
capable systems. A good example is the assistant for a  fi eld linguist, 
as summarized above, which could play an important role in helping 
to preserve endangered languages. Another example is ITL agents and 
robots for  disaster response assistance, which is a domain that requires 
extraordinary fl exibility and in situ  adaptivity. It is important to note 
that what “matters” is subjective and that researchers may differ in their 
assessments. Domains that matter need not necessarily be highly com-
plex domains that require huge investments. Stakeholders within each 
respective domain’s community may help clarify important require-
ments for ITL research.

Computational, Representational, and Task Primitives for ITL

In AI,  an agent’s behavior and capability is typically assumed to be a function 
of its architecture operating on its store of knowledge while interacting in an 
environment (Russell and Norvig 1995). In this context, “ architecture” refers 
to a fi xed set of computational operations and representational elements used 
to build an intelligent agent (Newell 1990).

Cognitive science and AI have produced many different types of agent ar-
chitectures, with various representational and processing assumptions. Thus, 
the same type of  functionality (e.g., ITL) can be realized in different ways in 
different architectures. For instance, while most cognitive architectures may 
require explicit task representations in declarative or   procedural memories that 
can be assembled through learning processes, robotic architectures might rep-
resent the task only as an action policy that implicitly represents its tasks in 
the form of state-action pairs (i.e., mappings from state descriptions to actions 
that will allow the agent to reach new states, resulting over time in the agent’s 
performance of the task). Rich (this volume) and Scheutz et al. (2013) discuss 
these distinctions further.

Agent architectures are blueprints for computers: machines capable of 
universal computation. Computation must be grounded in primitives that 
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are executable. For standard computer architectures, computational primi-
tives form an instruction set that enables execution of complex programs. The 
composition of representational primitives (bits and bytes) and computational 
primitives (move, store, add) provide suffi cient mechanisms for the creation 
of complex and sophisticated computer applications. Some combinations of 
these primitives are suffi ciently useful such that they can be organized into a 
stable and reusable higher level of abstraction above the most primitive level. 
An operating system defi nes a set of primitives (fi les, typed numbers, strings, 
system calls such as “open,” “load,” and “execute”) which can then be used to 
compose software programs that depend only on the operating system level of 
abstraction (e.g., a word processor, a mobile phone application). For a cogni-
tive or robotic architecture, primitives include at least the mechanisms that en-
able the representation and processing of knowledge and skills. For an artifi cial 
neural architecture, it includes the operations that compute outputs from inputs 
given information in the form of inputs and weights.

What elements comprise an effective architecture (abstract computational 
level) for pursuing ITL? Does it even make sense to pursue such a goal? Given 
the variety of architectures, it is important to take a “least commitment per-
spective” when discussing architectural requirements for ITL. As yet, there 
is no agreed upon set of common functional components across architectures 
for different types of agents (virtual and robot) or task domains (e.g., solving 
mathematical problems vs. performing assembly tasks) although there is long-
standing and ongoing interest in such identifi cation and unifi cation (Laird et 
al. 2017; Newell 1990; Sloman and Scheutz 2002). In this section, we consider 
the architectural implications of ITL while not committing to specifi c architec-
tural assumptions; instead, we focus on the notion of knowledge and process 
abstraction as well as the role of primitives. We consider four distinct issues 
related to computational abstractions for ITL:

• Do cognitive architectures offer a useful level of architectural abstrac-
tion to pursue ITL?

• Is a fi xed level of abstraction for ITL a reasonable goal?
• How might the mixed modalities of interaction within ITL shape re-

quirements for an architectural abstraction?
• How might diverse conceptions of “task” inform the goals of architec-

tural abstraction?

Cognitive Architectures as Potential ITL Architectures

Cognitive architectures provide computational abstractions that are, to varying 
degrees, designed to realize a human-mind-like virtual machine. For ITL, we 
need to know whether these existing computational architectures are defi ned 
at a useful level of abstraction to support ITL. How do the primitives defi ned 
for some particular architecture map to the functional requirements for ITL? 
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Are existing primitives too low level, too cumbersome, and too tedious to sup-
port effi cient pursuit of ITL? If so, one direction of research could be to defi ne 
an ITL capability (a higher-level architecture or virtual machine) that “imple-
ments” ITL for some architecture. For example, in  cognitive architectures such 
as  ACT-R and  Soar, the  representation of a task would be distributed across 
multiple memories (semantic,  procedural, and  episodic). In an ITL virtual ma-
chine, a “task” might be a primitive representation that was then decomposed 
into the specifi c and distributed representations of the underlying architecture.

Conversely, it could be that primitives (or at least some primitives) of to-
day’s architectures are defi ned too coarsely to support ITL, thus making it 
diffi cult to realize ITL within a given architecture. In standard computer ar-
chitectures, it may sometimes be necessary to decompose the primitives of an 
architecture into fi ner-grained elements (e.g., the primitives of an architecture 
at a lower level of abstraction). In most cases, an applications developer will 
work at the operating system level of abstraction, but may need to shift to 
the assembly-language level in some cases. The instruction set level of ar-
chitecture may need to be described at the level of electrical current fl ows. 
Any computational architecture is grounded in lower-level computational or 
physical processes. Thus, we need to ask whether ITL requires a reconsidera-
tion of many of the “standard” or assumed primitives of computational cogni-
tive architectures.

In Search of Reusable Levels of Abstraction for Task Learning

Within any computational architecture, computation ultimately builds from the 
execution of its computational primitives, upon which more complex programs 
can be built. For example, for a cognitive robotic architecture, action primitives 
would likely specify basic movement behaviors that enable the emergence of 
more complex ones; such primitives may be explicitly represented (the case 
in most symbolic representation architectures) or may implicitly emerge from 
computation (as in neural architectures). Different architectures commit to dif-
ferent computational and representational primitives. As described by Taatgen 
(this volume), the primitives of a high-level cognitive or robotics architecture 
can be created from the composition of primitive elements of another architec-
ture defi ned at a lower level, analogous to the various architectures one fi nds 
defi ned for standard computation, as outlined in the previous section.

