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Efficient collaborations between interacting agents, be they humans, virtual or embodied agents, 
require mutual recognition of the goal, appropriate sequencing and coordination of each agent's 
behavior with others, and making predictions from and about the likely behavior of others.  
Moment-by-moment eye gaze plays an important role in such interaction and collaboration. In light 
of this, we used a novel experimental paradigm to systematically investigate gaze patterns in both 
human-human and human-agent interactions. Participants in the study were asked to interact with 
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behavioral data were recorded including eye movement data, speech, first-person view video, 
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partner (either another human or an artificial agent) and they rapidly adapt their gaze behaviors 
accordingly. Our results from this data-driven approach provide new findings for understanding 
micro-behaviors in human-human communication which will be critical for the design of artificial 
agents that can generate human-like gaze behaviors and engage in multimodal interactions with 
humans. 
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1. INTRODUCTION  
Interacting agents, such as communicating humans, autonomous robots performing a 
team task, or avatars on a computer screen interacting with human users, must coordinate 
their actions to achieve collaborative goals.  In human communicative interactions, this 
coordination typically involves multiple communication channels including looking, 
speaking, listening, touching, feeling, and pointing, where moment-by-moment bodily 
actions are indicative of internal cognitive states of the interlocutors.  For example, 
human eye gaze fixations can reveal how much of an utterance has been processed or 
how much of a situation has been comprehended (Tanenhaus, Spivey-Knowlton, 
Eberhard, & Sedivy, 1995).  Thus, it is not surprising that recognizing and reacting 
appropriately to the observable behaviors of interlocutors turns out to be critical for 
interaction partners to initiate and carry on effective and productive interactions 
(Shockley, Santana, & Fowler, 2003). 
 
While the importance of couplings between eye saccades, utterances, and bodily 
movements such as head turns and gestures has been firmly established for interacting 
humans, it is less clear whether humans will automatically transfer and apply their 
expectations from human interactions to interactions with artificial agents.  For one, 
artificial agents can vary greatly in their embodiment, their appearance, and their 
interaction repertoire and might, as a result, not have the capabilities required for human-
like interactions.  Yet, to the extent that humans perceive artificial agents as “intentional” 
agents (e.g., because they have human-like appearance), we would expect that humans 
might be automatically tempted, at a subconscious level, to evaluate and respond to the 
agent's behaviors based on their knowledge (and experience) of other intentional agents 
(e.g., other humans).  If this is the case, then artificial agents will have to be sensitive to 
observable human behaviors and react to them in very much the same way as humans do 
in order to enable and sustain effective interactions with humans.  Specifically, artificial 
agents will need to (1) spontaneously perceive and correctly interpret dynamic multi-
modal cues from the human partner’s observable behaviors, including eye gaze, speech 
and bodily movements, and (2) generate meaningful, carefully timed actions in response 
that can be in turn perceived and interpreted by humans, often at the subconscious level 
(e.g., to automatically initiate eye saccades). 
 
Toward this goal, the present paper focuses on one fundamental topic in human-human, 
and thus human-agent interaction: how two interacting agents dynamically allocate their 
visual attention when they are engaged in a collaborative task.  The overall aim is to 
determine experimentally whether and where human attentional behaviors differ in 
interactions with artificial agents compared to human agents.  Any systematic differences 
between human and artificial interaction partners will be critical for agent designers who 
are interested in guaranteeing smooth and sustained interactions between human users 
and artificial agents. 
 
