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Abstract—Mixed human-robot teams are increasingly con-
sidered for accomplishing complex mission due to their com-
plementary capabilities. A major barrier for deploying such
heterogeneous teams in real-world settings, is the current lack of
natural skills in robotic team members, such as the understanding
and interpretation of natural language instructions that include
referential descriptions of entities in the world. In this paper we
report the results of an empirical study in which humans tend to
use referring expressions. We show how the received results and
ideas can be used as guidelines to improve dialogue systems. By
integrating and extending our system with these results, we will
show how complex natural language instructions can be easily
translated by robotic systems.

I. INTRODUCTION

Due to the continuely rising number of applications
for human-robot teaming, there is an increasing need for
technologies based on natural human-robot interaction (HRI)
in jointly accomplishing tasks in such teaming scenarios.
An example shows the project Sherpa [9] that investigates
how a human team leader commands a team of robots to
perform part of a search task in a mountain environment.
An exemplified command might be “Go behind that tree. It
is the tallest”. This command includes linguistic as well as
visual descriptions of the terrain that have to be interpreted
by the robots in the context of the task. Enabling robots to
understand such natural language (NL) instructions would
facilitate seamless the coordination in human-robot teams,
however interpreting those kind of instructions is still a
challenge in particularly if the robot has no prior knowledge
of the constructs applied in the language. Misinterpretations by
robots can lead to wrong results and disastrous consequences
in search and rescue missions, especially, when finding injured
persons in dangerous areas is very time limited and has to be
done quickly. To accomplish such kind of instructions, the
robotic agents must be able to understand verbal references
to physical entities perceived in the world.

Our research focuses on making human-robot teams more
effective for search and rescue missions by:
(1) ensuring natural taskability of the human operator and
his robotic team. When working with robot teammates NL
descriptions such as reference resolution, perceptual and
spatial descriptions need to be resolved in order to assure

correct task interpretations.
(2) understanding intentions and task-based instructions of the
human team leader. While working with humans, robots need
to display their intentions and interpretations of instructions
in such a way that are easily readable by the human team
leader to ensure correct task interpretation.
(3) geometric and cognition-enabled reasoning on tasks for
generating and refining goals. In order to execute tasks
correctly, robots request in form of prolog queries knowledge
about context-specific tasks that are replied by a map with
the appropriate knowledge.

Our investigation uses interaction scenarios from human-
robot visual search and rescue tasks in simulation. The human
commands the robot using NL, and the robot, in turn, has
to interpret those commands in the context of the task. This
includes make inferences about where and how it has to
position itself to have unrestricted perceptual access to target
locations in the environment. In human-robot team settings
robots need to have an understanding of human expectations
about communication. The goal is to make those interactions
as natural as possible. So, we encourage this work by creating
hypotheses on human instructions to improve dialogue systems
and NL understanding for robots.
We hypothesize that (H1) humans focus on prominent entities
in the world while giving instructions. While humans guide
other humans through the terrain, they use specific descriptions
based on the shape or the size of the perceived entity, such as
“small”, “big”, etc. They also use spatial relations to entities
how they are related to each other.
In addition, we hypothesize that (H2) humans do not explicitly
mention obstacles in the environment when routing another
human. They expect that their team is able to perceive these
changes and obstacles in the terrain and to overcome them on
their own.
To be able to develop the necessary NL understanding and
reasoning mechanisms, we conducted an empirical study of the
visual search and rescue task and checked these hypotheses.
We will report the results together with an analysis that can
be used to improve current NL understanding and dialogue
systems. We have extended our task interpretation system
with components of natural language processing and integrated
those ideas into that system to ensure the interpretation from



high-level NL commands into low-level action plans that are
comprehensible for robots.
The rest of the paper is organized as follows: We start with a
review of existing work in HRI and then introduce briefly the
experimental setup of the empirical study. Next, we present
the results and their significance by integrating them into our
task interpretation system that uses the concept of interpreting
vague tasks through sampling- and simulation-based reasoning.
At the end we discuss our finding results and future directions.