This perspective raises questions as to what suffi cient and useful primitives 
are for ITL, and whether these primitives can be mapped to the primitives 
of existing computational architectures (as outlined above). Should concepts 
such as “task,” “task step or action,” or “task state” map directly onto compu-
tational primitives for an ITL architecture? The identifi cation and exploitation 
of the primitives of task representation and task learning is a basic research 
goal for computational and behavioral disciplines alike. These task primitives 
are essential in task learning. For example, if task primitives are defi ned at an 
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appropriate level of abstraction suffi cient for representation and computation, 
task representations will more readily scale to tasks of arbitrary complexity 
and can be applied creatively when encountering unknown, uncertain, and 
noisy or ambiguous conditions.

Decomposition of processes, knowledge, and tasks into core nondecompos-
able units cannot be arbitrary if scalability and effectiveness in learning is of 
interest. However, the fundamental principles that may govern such decompo-
sition are largely unexplored (Barto et al. 2013).

We assume that task primitives are not necessarily mapped to architectural 
primitives: the knowledge required to represent and to execute a task may need 
to be represented at different levels within an ITL system and the level at which 
 task knowledge is represented impacts the composition of the knowledge and 
potential for reuse (for further discussion, see Taatgen, this volume). ITL in-
creases the challenge because the representation of the task itself changes with 
task learning. For example, we may teach the learner a sequence of actions 
(“raise your arm; move your hand a short distance back and forth for a few 
seconds”) and then give that sequence of actions a particular name (“wave”) so 
that it can be referred to in the future by the more abstract label. Importantly, 
however, there may be times when the learner needs to consider how some task 
action is composed and further decompose it. For instance, when teaching the 
learner to reach for an object located above the learner, we may want to refer to 
a movement previously labeled “raising your arm,” but be more specifi c about 
which joints to use and their target angles.

Flexible use of various levels of abstraction extends to all parts of the sys-
tem. The above example focuses on actions, but the same can be said of objects 
as well. Sometimes we may want to refer to a crowd of people, an individual 
person, a face, an eye, a circle, or combinations of these. Sometimes it is suf-
fi cient to refer to something as “the number 2” whereas at other times we need 
to be more specifi c (“a 2 with a loopy bottom”) or less specifi c (“a number”). 
Furthermore, the representation of time must be fl exible as well, as we discuss 
further below. Actions may take place over milliseconds, seconds, minutes, 
hours, or longer periods of time. Actions, objects, and durations can also be 
combined at various levels of abstraction.

Flexible and adaptive abstraction affects communication between the learner 
and the tutor (these different levels of abstraction must be able to be mutually 
identifi ed and understood), as well as the internal cognitive architectures of 
these systems. For example, the motor control system may be given high-level 
commands (“wave your right hand”) or low-level commands (“move this joint 
to this angle at this speed”). Perceptual categorization may provide objects 
at many hierarchical levels (e.g., “object,” “person,” “Jill,” “head,” “face,” 
“eye”). There is some lowest level of nondecomposable task atoms, but be-
cause we do not know what these lowest level primitives are, we cannot be 
assured that any particular architecture’s computational primitives are fi xed at 
a suffi ciently low-enough level to support the fl exibility required by ITL.
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Experimental research in verbal categorization has shown that some ver-
bally expressed categories of entities (and potentially actions, features, and 
processes of any kind) do exemplify properties that render them ideally in-
formative for sensorimotor similarity-based  generalization; for example, ba-
sic level concepts in prototype theory (Rosch 1973) conform to this property. 
Thus, language may point to useful levels of generalization from which the 
identifi cation of task primitives may be founded to support both decomposition 
and synthesis. This basic level of generalization (which comprises categories 
that are neither too general nor too specifi c) could provide a common abstrac-
tion level for tasks of any type and complexity, serving as a representational 
ground across ITL systems. The fact that tutor–learner  communication is pri-
marily (though not exclusively) verbal makes the role of natural language in 
providing a basic, common abstraction representation level even more signifi -
cant, and a promising direction for research.

The Role of Modality-Specifi c Abstraction

Abstraction of  task knowledge and processes may be expressed through one 
or more modalities, each modality being more appropriate for different types 
and levels of abstraction according to its strengths and limitations. Consider 
the different modalities that may be used in teaching a robot to grasp and ma-
nipulate an object. Verbal representation of task  knowledge is  symbolic and 
high level: “Please place the fork next to the plate.” On the other hand, sen-
sorimotor representation of task knowledge may be more usefully represented 
at a  subsymbolic level, such as a demonstration of the movement involved in 
placing the fork as described. Language is particularly suitable for expressing 
the goal of a task (i.e., the local or end goal; the fi nal location of the fork). A 
sensorimotor representation would be limited to a description of the achieved 
state. These visuomotor modalities, however, are clearly more suitable for cap-
turing the actual movements and physical relationships needed to achieve the 
goal of moving the fork to the desired location. Thus, linguistic and visuo-
motor primitives for task knowledge and execution need to be coordinated 
and aligned with one another during all phases of ITL, and these coordination 
requirements may impose additional constraints on the specifi c architectural 
abstraction needed for ITL.

Task Representation

Task descriptions in past and current research tend to be rigid and overly spe-
cifi c. Accomplishing a given task is usually precisely specifi ed, with clear 
criteria for successful completion. Often there are equally straightforward pro-
cedures for accomplishing the task. While this may seem appropriate, and in-
deed it is useful in the short term, it tends to prevent cumulative progress in the 
medium and long term. The very task specifi city that allows an ITL problem 
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to be solved precisely prevents it from being directly reused in other, related 
situations. Those situations tend to have a slightly different representation or 
contextualization, leading the original task solution to be unusable unless it is 
explicitly modifi ed to accommodate the new specifi cation.