2. THE ROLE OF EYE GAZE IN HUMAN INTERACTIONS 
We chose to focus on studying gaze patterns for human-agent interaction for several 
reasons. First, eye movements have been shown to actively gather and select visual 
information from the external environment for internal human cognitive systems. To 
achieve this goal, eye movements are also closely tied with other multimodal behaviors.  
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At the theoretical level of human cognition, it has been suggested that the detailed 
physical properties of the human body convey extremely important information (Ballard, 
Hayhoe, Pook, & Rao, 1997).  Ballard and colleagues proposed a model of “embodied 
cognition” that operates at time scales of approximately one-third of a second and uses 
subtle orienting movements of the body during a variety of cognitive tasks as input to a 
computational model. At this “embodiment” level, the constraints of the body determine 
the nature of cognitive operations, and the body’s pointing movements are used as deictic 
(pointing) references to bind objects in the physical environment to variables in cognitive 
programs of the brain.  This theory of embodied cognition can be applied in the context 
of human-human communication.  To do so, one needs to consider the role of 
embodiment from both the perspective of a speaker and that of a listener.  First of all, 
recent studies show that speech and eye movement are closely linked (Tanenhaus, et al., 
1995; Meyer, Sleiderink, & Levelt, 1998a; Rayner, 1998; Griffin & Bock, 2000; Griffin, 
2004).  When speakers were asked to describe a set of objects from a picture, they usually 
looked at each new object before mentioning it, and their gaze remained on the object 
until they were about to say the last word about it (Meyer, Sleiderink, & Levelt, 1998b). 
Moreover, speakers have a strong tendency to look toward objects referred to by speech 
and the words begin roughly a second after speakers gaze at their referents (Griffin & 
Bock, 2000).  It has also been shown that eye, head and hand movements are well 
coordinated in everyday tasks, such as making tea and making peanut-butter-jelly 
sandwiches, while most often eyes lead the head and hands to provide a reference frame 
for motor planning (Pelz, Hayhoe, & Loeber, 2001). Therefore, gaze can be viewed as 
serving as a precursor of the following manual actions (Land, Mennie, & Rusted, 1999; 
Hayhoe & Ballard, 2005).  All of those psychophysics and psycholinguistic results 
suggest that if we can reliably detect and correctly interpret moment-by-moment eye 
movements in certain contexts and tasks, we will be able to predict the next speech acts 
and manual actions even before they start.  
   
Second, humans of all ages communicate with each other using eye gaze and produce a 
variety of gaze behaviors in everyday social interactions, from face-to-face eye contact, 
to gaze following, to gaze aversion.  These eye gaze behaviors are used to signal 
communicative intents and to support other multimodal behaviors.  The critical role 
human eye gaze plays in human-human interaction can be seen from the fact that even 
young infants can already detect and follow their parent’s gaze (Butterworth, 2001) and 
actively gather social information to guide their inferences about word meanings, 
systematically checking the speaker’s gaze to clarify reference (Baldwin, 1993).  
Moreover, gaze information has been shown very useful in collaborative tasks between 
human adults. In such tasks, when the linguistic signal is ambiguous, interlocutors need 
to draw upon additional sources of information to resolve ambiguity and achieve shared 
understanding (Shintel & Keysar, 2009). It has been suggested that it is the vocal and 
gestural acts together that comprise our everyday communication – people not only 
speak, but nod, smile, point, and gaze at each other. Clark and Krych (2004) 
demonstrated that speakers monitor addressees for understanding by using multiple cues, 
such as eye gaze, head nods, and head shakes, and alter their spontaneous utterances in 
progress when necessary. Thus, speakers monitor not just their own actions, but those of 
their addressees, taking both into account as they speak. Meanwhile, addressees try to 
keep speakers informed of their current state of understanding through signaling various 
non-verbal cues, such as gaze and gesture. In a referential communication task, Hanna 
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and Brennan (2007) explored the time course of flexibility with which speakers’ eye gaze 
is used to disambiguate referring expression in spontaneous dialog and found that eye 
gaze is a powerful disambiguating cue in facilitating the interpretation of on-going 
speech. Brennan, Chen, Dickinson, Neider, and Zelinsky (2008) showed that shared gaze 
affords a highly efficient method of coordinating parallel activities when remotely 
located pairs of people collaborated on a visual search task.  
 

3. RELATED WORK 
Gaze has been used to build better human-agent interfaces with success (Vertegaal, 
2003). For example, Mutlu, Shiwa, Kanda, Ishiguro, and Hagita (2009) investigated the 
role of eye gaze in a story telling robot and found that subjects were better able to recall 
the story when the robot looked at them more while it was telling the story. Staudte and 
Crocker (2009) report results from a study where humans watched a video of a robot 
producing statements about a visual scene in front of it.  Eye-tracking data showed 
different patterns of human eye gaze depending on the robot's gaze and speech, and 
confirmed that humans are able to comprehend the robot's statements faster when the 
robot's gaze behavior is similar to that a human would exhibit if she uttered the same 
sentence. Yamazaki and colleagues (2008) performed experiments with a guide robot 
designed to use data from human experiments to turn its head towards the audience at 
important points during its presentation.  The results showed that human listeners reacted 
better non-verbally to human-like head turns of the robot compared to non-human-like 
head turns. Moreover, gaze information has been used to build multimodal language 
learning systems showing a significant improvement in learning efficiency by using gaze 
data compared with not using it (Yu & Ballard, 2004; Qu & Chai, 2010).  
 