II. RELATED WORK

The HRI field is of emerging and increasing interest.
Much of the research effort has focused on developing
computational models of social intelligence for robots to
allow them to successfully interact with humans as assistants
or teammates in a natural and intuitive way [5], [7].
In [8] is discussed that humans are performing task
planning, monitoring and supervision while robots are
acting as intelligent, autonomous assistants and interacting
symbolically and physically. This interaction is done via NL,
gestures and touch.
An essential interest in HRI is making robots more like human
beings especially many researchers have been developing
robots that perform human tasks [4], [11], [12]. A lot of
work was done in the area of telepresence where humans
remote robots to explore remote environment or to interact to
other people between long distance. The idea of employing
robots as partners to work with human together or to replace
humans as team member to be outside the rubble is of huge
interest in many fields starting from virtual games towards
space exploration and rescue missions [3], [14], [16].
Another essential field in HRI is the use of NL interactions
during task execution between humans and robots. Krause et
al. [6] use NL as a way of one-shot learning of visual objects
and enables the robot to immediately recognize the described
object. Further work based on NL and resolving references
to visual objects is done in [15] where an algorithm for
reference resolution is presented that identifies the referents
of referential expressions and modifies the world model based
on such expressions.

It is known that HRI studies are explicitly organized
and concise e.g. what the human is saying and the robot is
performing. Also tasks are very well and clearly structured,
so the spectrum of received data is kept very small. Most of
these studies are carried out in indoor environments where
the search space is limited and the different target objects are
clearly arranged, thus allowing the human to correct the robot
if it misinterprets a task description. The situation is, however,
different for outdoor terrains where terrain complexity and
task conditions may not allow such human intervention. In
this paper we focus on how instructions are formulated for
outdoor environments, i.e., which types of route and referential
descriptions with different target objects humans will use that
need to be processed by the robot to successfully interpret
the human commands. Our idea is to understand the intention,
the language and the behavior of humans when tasking other
humans to achieve common goals and apply that on robots. We
will present the empirical experiment we conducted to collect
data from human instructors about how instructions would be
given for outdoor search tasks.

Fig. 1. An illustration of a mountain environment with a human team
leader and his team members, three landmarks marked with arrows to point
at locations of interest.

III. THE SEARCH AND RESCUE EXPERIMENT

The main goal of the online experiment using Amazon
Mechanical Turk was to investigate the use of referential
expressions used to describe task-relevant real-world entities
in outdoor settings. The experiment was done with human
teams to investigate how humans command other humans in a
natural way. The idea is to convey this kind of communication
to robot teams to enable natural tasking.

Methods: We created a virtual mountain environment and
took several images showing outdoor scence to specify tasks
to be accomplished by the participants. These images include
possible landmarks that present locations of interests where
injured persons are detected (e.g., see Figure 1 for an example).
These indicated landmarks were shown to the participants to
mark the positions where their team has to go.

The figure shows a mountain terrain with an avalanche
between the mountains, surrounded by many trees and rocks.
In the right corner of this figure is a human team leader who
has an overview of the terrain and is giving instructions which
have to be accomplished by the team. These instructions are
based on the given landmarks indicated with arrows. Each
landmark represents a task which the participants had to
perform by giving instructions to their team starting at their
initialpose.
The overaching goal of the mission was to find injured persons
trapped or hidden by entities in the terrain. So, the tasks
involve sending the team to find injured persons at the locations
indicated by the arrows while considering the conditions of
the environment such as obstacles. Participants then had to
give written instructions using the keyboard to their team
as “team leader” that would guide them through the terrain
to the specific landmark to find injured persons. Subjects
were informed that their teams did not have any knowledge
about the terrain and its conditions, so the participants had to
consider these while instructing. They had to formulate their
instructions clear and comprehensible to the team members to
avoid misinterpretations and ambiguities. In order to keep the
focus on NL, we avoided to use gestures that could facilitate
the interpretation e.g. by pointing into specific directions and
placed the given landmarks next to specific entities in the



terrain. The study had no time limitation to allow participants
sufficient time to accomplish the tasks and to receive efficient
and effective results at the end. We integrated the hypotheses
(see Section I) into the study by modifying the terrain explic-
itly. The H1 was integrated by changing the shape and size of
some entities in the world that were close to a given landmark
(see Figure 1, Landmark A). The H2 was used by placing
obstacles in the images e.g. an avalanche along the way. By
integrating those hypotheses in the tasks, we wanted to know
if the participants consider those as significant information and
share them while commanding their team.
Participants: In the study, 69 participants provided effective
contributions (44 male, 25 female) with an average age of
30.33 years. All participants were English native speakers.
The study was conducted with non-experts to receive a huge
spectrum of natural and various sentences.