While this specifi city is similar to that of traditional  programming para-
digms, where the approach has been quite successful, it is quite unlike what 
Herbert Simon referred to as ill-defi ned problems characterizing natural intel-
ligence, where their very nature requires the fl exibility and  adaptivity of hu-
man cognition (Simon 1996). Newell advanced  cognitive architectures as the 
solution to the “20 questions” problem (Newell 1973b), which resulted from 
models of distinct cognitive tasks being developed in incompatible frame-
works, thus preventing increasingly integrated models from being developed. 
However, while cognitive architectures have enabled the generation of compat-
ible models of various tasks, they have not generally resulted in composition 
for increasingly complex cognitive capacities. In  Soar, for  example, natural 
language understanding and dynamic plan execution were demonstrated in an 
integrated agent (Lehman et al. 1995). That demonstration, however, did not 
result in these capabilities being routinely composable in future Soar models. 
Similar examples abound across cognitive architectures. This observation is 
not a criticism of these architectures but rather a caution for ITL:  demonstra-
tion of signifi cant integrated systems capability is not suffi cient to defi ne reus-
able and useful higher-level abstractions for ITL.

Co-Construction and Common Ground: 
Shared Contexts for ITL

In this section we explore what is required to achieve  common ground (Clark 
and Brennan 1991) during learning interactions and what  architectural primi-
tives are required to support it. Our discussion here is not conclusive. Although 
we have some general agreement that architectures require mechanisms to sup-
port the achievement of common ground, conclusive demonstration of the ne-
cessity and suffi ciency of those primitives requires development and testing by 
the emerging ITL community.

Common Ground in ITL

Agents,  as well  as their human instructors, must support functionality for 
establishing common ground in ITL. Borrowing from the notion of common 
ground in communication theory (Clark and Brennan 1991), this means that 
the shared context and  mutual  knowledge available to human and AI agents 
in a collaborative instructional situation have to be updated, maintained, and 
often repaired. This assumes that we reinterpret ITL as a form of joint action 
carried out in a coordinated manner by both the human and the AI agent. 
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This means coordination of the content (e.g., about the to-be-learned task) 
as well as the process by which the ITL activity progresses. In the ITL situ-
ation, common ground makes it possible for a learner and an instructor to 
coordinate on what the instructor means and what the learner understands 
the instructor to mean. As a joint activity, ITL implies bilateral processes: 
instructors must monitor the actions of the learner in context, and the AI 
learner must somehow signal their current state of learning.

Levinson (this volume) suggests that the functional requirements for  com-
mon ground in human communication include:

•  Error checking  at every level. Participants continually monitor their 
 understanding. Monitoring must be fast and accomplished at many lev-
els (e.g., simultaneous monitoring of syntax and semantics). The fast 
execution of error checking and repair within the tempo of the conver-
sation refl ects predictive processes that anticipate errors or potential 
misunderstandings prior to their occurrence.

• Continual  turn-taking. Participants engage in dynamic and complex 
turn-taking interactions that require little explicitly acknowledged cues 
of negotiation about the turn-taking. Such turn-taking includes shared 
contextual understanding of when interruption may or may not occur.

• Mirroring of terminology. As participants engage in dialogue and “co-
construct” a shared understanding, they tend to begin using the same 
terms. There is reduced use of synonyms under conditions of language/
capability mismatch.

Levinson argues that it may be impossible, with the current state of scientifi c 
and technical knowledge, to produce ITL systems that can reproduce the rich-
ness, subtlety, and timeliness of human–human communication. Instead, we 
may need to adopt engineering shortcuts that take advantage of the human 
tendency to  anthropomorphize as a means of mitigating this issue.

In the fi eld of human–robot interaction, the theory of common ground has 
been adopted widely and built upon, for example, in the approach of coact-
ive design (Johnson et al. 2014). The idea is that coordinated tasks involving 
humans and robots require managing the interdependencies and constraints 
among the agents’ activities. The common ground in such  collaborative hu-
man–robot activity includes the relevant capacities (i.e., the total set of ca-
pabilities, knowledge, and resources) of the interdependent agents needed to 
perform the joint activity. Capacities are defi ned completely by the interac-
tion of the agent and its environment—an idea similar to Newell’s defi nition 
of knowledge-level descriptions (Newell 1982). To support common ground 
functionally in human–robot activity, coactive design (Johnson et al. 2014) 
promotes the development of interagent interfaces that support  observability, 
predictability, and  directability. These principles can be reinterpreted slightly 
to the ITL situation: Observability means the learner makes pertinent aspects of 
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its own state and knowledge of the instructional situation, target task, and en-
vironment observable to the instructor. Predictability means that the learner’s 
actions are predictable so that the instructor can act appropriately.  Directability 
is the ability of the instructor to direct the behavior of the learner, which in the 
specifi c situation of ITL means being able to direct the AI agent to engage in 
learning actions and processes.

“Global” and “Local” Common Ground

Despite different languages and cultural backgrounds, humans share a high 
level of commonality, at least in comparison to a human and a machine. One 
can think of  common ground as the set of referents and  knowledge shared 
between the learner and the teacher. These are internal representations that are 
“grounded” in “common” with one another. Clearly, these may not be perfectly 
identical; however, successful communication relies on them being suffi ciently 
“aligned.” Chai et al. (this volume) discuss the importance of  background 
knowledge and comment that the lack of common ground is both a signifi cant 
limitation of existing ITL robotics systems and a relatively underexplored re-
search area.

We recommend the introduction of minor terminological distinctions to 
highlight these differences for future communication within the community. 
Specifi cally, we suggest a distinction between “local” and “global” common 
ground. Global common ground is shared background knowledge (or “com-
mon knowledge”) which agents may have before the interaction starts. Some 
of this background knowledge may not be shared, and part of the interaction 
between teacher and learner may involve detecting and fi xing misalignments 
in background knowledge. However, this sort of knowledge seems to be fairly 
distinct from the common ground that is local to the instruction of the task 
itself, for example, identifying which object one agent is referring to with 
“this cup” and knowledge about the actions and events taking place within the 
interaction.