In addition to human-robot studies, researchers in human-agent interactions (e.g. 
embodied conversational agents) have conducted more extensive studies on gaze 
behaviors accompanying speech. A spectrum of research topics has been studied, from 
building gaze models that can reveal the virtual agent’s emotional state and engagement 
level, and as well as control turn-taking in multiparty conversations (e.g. Gu & Badler, 
2006), to developing gaze detection algorithms to infer a user’s internal state (e.g. 
differentiating whether a user was thinking about a response or was waiting for the agent 
to take its turn, e.g. Morency, Christoudias, and Darrell, 2006). The most relevant area to 
the present work is to empirically study and evaluate the role of gaze in human-agent 
interactions. Nakano, Reinstein, Stocky, and Cassell (2003) investigated the relation 
between verbal and non-verbal behaviors, showing that speakers looked more at their 
partners in order to ground references to new entities. Meanwhile, maintaining gaze on 
the speaker is interpreted as evidence of not-understanding which evokes an additional 
explanation from the speaker. Rehm and Andre (2003) studied gaze patterns in a multi-
party scenario wherein users interacted with a human and a synthetic virtual agent at the 
same time. This setup allowed the authors to directly compare gaze behaviors in human-
human interaction with gaze behaviors in human-agent interaction. They found that the 
addressee type (human vs. synthetic) did not have any impact on the duration of the 
speaker’s gaze behaviors towards the addressee but meanwhile humans paid more 
attention to an agent that talked to them than to a human conversational partner. Kipp and 
Gebhaard (2008) designed an experiment with an avatar generating three gaze strategies 
(dominant, submissive, or following) based on real-time gaze behaviors from users in an 
application interview scenario. Their empirical results showed that both dominant and 
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submissive gaze strategies implemented through a semi-immersive human-avatar 
interaction system successfully convey the intended impression. More recently, Bee, 
Andre and Tober (2010) developed an interactive eye gaze model for embodied 
conversational agents in order to improve the experience of users participating in 
interactive storytelling. An interactive gaze model for responding to the user's current 
gaze in real time (i.e., looking into the virtual character's eyes or not) achieved higher 
user ratings than a non-interactive model. In a follow-up study (Bee, Wagner, Andre, 
Vogt, Charles, Pizzi & Cavazza, 2010), users’ gaze data in the interaction were analyzed 
and the results showed users looked significantly more often to the virtual interlocutor 
than they usually do in human-human face-to-face interactions. Another recent study on 
analyzing users’ gaze patterns was reported in Zhang, Fricker, Smith and Yu (2010). In 
their study, gaze patterns from participants who interacted with a set of virtual agents 
showing different engagement levels were recorded and analyzed together with user 
speech. The results revealed that participants were highly sensitive to the agent’s 
behaviors and its internal engagement state, and their adaptive behaviors were not based 
on the overall engagement level of the virtual agent, but on momentary real-time 
behaviors of the virtual agent.  
 
To summarize, gaze information is a critical component in understanding human 
cognitive and communication systems. Most previous studies in artificial intelligence 
systems found overall improvement in user evaluation or performance by incorporating 
gaze information in human-agent and human-robot interactions. In addition, some recent 
studies in embodied conversational agent collected and analyzed eye movement data 
from users, which led to insightful results to better understand and evaluate human-agent 
interactions, and to further improve the existing systems/models. The present work is 
built upon previous success in both human cognitive studies and human-agent 
interactions studies, and extends previous work in two important directions. First, there 
are few studies that attempt to analyze temporal dynamics of multimodal data (e.g. gaze, 
speech and manual actions) at a micro-behavioral level, which is a focus on the present 
work. Second, instead of studying embodied virtual agents in conversational tasks such as 
storytelling or interviewing, we designed a teaching/learning task between humans and a 
physical robot. Unlike face-to-face conversation studies targeted at building virtual 
conversational partners that can talk to people using both verbal and non-verbal 
behaviors, our task (as explained more in the next section) features manual actions on 
physical objects in a shared environment, in addition to speech and gazing behaviors 
from two interacting agents (e.g. humans or a robot). Because physical manipulation is a 
common feature of human dialogue, understanding user behaviors in this task will 
provide a more complete picture of human-agent interactions.  
 