IV. DATA ANALYSIS AND DISCUSSION

To help improving the effectiveness of current NL process-
ing algorithms for robots, we next briefly analyze and evaluate
the data based on the given hypotheses to be able to provide
empirically grounded guidelines. We specifically investigated
the ways in which the participants used language to encode
relations between entities, places and other aspects of the
environment to convey knowledge or to resolve ambiguity. The
various examples given in this section are contributions of the
participants in the study.

A. Simple Instructions

The results of our study show that the several instructions
are often composed of the same basic structure

<VERB><ORDER><DESCRIPTION>

The VERB expresses a physical action in the sentence that
describes what the team has physically to do such as going
and walking. In combination with the ORDER the team is
commanded to do something. An example might be Go right
of tree! that describes an action with “Go”, an order “right of”
and a description “tree” in an outdoor mission. Together with
the DESCRIPTION an object can be denoted and described in
sufficient detail that the team can form for instance a mental
picture or an understanding of it.
We defined this simple VOD-structure to generate rules for
syntactically and semantically interpretation of instructions
into robotic action plans. For the interpretation into action
plans, we have used a system that was previously introduced
in [17] and extended it by components for command interpre-
tation to enable human-robot interaction in search and rescue
missions. In the next section we will show an experimental
application by introducing and evaluating the expanded system
with the results of the study.
Depending on the various tasks and the level of detail in the
contributions of this study, this VOD-structure was extended
by various constructs in the results that will be presented in
the remainder of this section.

B. Action Descriptions vs. State Descriptions

The instructions generated in the study can be divided
into two types: action descriptions and state descriptions.

Action descriptions might be a listing of actions whereas state
descriptions might specify conditions of perceivable entities.
An example of action descriptions is given with

(b) Move to your left towards me to get free of the trees.
Then move left skirting the avalanche until you reach a hill.

Move up the hill laterally and forward towards the
mountains until you reach the site.

It shows that the actions include pre- and postconditions
dependent on each other. They have to be considered ac-
cordingly during the task execution as emphasized by the
preposition then that has been used to indicate what happens
next. The conjunction and presents a sequential arrangement
of the actions that shows the condition of a successive action
execution. Other prepositions have been used to emphasize
instructions in the manner of time and place.

The state descriptions specify conditions of the environ-
ment that also include perceivable entities. The instruction
(c) You are heading towards the tallest tree in the set of trees
in front of you. It is the last one in the group and near some

large rocks

that was given in the results shows a sequence of visual
descriptions of the environment. Entities that are distinctive
described using scalar terms such as tallest tree or large rocks.

C. Referential Descriptions

Apart from action and state descriptions, another frequent
aspect in the human generated instructions are referential
descriptions of entities followed by anaphorical reference to
avoid redundancy. They are extended over many sentences or
subclauses and refer to various antescedents. These kinds of
instructions that include a set of references, are structured in a
very complex way, so that reference resolution might be quite
difficult for robotic teammates. The example based on Task C
in Figure 1

(e)“How close can you get to the victim and if is it safe to
get to him, to assist him and how badly is he hurt”

shows an instruction that is split into many subclauses. The
anaphors him and he are extended over the whole instruction
and refer to one antescedent to victim. In the results the
referential descriptions have mostly been used to refer to the
victim given in Task C. A small amount of those was used
to refer to inanimate entities in the world. In Figure 2 the
expressions used in the results by the participants based on
the different landmarks is illustrated.