Functional Requirements for Reaching Local Common Ground

Computational cognitive architectures have largely focused on identifying 
the components of thought and mind for individual cognition (Anderson et 
al. 2004; Kieras and Meyer 1997; Newell 1990). A “standard model” of the 
components comprising a cognitive architecture has been recently proposed 
(Laird et al. 2017). It attempts to identify common functional elements of these 
architectures, such as different kinds of  memories (episodic,  procedural, se-
mantic) and the computational operations that occur within and between these 
memories to achieve cognition.

An open question is whether the computational decompositions refl ected 
in these individual architectures (and in the emerging standard model) are 
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suffi cient for ITL and for the ability of ITL systems to achieve common ground 
with human instructors. In other words, what are the architectural implica-
tions of ITL? If there are specifi c architectural capabilities that are required for 
ITL, can the community identify clear requirements, invariants, or “laws” that 
should be encapsulated by the architecture? How can these cognitive architec-
tures support the  functionality described by Levinson (this volume) or coactive 
design (Johnson et al. 2014)?

We have not yet reached fi rm conclusions regarding the suffi ciency of ex-
isting architectures. However, we have identifi ed the following  architectural 
requirements for ITL, focusing especially on co-construction or achieving of 
 shared understanding during ITL:

• The architecture should directly support the  acquisition of new task 
 knowledge. This requirement implies the acquisition of new  procedural 
representations (e.g., routines, functions). It also includes many other 
representations as well, such as the ability to learn new procedures 
from the composition of previously learned procedures, to articulate (at 
some level) an internal model of one’s procedural understanding, and 
to assess one’s confi dence of understanding and ability with task proce-
dures. Rich (this volume) refers to these latter elements as  metaknowl-
edge of the task procedure. This “knowledge of what I can do” appears 
critical to co-construct shared understanding effectively as the learner 
grows in ability and knowledge of the task.

• Architectures should support concept refi nement. Task concepts are 
not static in human learning and they should not be assumed to be in 
ITL, if artifi cial task-learning systems need to achieve shared under-
standing with human instructors. Introductory assumptions may need 
to be modifi ed or extended (e.g., imagine introducing the “castle move” 
in chess sometime after the normal movements of the king and rook 
have been explained). Task actions or concepts, which may have been 
treated as unitary in the introduction of the task, may need to be further 
decomposed, resulting in the breakdown of apparent task primitives 
into more fi ne-grained primitives. Architectures must then support fast 
and fl exible reformulation of these task concepts to support ongoing 
interaction and learning.

• Architectures should support recognition and rapid response to realign-
ment. As discussed above, error checking is a pervasive component of 
the dynamic, shared understanding that occurs in human interaction. 
The pervasiveness of such capability strongly suggests that this would 
be an innate (or architectural) capability in humans. However, many 
existing architectures do not explicitly embed language processing at 
the architectural level. This raises an open question of what architec-
tural functions in such architectures could give rise to such fast and 
pervasive low-level language processing capability.
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Finding Common Ground with Nonhuman Intelligences

It is easy to fall into the trap of believing that the challenge of ITL is to pro-
vide AI agents with humanlike cognitive architectures so that such agents are 
instructible in a natural humanlike way. If we can just make robots perceive, 
act, think, learn, and talk like humans then our problems are solved. Although 
some agents may end up doing tasks in the same physical world as we humans, 
many will not. Current commercial conversational agents live primarily in a 
world of application software, with limited communication channels to human 
users and limited awareness of the physical environment. As roboticists are 
quick to tell us, humanoid robots do not “see” the world or execute their motor 
actions in the same way as humans. Agents in virtual environments typically 
rely on representations of space (and negative space) based on implementation 
representations rather than the spatial representation a human viewer might 
perceive.

To take an even more extreme example, imagine a long-range, long-lived, 
continuously fl ying, solar-powered drone that seeks to discover huge collec-
tions of plastics in the ocean. It may perceive the world through some combi-
nation of LIDAR (light detection and ranging), hyperspectral imaging, GPS, 
etc. and move about using rotors, wing foils, etc., utilizing fl ight controls and 
perceptual processing outside of human expertise and experience. It may be 
continuously learning using  deep learning,  reinforcement  learning, or some 
hybrid combination of machine learning techniques that are diffi cult for hu-
mans to interpret. So the AI drone’s underlying architecture to address its task 
environment may consist of fundamentally different perceptions, actions, and 
representations than humans. However, if we include ITL with humans as part 
of the drone’s task environment, then that creates the need to interface the 
drone’s internal representations with those of humans.

It may also be possible to jettison entirely the idea of having a dedicated 
task learning architecture that maps and executes onto the underlying cognitive 
architecture of the agent. The agent could support some general  functionality 
for establishing common ground in the ITL environment. This would require 
the agent to be able to interact with instructors in ways that align common 
elements of task capabilities and knowledge to communicate about the  task 
environment, those capabilities, and relevant knowledge.

Mental Models and Simulation for ITL

An ITL system will need to know how its environment will change as a result 
of its actions as well as through the actions of others. Such understanding is 
necessary to reason about the potential effects or outcomes of various choices, 
or to anticipate future states based on the actions of others. This sort of predic-
tion has a long history in AI and cognitive science, but ITL systems may place 
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unique demands on such a system. In particular, following novel instructions 
will, by necessity, require the agent to predict the future under conditions it has 
never previously experienced. A successful ITL agent will require an internal 
model of the world that is reliable enough to extrapolate to new conditions and 
still provide good predictions.

We use the term  mental simulation to refer to the process of predicting 
some future state(s). Other common terms include prediction, projection, 
look-ahead, envisionment, simulation, and model-based  reasoning. In all these 
cases,  prediction involves imagining future states and actions. In general, sys-
tems capable of such mental simulation will have some form of mental model, 
which we take to be the internal representation that supports this process.