4. AN EXPERIMENTAL PARADIGM TO STUDY MULTIMODAL INTERACTION 
Given that critical parts of human joint attention processes naturally occur at a 
subconscious level and include subtle carefully timed actions (e.g., eye gaze shifts to 
establish eye contact) and reactions (e.g., eye gaze shifts to objects of interest inferred 
from perceived eye gaze), we need an experimental paradigm that will allow an agent to 
interact with humans at this fine-grained level of detail.  Failing to respect the subtle time 
course of human attentional processes will in the best case lead to prolonged, unnatural 
human-agent interaction; in the worst case, however, it could lead to human lack of 
interest and trust, frustration and anxiety, and possibly resentment of the agent. 
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4.1 WORD LEARNING AS AN EXPERIMENTAL TASK 
In light of this, we built on our previous experimental work on joint attention in human-
robot interaction (Yu, Scheutz, & Schermerhorn, 2010), that allows us to quantify, at high 
temporal granularity, dynamic attention allocation in real-time human-human and human-
agent interactions. In our study, a human participant and an embodied agent sat around a 
table with multiple visual objects. Participants were asked to engage and attract the 
agent’s attention to the target object of his own interest, and then teach the agent object 
names (pseudo-English words were used, e.g., “bosa”). In this face-to-face everyday 
attentional task, participants might switch their attention between those visual objects, 
and also switch to monitor the social partner’s face. They might apply different attention-
getting strategies to attract the agent’s attention using speech, gaze, gesture and hand 
actions. Thus, moment-by-moment eye movements generated by participants were 
complex and served several roles for internal cognitive processes, from facilitating 
visually guided manual actions on target objects and motor planning, to generating 
mutual gaze with the agent, to facilitating speech production, to monitoring and using the 
agent’s gaze to infer and then follow its visual attention. In particular, we are interested in 
the dynamics of how and why participants attend to what object and when, how they 
sustain and switch their visual attention between objects and the social partner’s face, and 
how their gaze patterns are coordinated with their speech acts and manual actions on 
objects. Taken together, the experimental paradigm has the following features: 

- Multimodal: Participants and the agent interact through speech and visual cues 
(including perceivable information from vision, speech, and eye gaze).  

- Interactive and adaptive: Human participants perceive the agent’s behaviors 
and can (and will) adjust their behavior in response to the agent's reaction. 

- Real-time: Human participants’ actions are generated in real time as their social 
partner switches visual attention moment by moment. 

- Naturalistic: there are no constraints on what participants should or should not 
do or say in the task. 

 
Additionally, there were two conditions in the present study – participants interacted with 
an artificial agent in the agent condition and they interacted with a human confederate in 
the human condition. Both the artificial agent and the human confederate executed the 
same action sequence by focusing their attention on a sequence of pre-defined locations 
during the interaction. This face-to-face joint attention task appears to be relatively 
simple but it allows us to capture several critical components in joint attention and 
collaborative tasks.  First, we are interested in understanding multimodal micro-level 
behaviors in human-human interactions. For example, investigating how human users 
attempt to attract the attention of their social partner can be informative for the design of 
human-agent interfaces. Those behavioral patterns used to attract the other’s attention can 
be directly implemented in a physical agent or a virtual agent who can therefore attract 
the human’s attention in the same human-like way. Moreover, by studying when and in 
what way human participants monitor their social partner’s attention, we will be able to 
discover the best time for a future agent to react to the human participant’s action – at  the 
exact time when participants attend to the agent’s face. Thus, the present study aims at 
discovering those behavioral metrics and patterns from humans that can either be easily 
incorporated in agents' sensorimotor systems or provide general principles in the future 
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design of agent cognitive systems. Second, the task allows us to connect and compare 
human-human studies with human-agent studies. In this venue, we will report the results 
from human-human interaction and human-agent interaction side by side. By so doing, 
we will present two different kinds of results with two different goals: one is to find 
shared behavioral patterns that can be viewed as reliable patterns found in both human-
human and human-agent interactions; the other is to find potential differences between 
interactions with other humans versus artificial agents, which will shed light on the 
guiding principles to design more human-like artificial agents.  
 