A reason for the small amount of references to describe
inanimate entities might be that humans are used to utter
expressions such as “there” to refer to regions or areas. In the
results it was quite observable that those kinds of expressions
have been used by 48 subjects to describe regions or areas
very vague without indicating entities explicitly. An example
on Task C is given with

(g) “Go to the two trees at the top of the mountains. Are
there victims at your present location?”
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Fig. 2. Referential descriptions applied in the contributions by participants

TABLE I. FREQUENCY OF SPECIAL CHARACTERS BASED ON THE
GIVEN LANDMARKS

Landmark Comments Num of Participants
A huge tree, largest tree, big tree,tall

pointy tree
40

B large rocks, big boulders, pile of
rocks

36

C across snow pack to peak, all trees at
the top of the hill, valley between the
mountains, up to mountain two trees

37

D. Different Viewpoints

Another essential aspect highlighted in the results, are
the use of various viewpoints applied by the participants to
their instructions. Around 35 participants instruct their team
by using spatial directions based on their teams position, e.g.
Move to your right. The reason might be when humans work
alongside humans they are on a par with their teammates while
working with robotic teammember is more subordinated. The
task execution is more delegating than collaborating.

By investigating these results it was quite clear that the hy-
pothesis H1 is satisfied by around 36-40 participants. Humans
are tend to use specific visual descriptions for entities when
instructing or guiding their teammates. In Table I some of the
most used expressions (based on the landmarks in Figure 1)
applied by the participants in their utterances is given.

In order to describe the location and the surroundings of
the several landmarks the participants uttered expressions that
indicated the sizes and shapes of entities and the relation of
dependencies between entities. An example is given by all
trees at the top of the hill that specifies the location of the
trees at the top of another location.
While checking hypothesis H2, it showed that most of the
participants did not consider the conditions of the terrain in
their instructions, e.g. obstacles along their way. Around 22
subjects included the surroundings in their utterances with ex-
pressions such as “ Be careful”, “Be aware” or “Be cautious”.
The reason might be that humans are expecting from other
humans cognitive capabilities such as awareness or perception
when performing tasks. Something that is naturally given by
humans and does not have to be explicitly mentioned. As long
as the obstacle is not hindering the task execution, humans do
not see this information essential to share. This aspect is very

important when performing tasks indoor as well as outdoor.
Robotic teams need to have these kind of capabilities in order
to be able to replan or reroute themselves when an obstacle is
along their path. So, the hypothesis H2 is also satisfied based
on the given tasks and their results.

The results show that the following issues have to be
considered to enable a smoothy interaction between humans
and robots:

• Reference Resolution: Robots must be able to recog-
nize dependencies in the sentences and resolve the
references that are extended over the whole instruc-
tion.

• Sequences of Action and State Descriptions: Robots
need to consider and interpret instructions with various
length and with pre- as well as postconditions.

• Distinctive Descriptions: Robots need knowledge
about distinctive descriptions given in the world such
as “eyecatching” entities.

• Understanding Relations and the Semantics between
Entities: Robots need to understand and interpret qual-
itative spatial expressions in instructions based on the
given conditions of the world.

• Taking Perspective: Robots have to consider the dif-
ferent viewpoints when interpreting instructions given
by a human. Humans are often used to refer to objects
that are in their visibility range or in front of them.

The results of our study showed that humans instruct other
humans by using expressions in a way that are unknown
for robotic systems. They need special skills to comprehend
and process those expressions. When interpreting referencial
expressions in instructions into the task context, for example,
robots must be able to recognize those dependencies in the
sentences and resolve the references, accordingly.
In order to be able to understand and interpret instructions
at a human level, we have extended our current system with
the results of this section to improve it. This system will be
presented in the next section.

V. EXPERIMENTAL EVALUATION

In this section we will show how the results of the study can
improve the capabilities of systems during task interpretation.
By extending our task interpretation system, we will exam-
plarily show how our system is able to handle ambiguity and
vagueness in human instructions without requesting additional
information from humans.

A. Interpretation of High-level Instructions through Task In-
terpretation System

Using the VOD-structure allows us to easily define rules to
translate high-level instructions into action descriptions com-
prehensible for robotic systems. Natural language instructions
such as

(a) Go across the snow pack to the peak



Algorithm 1 Parametrized Action Description (1)
1: (an action
2: (:type move)
3: (:viewpoint team-leader)
4: (:direction across)
5: (a region
6: (visible
7: (a region
8: (:name snow-pack)
9: (:to

10: (a region
11: (:name peak)))))))

can be directly interpreted as a high-level specification
and can be easily translated into an action description (see
Algorithm 1) executable by robotic systems.