The Necessity of Mental Simulation

To clarify why we believe that mental simulation is a required core component 
for ITL, we fi rst note that humans do this automatically in ITL situations. For 
example, imagine hearing verbal instructions for tying a  knot (as discussed 
earlier). It is likely that you may imagine or attempt to visualize the manual 
operations described during the delivery of those instructions. The question 
of why this occurs then arises. As discussed below, the knowledge to predict 
the outcome of an action allows an agent to use instructions with incomplete 
sequences of actions, repair mistakes, and perform goal-directed  planning.

The requirement to consider things that are not currently true in the world 
extends farther than just visualization based on a set of instructions. When hu-
mans perform such tasks, they also make use of hypotheticals, counterfactuals, 
and so on. That is, they can spontaneously consider various possible futures, 
not just the one that is likely to be arrived at based on following a novel set 
of instructions. This may be thought of as a kind of analogy over experience, 
which enables both predication and abduction, as well as generating more 
than one alternative when multiple prior experiences are retrieved (Forbus and 
Gentner 1997). Requirements for ITL may also implicate a continuous rather 
than a discrete future/timeline.

Importance of Context

Mental simulation is more useful if the learner can relate instructions to the 
world and reason about the consequences of carrying out the instructions. 
Instructions, however, are often given as a list of actions to be accomplished, 
whether in recipes, checklists in aviation, instructions for electronic devices, or 
instructions on how to connect to the offi ce printer. The disadvantage of these 
types of instructions is that the purpose of each step is not always clear, making 
it much harder to simulate outcomes mentally. Humans are sometimes able to 
infer this knowledge, but without this knowledge, it is very hard to modify a 
procedure or to repurpose the knowledge for other tasks.
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We fi nd clear support for this statement in research on the  fl ight manage-
ment system (FMS) used in commercial aviation (Taatgen et al. 2008). An 
FMS is an onboard computer that can almost autonomously fl y an airplane. 
To enter routes, change routes, and program the FMS for other tasks, pilots 
must learn list-based procedures. If pilots do not know what the purpose of 
the individual steps are in these procedures, they have diffi culty memorizing 
them and generalizing the knowledge to novel situations, even though this is 
often required in everyday aviation. Taatgen et al. (2008) developed an alter-
native instruction: subjects were taught the context within which a particular 
step had to be understood, and the consequences of that step (i.e., a pre- and 
a postcondition). Compared to the traditional list instruction, subjects in the 
context condition learned much faster and were able to solve novel problems 
that required them to step outside of the bounds of the original procedures. 
These instructions can be supplemented with context, allowing pilots to per-
form mental simulation based on a richer mental model. Context allows pilots 
to reason about the outcomes of their actions, enabling them to compensate for 
missing knowledge and derive new sequences of actions for novel problems.

Imagination and Counterfactuals

Given that human task-based instructions are often underspecifi ed and incom-
plete (e.g., details are left out, steps are skipped, some task knowledge is as-
sumed), the learner is often required to fi ll in gaps which can be achieved using 
a variety of mechanisms, including imagining concrete task-based settings and 
applying instructions in the imagined environment, or constructing counter-
factual scenarios to determine the extent to which an instruction is applicable. 
Counterfactuals obtained by making changes to the current state, which turn 
representations of the actual context into a hypothetical context, can serve mul-
tiple purposes in the learner’s making sense of an instruction:

• They help the learner understand why the instructor gave the instruc-
tion in a particular way.

• They permit the learner to correct wrong assumptions about the nature 
of the task.

• They focus the learner’s  attention on relevant task aspects.
• They can suggest questions the learner might ask the instructor to clar-

ify instructions.

In addition, counterfactuals may allow the learner to generalize and transfer 
knowledge to other cases (Wilson et al. 2016).

Machine learning for classifi cation algorithms often requires careful cali-
bration of the training set to balance stimulus dimensions and categories. 
Otherwise, undesirable  biases such as frequency bias can result in skewed 
outcomes. Real-time learning mechanisms in human cognition, and by exten-
sion ITL, do not allow for such batch techniques to be applied. Counterfactual 
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reasoning can be a fl exible and effi cient way to achieve similar goals (reduc-
ing biases that derive from initial sampling) in a more naturalistic way. For 
instance, consider a selection problem where one choice yields a deterministic 
payoff while the other follows a probabilistic distribution between higher and 
lower values, averaging to a somewhat higher payoff than the deterministic 
choice (i.e., the well-known two-armed bandit problem). If one chooses ac-
cording to expected values established from past history of each choice, as 
typical in instance-based learning models of decision making (e.g., Thomson 
et al. 2015), a run of poor luck with the probabilistic choice will lead to a lower 
expectation, resulting in the deterministic payoff being chosen. Since no infor-
mation is typically available for foregone payoffs, this suboptimal policy can 
persist indefi nitely.

However, counterfactual  reasoning can alleviate the tendency to fall into lo-
cal minima. Engaging in an explicit consideration of alternative choice can lead 
to a plausible instance similar to the one actually experienced. That plausible, 
imagined instance can then result in a rebalancing of the choice distribution, 
future choices that take the alternative outcome, and, over time, normalizing of 
choice expectations. Counterfactual reasoning, though, requires at least simple 
causal models of the domain for it to be effective. Otherwise it can just as well 
result in a confi rmation of the original choice, if the decision maker gives in to 
confi rmation bias and similar self-confi rming tendencies.

Discrete versus Continuous Prediction

In all the above considerations about the use of mental simulation for predic-
tion, we have remained agnostic as to the type of prediction. Some mental 
models used for prediction are based on some sort of discrete time step. For 
instance, a mental simulation of navigating through a house might consist of 
having a current belief about what room one is in, and then imagining the effect 
of a discrete action, such as “go to the living room,” to be a discrete change 
in location (perhaps via a series of navigation steps). While this is a common 
case, it does not seem to be the same type of mental simulation that is involved 
in the tying of a  knot. For this case, mental simulation seems to be continuous 
in time, as are the imagined movements of one’s hands and fi ngers.