Critically, compared with other approaches to assessing participants' experiences with 
artificial agents through subjective measures such as questionnaires alone, the present 
study specifically uses objective measures, collecting fine-grained multimodal behavioral 
data during the interactions, including participants' speech, visual information from a 
first-person perspective, momentary gaze data, and body movement data.  We then 
employ various proven data mining and analysis techniques to discover shared behavioral 
patterns which can then be compared across two experimental conditions and thus allow 
us to determine any systematic differences between human-human and human-agent 
interactions, in particular, systematic differences at the micro-behavioral level that other 
methods are not able to detect.  For example, subjects might spend more time attending to 
the agent with longer eye fixations in the agent condition.  They also might spend more 
time in attracting the agent's attention before naming objects, and therefore, generate 
fewer naming utterances.  Alternatively, they might more frequently monitor the agent's 
attention with shorter eye fixations and generate more naming utterances in order to 
attract the agent's attention through the auditory channel.  Furthermore, open questions 
can be asked about the details of eye fixations in conjunction with naming events: will 
subjects look more at the agent or more at the named object? Will their eye movement 
patterns change over the course of naming speech production? Will they sustain and 
switch their attention differently when interacting with the agent or a human confederate? 
And if so, in what ways?  These kinds of questions can only be answered by collecting 
and analyzing fine-grained multimodal behavioral data. 

4.2 ARTIFICIAL AGENT AND HUMAN ACTOR AS SOCIAL PARTNERS 
The employed artificial agent is a humanoid torso with a 2 DoF (degrees of freedom) 
movable head and two 3 DoF arms.  The agent's head includes two 2 DoF “eyes” with 
integrated Firewire cameras, and two 1 DoF movable eye-brows.  In the present 
experiment, only the head was actuated. The agent's chest also includes integrated 
speakers and microphones, but there was no speech output and the microphones were 
used only for recording (no speech recognition was performed).  A single Linux PC was 
used for running all agent control software implemented in previous work (Scheutz, 
Schermerhorn, Kramer, & Anderson, 2007) and used successfully for previous studies, 
e.g., Brick & Scheutz (2007) and Kramer & Scheutz (2007). In the agent condition, the 
agent executed pre-programmed sequences of head movements followed by short pauses 
where the head remained stationary for a pre-programmed, randomly-generated amount 
of time. Thus, the agent’s actions were not responsive and completely ignored the 
participant's behaviors.   
 
In the human condition, a professional male actor was hired as a human confederate that 
was instructed on what to do at any given point during an experimental run by the agent 
control program. Thus, he was asked and trained to act exactly like an agent in a tightly 
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controlled way. Specifically, we used the very same control architecture that guided the 
artificial agent's behavior for controlling the confederate's behavior by generating and 
sending spoken commands to the confederate through an ear-phone in place of motor 
commands. The commands were short one-word codes referring to specific spatial 
locations at where the confederate was supposed to look. The confederate performed such 
attention shift as soon as he heard the command. The confederate was trained with all 
action codes and spoken commands beforehand so that he could quickly execute those 
actions. In this way, the timing of when attention shifts were initiated during an 
experimental run was exactly the same in the human and the agent conditions. More 
precisely, the actor was specifically trained to perform these movements consistently and 
to the same location. Moreover, the actor was instructed to maintain a neutral expression 
and not exhibit any facial or other motion response to a human participant regardless of 
the participant's actions or verbalizations. 
 

 
Fig. 1. Two snapshots from the participant’s first-person in  the two experimental 
conditions. The black crosshair in each snapshot indicates at where a participant gazed 
from his first-person view.  Left: human-agent interaction -- participants were engaged 
with an embodied artificial agent in the word learning task. Right: human-human 
condition -- participants were engaged with a human confederate who was trained to 
follow spoken commands from the agent control system.  
 