This description uses essential components of the
Cognitive Robot Abstract Machine (CRAM) [1], [10], called
designators that describe various parameters and offer several
forms of implementations for objects, locations and actions.
In the listing above, the interpreted command is translated into
an action designator that includes three location designators,
equated with regions. All of them contain a set of symbolic
constraints that are conditions to restrict the search space.
These constraints are presented by colons followed by
expressions, such as :type, :viewpoint, :direction, :name and
:to. This description was extended with the :viewpoint tag
in order to consider the certain viewpoint during the action
execution.

In order to be able to directly interpret instructions given by
the VOD-structure into action descriptions, we have extended
our existing task interpretation system introduced in [17] with a
new component, called Human-Machine Interface (HMI). This
component consists of a parser and an interpreter that includes
algorithms for natural language processing and interpretation
developed for this use case.
The parser that we use is called temporal logic and dynamic
logic NL parser (TLDL) [2]. It takes lexical items and maps
them to temporal and dynamic logic expressions that represents
goals and actions specified in the NL directive, respectively.
For the purposes of the current search task, we have extended
this parser based on our results to process dependencies such
as in spatial relation descriptions. To handle those depedencies
given with

(h) Go right of the tree next to the rock and take a picture.

we extended the parser by adding a sequential-connector to
mark that parts of the instruction belongs together. In the
instruction above the connector is added between the pronouns
“tree” and “next” to indicate that both parts of the instruction
belong to the same sentence. After parsing this instruction, the
system is generating formulas such as

move(right, tree)<=(next-to,rock);take(picture).

The action take(picture) is interpreted as a definition of
visibility that includes the meaning of detecting something.
By adding the connector which is presented as “<=” in the
formulas instructions based on various length of sequences can
be interpreted. After the parser mapped the natural language
command into logical expressions, the results are forwarded

Fig. 3. Task interpretations in a simulated world with the agents, e.g. human
colored yellow and a quadrotor, and the visualization of sampling-based goal
positions for “Go right of the tree next to the rock”. Mechanism uses the rock
as reference point and calculates robot goal positions for the closest tree that
has on his right side a rock.

to the interpreter. The interpreter is equipped with algorithms
to reason about spatial relations, dependencies between sen-
tences and reason about entities represented in the different
viewpoints. In order to fill the knowledge gaps and resolve
ambiguities in the knowledge, the HMI component retrieve
and access information of the knowledge processing system
(KnowRob) [13]. KnowRob enables the robotic agent to re-
trieve background information about entities within the world
and reason about the execution to generate more flexible and
robust behavior. By retrieving information, the HMI is able
to ground the expressions in the instructions to the perception
of the robotic systems and resolve the complex linguistic and
visual descriptions as well as create semantically annotated
descriptions.

To translate the abstract and qualitative action descriptions
into numeric action parameters which the robot’s navigation
subsystem can use, our system introduced in [17] generates
a distribution of goal positions that satisfy the qualitative
description. In Figure 3 the results of this approach depicting
a simulation environment including a human and robot team
based on the qualitative description “right of a tree next to a
rock” is shown. After the interpretation of the instruction, we
create a sampling-based map of possible goal positions where
the robot can fly in order to see the victim.

Note that the system generates positions on the right side of
the tree because one constraint is to calculate positions “next
to the rock” and “right of the tree” from the viewpoint of
the human. The information related to the position of the tree
and the rock are obtained from the world model. After the
sampling-based map is generated out of all samples one will
be picked out and sent to the robot in Gazebo in order to fly
to this position.
Additionally, we have also developed inference mechanisms
to interpret spatial dependencies based on their appearance
in the instruction, such as in (h). Those dependencies have
to be correctly interpreted as follows: go next to a rock
that is right of a tree. In order to interpret this instruction
correctly, we integrated our inference mechanisms into the
HMI component to ensure a correct interpretation as follows:
After the team leader instructs the team we are generating



inferences on objects labeled with rocks that are located close
to the instructor based on his field of view. Rocks behind him
are not considered by our mechanisms because when we are
giving instructions we just consider those objects that are in
our field of view and not behind us. After the inferences are
generated, our mechanisms will validate each inference if it
satisfies the condition “a rock right of a tree”. If a match is
found, it will be selected and sampling-based positions will be
calculated. In order to understand how the different algorithms
and the inference mechanisms work, we generated a short
video that shows the functionality of our system and can be
seen here 1.