Exactly how such continuous mental models are supported is not clear to 
us. To capture the timing and dynamics of  prediction, it certainly appears that 
dynamical systems models and various kinds of neural networks may be more 
useful than symbolic or rule-based systems. However, the more important 
question may be how these systems are learned. In a situation based on discrete 
time steps, predicting the future is often thought of as learning the function 
that maps from the current state and action onto the next state. To support this 
in a continuous time domain, some sort of discretization may have to be used 
(e.g., predicting the state one second from now), but this imposes a particular 
time step that may not be appropriate. Research into qualitative representations 
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provides a quantization of continuous behavior that is broadly compatible with 
human event decompositions in  perception and language (Forbus 2011), and 
hence may be useful for ITL.

One way to address this may be to consider the approach observed in the 
human hippocampus (Rubin et al. 2014). Here, there seem to be two different 
ways of representing the future. One is to represent a sequence over time by ac-
tually having the mental model (in this case neural activity) change over time in 
a similar way (although perhaps much faster than the original action). This sort 
of neural replay uses time to represent time (although at a different scale). The 
second method is to represent the episode over time as a single static pattern. 
This might be thought of as using space to represent time, with the temporal se-
quence being collapsed into a single event. Particular parts within that sequence 
may be classifi ed, resulting in something like a chunk (with slots for the dif-
ferent temporally ordered events within that sequence). We note, however, that 
different levels of discretization of the temporal sequence are possible.

The Research Community and Functional 
Knowledge Requirements

As the community seeks more defi nitive understanding in this new interdis-
ciplinary fi eld, there will be many different viewpoints on the goals, research 
practices, fundamental assumptions, and understanding of what is needed to 
move ITL research  and development forward, and how we might work on 
common goals. Nonetheless, it is still possible to share methods, tools, and 
goals (in the form of challenge problems), as we outline below.

Options for Shared Methodologies, Tools, and Infrastructure

Shared methods and tools could be very helpful in removing barriers to entry 
in ITL research. Figure 3.1 elaborates on the conceptual framing of the ITL 
system from Mitchell et al. (this volume). It highlights seven areas where shar-
ing could be benefi cial and productive (indicated in the elliptical labels). While 
a comprehensive review of specifi c sharable components is outside the scope 
of this chapter, we do identify a few examples. We also recommend that the 
community establish a shared portal (e.g., website, Wiki, repository) where 
sharable components can be cataloged and stored for community use.

 Architectures and Architectural Components

Architectures and architectural components may be part of the learning system, 
the instructional system (in the case of a synthetic agent as instructor), or both. 
Examples of  architectures include  cognitive  architectures, such as  ACT-R and 
 Soar, as well as robotic frameworks, such as the  Robotic Operating System. 
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Previously developed components may be especially useful for moving into 
ITL from other areas of research, such as in constructing a natural language 
understanding system. However, there are many existing components from 
which the capability for natural language understanding can be constructed.
The specifi c components to choose (and the gaps that must be fi lled between 
them) depend on the level of sophistication and completeness required by the 
research.

Knowledge Components and Models

Knowledge components and models are elements expressed in some rep-
resentation (typically, the representations of the underlying architectures or 
components). They are likely to be diffi cult to share directly unless different 
researchers are using the same architecture, but some functional descriptions 
could be shared. It may also be useful to share and exchange knowledge-level 
summaries of models and model components, even if the encoded representa-
tions are not directly sharable across researchers using different architectures 
and systems.

Simulations

Simulations are not required for ITL, but they may be convenient for speeding 
research and exploring options that are not cost-effective or safe to explore 
initially in physical settings. The sharing of simulations, such as Gazebo, has 

Evaluation methods

Experimental data

Learner (AL) Instructor (AT)

Models

Architecture/components

Architecture/components

Simulation

w(t)

Task instructions

Figure 3.1 Conceptual framing of ITL: ellipses indicate computational artifacts and 
knowledge products that could be shared across the ITL research community.
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been useful in the robotics community for comparable reasons. Simulations 
could fall into any or all of the following categories:

• Those which simplify the real world to support or enable task learning 
in a simulated environment (e.g., a robot simulation or a virtual ma-
chine simulation of a mobile device).

• Those designed to mimic the role of a player or actor in the task learn-
ing interaction (e.g., a simulated instructor who interacts with a learn-
ing agent).

• Those that are the target domains or environment for task learning (e.g., 
a virtual human character).

Instruction, Instructional Strategies, and Simulated Instructors

Examples of instructions which summarize (and possibly codify) effective 
human instruction could be useful for bootstrapping and enabling system-
atic exploration of alternative instructional strategies for evaluating ITL. For 
example, Koedinger’s  SimStudent (Harpstead et al. 2015; MacLellan et al. 
2014; Matsuda et al. 2007) captures and encodes human instructional steps. 
SimStudent’s representation might provide an initial template for codifying 
and sharing instructional activity generally for ITL systems. Further, in the 
 educational technology community, there are ongoing attempts to encode vari-
ous human instructional strategies for use in  intelligent  tutoring and  computer-
based training (Wray and Woods 2013). An instructional strategy could be the 
pattern and choice of specifi c  demonstration examples or the conditional intro-
duction of special cases after a student demonstrates competence in the more 
prototypical examples. Tools and representations such as these could support 
the defi nition and reuse of instructional strategies for ITL. VanLehn (this vol-
ume) offers the perspective that ITL instructional strategies may not need to be 
terribly sophisticated, because actual human instruction is often not as sophis-
ticated as it is hypothesized to be.