5. EXPERIMENT 
The experimental setup is depicted in Figure 1, with a human subject sitting across a table 
from an agent or a human confederate.  The human wears an ASL head-mounted eye-
tracker with a head-mounted camera to capture the first-person view from the 
participant's perspective, and an overhead camera provides a bird's eye view of the scene.  
A box with two sets of colored objects is located on the subject's side, each set containing 
three objects with unique colors (e.g. blue, pink, and green).  Objects are unique in each 
set in terms of shapes and names.  The object names are artificial words (e.g. “bosa”, 
“gasser”) and they are displayed on labels that are attached to the drawers containing the 
objects and are visible to the participant during the experimental run. 
 

5.1 PARTICIPANTS AND PROCEDURE 
There were 48 undergraduate students at Indiana University participating in the study and 
6 of them were excluded due to technical problems with their eye tracking. The rest were 
evenly assigned to two experimental conditions with 21 participants in each condition.  
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To facilitate visual processing, participants were asked to put on a white lab coat and 
remove any hand accessories.  The eye tracker was calibrated as follows: the subject was 
seated in front of a calibration board with nine calibration points.  The eye tracker was 
placed on the subject's head, and the experimenter adjusted the alignment to find the 
position in which the tracker could best track the subject's eyeballs.  Next, the 
experimenter calibrated the eye tracker using the ASL eye-tracker software.  When the 
calibration was complete, the subject was guided into the experimentation room and 
seated opposite the agent or the human confederate.  A head-mounted microphone was 
attached for recording the subject's speech. The subject was shown the two sets of objects 
(in their drawers). Subjects were allowed to teach the agent however they wanted and 
were encouraged to be creative.  The subject started by moving objects in the first set 
from the drawer to the table.  The agent control architecture was started, and the 
experimenter instructed the subject to start.  The subject was allowed one minute to teach 
the social partner (either the agent or the confederate) the names of the three objects in a 
set.  After the minute was up, the experimenter notified the subject to switch to the 
second set.  Subjects alternated between the two sets two times (4 trials in total) in 
approximately 4 minutes (M=4.32 min, SD=0.35). Within each trial, four head turns were 
generated by either the human confederate or the robot. In total, there were 20 head turn 
events in each interaction. In the human condition, each head turn took 1.02 seconds (SD 
= 0.09 seconds) on average. After a head turn, the confederate oriented his head toward a 
pre-defined spatial location for 9.42 seconds (SD = 0.26). Low variations in this behavior 
measure indicate that the human confederate was trained to execute head turn actions in a 
very consistent and precise way across participants and across multiple instances of head 
turn within each participant. This consistency is critical for us to analyze fine-grained 
moment-by-moment behavioral data from users. In the robot condition, each head turn 
took 1.92 seconds (SD=0.45) and the robot’s head was fixed for 9.12 seconds (SD=0.31) 
before the next head turn. Taken together, the robot’s and the confederate’s head turn 
actions were consistent in both conditions and dynamic attentional states (indicated by 
the confederate’s and the robot’s head direction) were almost identical in the whole 
interaction. The only difference was that it took the robot a longer time (900 msec more) 
to switch its attention from one location to another compared with the actor. Since both 
the human and the robot received the same commands at the same time intervals from the 
same control system, this difference was caused by the execution of motor commands in 
the robot. In total, there were a small proportion of 18 seconds (0.9 sec x 20 instances) 
among 260 seconds (total interaction time) that the two agents in the two conditions were 
not at the same state. Many results we will report are based on accumulated statistics and 
therefore should be reliable even with this minor difference. For the rest derived from 
zooming into those head moving moments and analyzing temporal patterns (those 
sensitive to timing), we took this timing difference into account.  
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Fig. 2. In our experiment, the collected and processed multi-streaming multimodal data 
included speech, multiple video streams from different cameras, and eye gaze. The 
combination of visual processing and gaze information defined temporal Region-Of-
Interest (ROI) events.  
 

5.2 MULITIMODAL DATA COLLECTION AND PROCESSING 
As shown in Figure 2, we collected multimodal streaming data, including first-person 
view video from the participant's perspective, first-person view video from the agent, 
video from a bird's eye camera on the table top, gaze data from the ASL eye tracker, and 
speech data, all of which will be used in our analyses. In previous studies, we have 
developed various visual, speech and gaze-data processing tools to automatically process 
and manually annotate (if needed) raw data, and to facilitate the discovery of interesting 
patterns from multimodal data (Yu, Smith, Hidaka, Scheutz, & Smith, 2010; Yu, Zhong, 
Smith, Park, & Huang, 2009). The following is a brief description on how those 
techniques were used in the multimodal data collected in the present study.  
 