All these extensions are essential to ensure natural taska-
bility between human and robot teammates. On the one hand,
these extensions enabled humans to intuitively instruct their
teammates without considering which visual and semantical
descriptions they have applied on entities in the environment,
e.g. tree or lake. On the other hand, robots were able to
understand the intention and behavior of humans and perform
their instructions into the context of the task.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced an experimental setup of an
empirical study in a visual search and rescue task application
for mixed human-robot teams and presented the empirical
results. We introduced the results of our study and integrate
them into our task interpretation system that was extended
with a Human-Robot Interface to translate natural language
instructions into action plans understandable and executable by
robotic team members. It is obvious that robots are not able
to make relations or to understand the semantics of sentences
due to their lack of language skills.
By this proposed approach we are showing that natural lan-
guage systems needs to be equipped with specific abilities that
helps robots to interpret instructions into the context of the
task in order to perform actions correctly. It is important to
share a common ground based on understanding language at
human-level in order to support robots in understanding human
instructions. The results of this work can be used as guidelines
for dialogue systems in order to improve and optimize systems
as well as to help robots to get a better understanding of human
intention and behavior while interpreting instructions.
The current system is, of course, only a start and more work
on improving the human and robot dialogue is required to
handle referential expressions of entities and cases of am-
biguities. In the future we will extend our system with NL
processing components that can determine and resolve more
complex linguistic and visual descriptions and that can resolve
ambiguities in the instructions by ask questions to clarify goals
or by querying different knowledge bases.
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[10] L. Mösenlechner and M. Beetz. Parameterizing actions to have the
appropriate effects. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), San Francisco, CA, USA, September 25-30
2011.

[11] I. R. Nourbakhsh, J. Bobenage, S. Grange, R. Lutz, R. Meyer, and
A. Soto. An affective mobile robot educator with a full-time job.
Artificial Intelligence, 114(1):95 – 124, 1999.

[12] N. Roy, G. Baltus, D. Fox, F. Gemperle, J. Goetz, T. Hirsch, D. Mar-
garitis, M. Montemerlo, J. Pineau, J. Schulte, and S. Thrun. Towards
personal service robots for the elderly. In Workshop on Interactive
Robots and Entertainment (WIRE 2000, 2000.

[13] M. Tenorth and M. Beetz. KnowRob – A Knowledge Processing
Infrastructure for Cognition-enabled Robots. Part 1: The KnowRob
System. International Journal of Robotics Research (IJRR), 2013.
Accepted for publication.

[14] K. M. Tsui, M. Desai, H. A. Yanco, and C. Uhlik. Exploring use cases
for telepresence robots. In A. Billard, P. H. K. Jr., J. A. Adams, and
J. G. Trafton, editors, Proceedings of the 6th International Conference
on Human Robot Interaction, HRI 2011, Lausanne, Switzerland, March
6-9, 2011, pages 11–18. ACM, 2011.

[15] T. Williams and M. Scheutz. Power: A domain-independent algorithm
for probabilistic, open-world entity resolution. In Proceedings of IROS,
2015.

[16] M. Xin and E. Sharlin. Exploring human-robot interaction through
telepresence board games. In Z. Pan, A. D. Cheok, M. Haller, R. W. H.
Lau, H. Saito, and R. Liang, editors, Advances in Artificial Reality and
Tele-Existence, 16th International Conference on Artificial Reality and
Telexistence, ICAT 2006, Hangzhou, China, November 29 - December 1,
2006, Proceedings, volume 4282 of Lecture Notes in Computer Science,
pages 249–261. Springer, 2006.

[17] F. Yazdani, B. Brieber, and M. Beetz. Cognition-enabled robot control
for mixed human-robot rescue teams. In Proceedings of the 13th
International Conference on Intelligent Autonomous Systems (IAS-13),
2014.