Research Data and Artifacts

There are many different classes of methods and data that could be shared 
within the ITL community, including evaluation data, tools and methods for 
data analysis, and repositories of task specifi cations. As we discuss further be-
low, currently there is a gap in the community’s ability to specify tasks in 
a way that meets all requirements. Task specifi cation languages (Yost 1992) 
have been developed in the past, and recent efforts in general game playing and 
 planning have included generalized representations for some kinds of tasks 
(Love et al. 2008). A more general task specifi cation language is, however, 
needed for effective sharing of task specifi cations.
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Challenge Problems for ITL

Above  we listed a collection of tasks to describe the scope of ITL. Here, we 
recommend specifi c tasks that are plausibly feasible in the near term for the 
community to work on and share progress. In particular, a few well-specifi ed 
“challenge problems” could help focus the community. Defi ning such prob-
lems is diffi cult: we want the challenge problems to be limited enough to be 
achievable, yet complex enough to push research in directions that will encour-
age progress toward large-scale tasks that we eventually want to be able to 
handle through ITL.

To keep these eventual goals of ITL in mind, we believe challenge prob-
lems can be identifi ed in the fi ve different domains identifi ed in the goals of 
this Forum:  assistive  robotics,  healthcare, education, training, and  gaming. 
Developing specifi c problems in each of these complex domains should be 
possible to achieve in a two- to fi ve-year research horizon, and would both 
stretch and focus the fi eld. The complex real-world interaction problems and 
practical problems that are present in these domains would force the fi eld to 
go beyond laboratory simplifi cation. Focus would come through multiple re-
search groups simultaneously investigating solutions to similar problems, en-
abling more immediate and impactful sharing of results.

However, there is an important practical problem to consider as well. The 
fi rst four domains all involve  real-world interaction. Assistive robotics and 
healthcare applications generally involve robotics, whereas education and 
training involve interactions with human participants. This creates a large bar-
rier to entry for these four areas. Thus, a potential concern is that this additional 
complexity, inherent in the fi rst four domains, will result in an overemphasis 
on gaming applications.

It is certainly the case that a gaming challenge task would be excellent for 
ITL. Indeed, large numbers of applicable games are already available in a con-
venient format (e.g., GitHub, FreeCiv), and games are already being widely 
used by deep  reinforcement  learning research. By using such games, it should 
be possible to show the advantages of ITL, especially if gaining expertise in 
such games through ITL occurs in a much smaller number of trials. Current 
noninteractive learning of these games often involves millions of trials, several 
orders of magnitude more than would be expected by ITL systems, or than is 
tolerable by people.

However, if gaming has a much lower barrier to entry than the other four 
domains, then the fi eld runs the risk of spending too much effort in one area 
and ignoring the inherent challenges of the other areas. It may also fall into 
research traps, where some ITL research ends up only being applicable to the 
gaming domain and thus of little use to researchers in other domains.

For that reason, we believe it is vital to identify particular problems within 
the other four domains—assistive robotics, healthcare, education, and train-
ing—that also have a low barrier to entry. In particular, we are looking for 
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problems where research progress can be made without research requirements 
that involve physical robotics or human subjects, due to the time needed to 
coordinate and to conduct studies with those participants. This may involve 
publicly available robotics simulators and publicly available data sets from 
human participants. We will also need researchers working in these domains 
with real robots and real interaction with human participants. By identifying 
helpful challenge tasks that do not have this large barrier to entry, researchers 
can contribute to the community without extensive overhead.

An example of a possible low-entry challenge domain is to build a trainable 
“pet” agent on a mobile phone or tablet. For instance, it could be taught new 
skills through the input/output capabilities of a phone or tablet. Input might 
consist of text, drawings, speech, or photos. The agent could be taught to an-
swer simple questions or to play games. It could produce text and speech out-
put or draw things itself. It would store knowledge gained through interaction 
and build on that in subsequent sessions. A potential useful application of this 
capability would be in primary education: children could teach their “pets” a 
particular skill and then all the agents in the class could then compete with each 
other to see whose agent has best learned the skill. For example, in a teachable 
agent project, students would “teach” their systems about a domain and then 
compete with other agents, either alone or in teams (Biswas et al. 2016).

Summary of Challenges and Opportunities

In  this chapter we have reviewed and synthesized perspectives from multiple 
disciplines on the functional roles of knowledge and architecture to increase 
understanding of ITL systems and to assist in the development of synthetic ITL 
systems. Here we summarize the major themes that emerged from our analysis, 
focusing on the most important gaps that were identifi ed in the existing state of 
knowledge as a basis for  future, impactful research contributions.

What Are Suitable Formalisms for the Representation of 
Task Knowledge?

To understand how someone or something can learn a task, ITL needs a shared 
method of formalizing and describing tasks. In our discussion, we have at-
tempted to characterize a “task” but acknowledge that this description is not 
suffi cient, especially in terms of formalization. Formalization is important not 
only for practical purposes, such as for knowledge sharing and comparisons of 
task learning, but also to enable more productive communication and clarifi ca-
tion within the fi eld. Questions requiring further consideration include:

• Can suitable formalisms, ones that are comprehensive (express most 
tasks) and function-general (not assume specifi c architectural ap-
proaches or underlying computational representations), be constructed?
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• How can tasks be formalized so that requirements for performing the 
task specify or indicate incremental modifi cation of the representation 
of task behavior within the learning or performing system? A task spec-
ifi cation may need to include task-level primitives, task concepts and 
terms, and task strategies as well as the specifi cation of intermediate 
concepts that should be developed during task optimization. One ex-
ample is the ability to recognize the board confi gurations, as in master 
chess players (Chase and Simon 1973).

• What methods can be developed to enable systematic characterization 
of tasks and the challenges for an agent learning that task? The com-
munity would benefi t from being able to evaluate individual contribu-
tions focused on varying tasks if there was some way to understand the 
relative complexity of the tasks being learned. Relatedly, a researcher 
unfamiliar with a new task may wish to gauge the complexity of a task 
prior to attempting to get an agent to learn and to perform it.

Are Existing Computational Architectures Suffi cient for ITL? 
What New Architectural Primitives Are Necessary for ITL?