Visual data: Since the interaction environment was covered with white curtains and 
visual objects were made with unique colors, the detection of objects in view can be done 
easily based on color blobs.  Similarly, we used red color to detect the agent in the agent 
condition and skin color to detect the confederate’s face in the human condition. We also 
detected the body trunk of either the agent or the human. As shown in Figure 3, five 
Regions Of Interest (ROIs) were defined and calculated frame by frame: the agent, the 
three objects, and other body parts. In practice, we decomposed the whole video from the 
participant's first-person view into an image sequence and ran the ROI detection program 
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to compute the 5 ROIs. In addition, we manually annotate hand actions from participants, 
coding frame by frame when and which object they were holding in the interaction.   
 
 

 
Figure 3: Areas of interests are extracted and detected based on color blobs in an image. 
Gaze data at a moment was superimposed on the first-person view image to detect ROIs 
that a participant attended to. Taken together, multiple derived time series were generated 
based on image processing and gaze data.  
 
Gaze data: We computed eye fixations using a velocity-based method to convert 
continuous eye movement data into a set of fixation events. For each fixation, we 
superimposed (x,y) coordinates of eye gaze onto the image sequence of the first-person 
view to calculate the corresponding regions-of-interest (ROIs) moment by moment. As a 
result, a temporal sequence of attended regions was generated and used in the following 
data analyses. Since the primary goal of the present study is to understand user’s attention 
and attention switches between different objects and the social partner’s face, in the 
following calculations, we count gaze  duration as the total amount of time on an ROI 
(which may consist of gazing at different sub-regions in the same overall ROI, objects or 
face) before switching to another ROI. That is, as far as participants’ gaze data fall within 
the agent’s face (maybe different parts of the face) before moving to another ROI, these 
gaze data are counted as one big fixation on the face ROI.   
 
Speech: We implemented an endpoint detection algorithm based on speech silence to 
segment a speech stream into several spoken utterances, each of which may contain one 
or multiple spoken words. We then transcribed speech into text. The final result is a 
temporal stream of utterances, each of which is coded with onset and offset timestamps 
and a sequence of spoken words in the utterance. In addition, we manually labeled these 
spoken utterances containing object names.  
 
As a result of data processing, we converted raw multiple multimodal data into multiple 
derived time series from which we extracted and discovered various behavioral patterns. 
All of the following statistics and analyses were based on the whole data set across 42 
subjects (21 in each condition), containing about 302,400 image frames, 483,840 gaze 
data points, 16,800 eye fixations, 4,500 spoken utterances, 1,200 manual actions and 
1,700 naming utterances. 
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6. RESULTS 
We analyzed this rich, multimodal, fine-grained behavioral dataset at four different levels 
and aspects and the results are organized as follows: 

• Accumulated statistical patterns from two types of behaviors separately: speech 
acts and gaze.  

• Time-course analysis of the dynamics of gaze patterns when participants were 
naming or manually holding visual objects. To do so, we integrated speech, 
manual action and eye movement data, zoomed into the moments when they 
named or held objects and extracted dynamic time-course patterns around those 
events. 

• Responsive gaze behaviors to either the robot or the human confederate’s head 
turns.   

• Timing patterns of multimodal behaviors to measure the synchrony of 
multimodal data within an agent and across two social partners.  

In the following data analyses, we compare two experimental conditions and focus on 
extracting and interpreting both shared and different patterns in the human and robot 
conditions.   
 

6.1 ACCUMULATIVE STATISTICS OF MULTIMODAL BEHAVIORS   
Analyses of speech acts 
We first calculated basic statistics related to participant's speech acts (see Table I). On 
average, participants in the human condition produced slightly more distinct word types 
(Mhuman = 103.54; Magent = 92.50; t(40)=5.12, p<0.001, two-tailed), but a similar number 
of spoken utterances (Mhuman = 107.35; Magent = 111.72, t(40) =1.12, p=0.267, two-tailed).  
As a result, participants in the human condition generated more tokens1

 