Do existing cognitive and computational agent and learning architectures meet 
the functional requirements for ITL as summarized in this chapter? This is an 
empirical research question. As we noted, however, the highly dynamic and 
extremely fast dynamics of human speech, which is required for many kinds 
of ITL, may not be feasible in today’s architectures. Some potential limitations 
may be attributable to a mismatch in the architectural primitives needed to 
support such interaction, rather than atheoretical constraints, such as avail-
able processing power. Additional questions that arise from this architectural 
perspective include:

• What constitutes a functionally suffi cient or appropriate set of architec-
tural primitives to support human conversational interaction at human 
timescales (as determined empirically, analytically, and from social 
psychological research)?

• Are novel architectural representations and mechanisms needed to 
support automatic prediction in computational agents? How can trac-
table automatic  prediction, useful for agent learning and understand-
ing, be supported at the many different timescales available in human 
prediction?

• How should architectures (better) support robust sharing of  attention 
and reference during interaction? How can architectures more directly 
support the establishment and maintenance of local common ground 
during interaction?
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• What constitute suitable representations and mechanisms to support 
behavior composition (and decomposition) in a scalable way? Are such 
functions and representations (necessarily) architectural?

What Novel Requirements for Learner Knowledge Representation 
Result from ITL?

Knowledge representations are shaped by the tasks and domains in which 
they will be applied, the ontological commitments of the representation to the 
situation that the representation will express (Davis et al. 1993). ITL forces a 
new consideration of the requirements for knowledge representations because 
specifi c task requirements cannot, by defi nition, be known in advance for a 
(general) ITL system. The psychology of learning and developmental psychol-
ogy may be particularly useful in helping researchers understand how task 
 knowledge is formed and shaped during all phases of task learning. Specifi c 
questions include:

• What are the requirements for a knowledge representation so that it 
will readily support  generalization and transfer of task knowledge (task 
 primitives, task terms and concepts, and task strategies) to new tasks? 
This question assumes that ITL requires that some distinct agent tasks 
share task knowledge.

• What are the necessary and suffi cient knowledge primitives that will 
support effi cient and general ITL across a wide range of domains?

• What is the ontology/taxonomy of task  knowledge that should be ac-
quired by a learner? How do the representations of different tasks in-
teract with one another?

• How can an agent learn relatively complex procedures (such as count-
ing) on the basis of instruction? In the human realm, it takes several 
years of  experience for young children to learn to count (in a general 
way). How much time and effort is needed for an instructor to con-
vey complex procedural information? How should such information be 
incorporated into existing agents (e.g., to what extent are production 
rules, often used to model  procedural representation in humans, apt for 
procedural representation in ITL)?

What Are the Requirements for the Instructor and Learning 
Environment to Support ITL?

Unlike most artifi cial  learning systems, ITL systems will, by defi nition, co-
construct a learning environment with an instructor/teacher. In ITL, this will 
generally involve a triadic relationship, where the learner, the instruc tor, and 
the shared environment exert infl uences on one another to produce task learn-
ing (for more on this topic, see Shah et al., this volume). Such an arrangement 
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is relatively novel for artifi cial learning systems. However, research from psy-
chology and education regarding teacher–student interactions (see Van Lehn, 
this volume) may provide guidance in creating effective learning environments 
for artifi cial agents. Additional questions to consider include:

• How do human learners and teachers co-construct learning tasks during 
learning? How can ITL environments support such co-construction?

• How can ITL technologies take advantage of the troubleshooting and 
repair processes inherent in natural human dialogue to accelerate learn-
ing in ITL systems?

• What methods other than, or in addition to, natural language can be 
used to achieve  common ground in instructional communication? Are 
there domain- and task-neutral technologies or methods that would al-
low a human instructor and agent learner to achieve effective common 
ground without using natural language?

How Might ITL Contribute to the Broader Goal of AI Systems?

The use of ITL for agent learning tends to assume that ITL will be a consumer 
of AI algorithms and tools, such as specifi c machine learning algorithms or 
functional components, like simultaneous localization and mapping or a natu-
ral language understanding component. We suggest that ITL may contribute 
both to the solution of outstanding challenges in AI as well as to the concep-
tualization of future AI systems (even if ITL is not used). Key questions to 
address include:

• How can an agent extract or produce symbol-like representations from 
continuous sensors and actions? Such symbol grounding—a long-stand-
ing goal of AI research—is still unmet, although signifi cant progress 
was recently achieved in grounding for language learning, leveraging 
the recent availability of cheap and pervasive video (Perera and Allen 
2014). ITL stresses symbol grounding, both in its requirements for con-
versational interactions at human scale as well as in the need to learn 
new task concepts, which may be expressed symbolically by an instruc-
tor but grounded in the perceptual and motor experience of the agent.

• What methods are fruitful for the integration and control of multiple 
learning systems? Most artifi cial ITL systems can be described as in-
tegrated, cognitive systems, a sub-area of research in AI. The focus on 
integration for a particular functional purpose (learning from instruc-
tion) may contribute to improved understanding in the composition of 
integrated cognitive systems generally.

• How might a human interact with, teach, and learn from nonhuman 
intelligence? Much of today’s AI is dominated by methods that are 
functionally powerful, but they lack transparency and understandabil-
ity. Increasingly, AI-inspired algorithms infl uence the day-to-day lives 
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of most living humans, sometimes with unintended and perverse con-
sequences (O’Neil 2016). Thus, it is important that we understand their 
function and to direct them if necessary. ITL offers an approach that 
could serve as a foundation for more effective interaction, instruction, 
and understanding between human and nonhuman systems.

• What methods and techniques are useful for evaluating the generality of 
AI systems? Much of AI is focused on optimizing solutions to specifi c 
domain problems. Still, the goal of AI, as originally conceived, was to 
produce artifi cial general intelligence (McCorduck 2004). Because ITL 
is, by defi nition, not focused on single tasks or domains, it is likely to 
encourage  generalization. If ITL is successful, it may also nudge the 
AI community away from its current single-task focus. The develop-
ment of methods and tools to support the evaluation of ITL may offer 
a path to evaluate artifi cial general intelligence as well, by being more 
targeted and measurable.
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