 (Mhuman = 
444.08) than those in the agent condition (Magent =400.90; t(40)=5.84, p<0.001, two-
tailed), as well as longer spoken utterances (4.07 words per utterance) than the agent 
group (3.55 words per utterance; t(40)=3.17, p<0.005, two-tailed). In particular, 
participants in the human condition produced fewer one-word utterances than those in the 
agent condition did (Mhuman = 32.95; Magent = 42.10; t(40) = 3.56, p<0.001, two-tailed).  
More interesting in the context of a word learning task are naming utterances: 
participants in the human condition produced a similar number of naming utterances 
compared with those in the agent group (36.01 versus 42.10), yet they produced more 
one-word naming utterances than those in the agent group (Mhuman = 8.50; Magent =6.50; 
t(40)=4.53, p<0.001, two-tailed), despite having produced fewer one-word utterances 
overall. 

Taken together, speech acts from participants in the two conditions are overall similar. 
However, participants in the human condition tended to use more words and more words 
per utterance, and more one-word naming events. One plausible explanation is that 
participants in the human condition attempted to use their speech to attract the 
confederate’s attention while participants in the agent condition attempted to attract the 
agent’s attention first before uttering object names. 
 
                                                           
1   The number of   tokens counts the number of occurrences of all distinct word types. 
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Table I: Overall statistics of vocabulary (**indicating statistical significance, P<0.005, t-
test, two-tailed * indicating statistical significance, P<0.01, t-test, two-tailed)  

 human agent 
number of words (*) 103.54 92.50 
number of tokens (**) 444.08 400.90 
number of utterances 107.35 111.72 
words per utterance (*) 4.07 3.55 
number of naming utterances 36.01 40.01 
Number of one-word utterances (*) 32.95 42.10 
number of one-word naming utterances (*) 8.50 6.50 

 
 
Analyses of Eye Movement Data 
As shown in Table II, the overall eye movement patterns from the two experimental 
conditions are similar in terms of the total number of eye fixations (Mhuman = 96.02; Magent 
= 92.40; t(40) = 1.42, p<0.001, two-tailed). Moreover, human participants in both groups 
generated similar gaze behaviors with respect to the social partner. For example, the total 
number of eye fixations on the agent is comparable between the two groups (Mhuman = 
26.25; Magent = 29.20; t(40)=0.31, p=0.75, two-tailed). However, a closer examination of 
gaze data revealed differences between the two experimental conditions. Even though the 
total number of fixations on the social partner was similar, participants in the human 
group pay less attention to the human’s face (M=16%) than those in the agent group 
(M=24%; t(40)=4.23, p<0.001, two-tailed). This partially relates to the fact that 
participants in the human group in general generated shorter average fixations overall 
(M=0.43 sec) than those in the agent condition (M = 0.52 sec). 
 
Figure 4 shows a comparison of fixation durations in the two conditions. We found no 
significant difference in the human condition between average fixation durations on the 
agents or objects (p=0.23; t-test, two-tailed), and no significant difference in object 
fixation durations between the two conditions (p=0.35; t-test, two-tailed). However, the 
average face fixation duration in the agent condition was significantly longer than the 
average fixation duration on objects in the same condition, and also significantly longer 
than the average face fixation duration in the human condition. There are two plausible 
interpretations. First, it may take more time to ascertain the agent’s visual attention than 
the other human being’s attention. An alternative explanation is that participants may not 
have previous experiences of interacting with an agent and their curiosity with agent 
appearance made them look longer at the agent. 
 
Next, we integrated gaze data with speech acts and manual actions by examining gaze 
patterns during those events. Figure 5 (left) shows that, during holding actions, 
participants in the human condition fixated on the target object more often than those 
participants in the agent condition, but no difference in face fixations was observed. 
Thus, given a time window of 7-8 seconds for each holding action, on average, 
participants in both conditions checked the agent’s face more than twice. Figure 5 (right) 
compares gaze behaviors during naming events. Note that the average length of an object 
naming event is around 1400 msec (much shorter than the duration of an object holding 
event), so there are fewer fixations during naming events than during holding events. 
Similar to the holding event results, participants in the human condition generated more 
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target object fixations than participants in the agent condition. Unlike the holding events, 
however, agent condition participants generated more face fixations than did human 
condition participants. 
 
Table II: Eye movement measures averaged across trials (approximately 1 minute per 
trial, * indicating statistical significance, P<0.05, t-test, two-tailed)  

 human agent 
number of attention switches (fixations) 96.02 92.40 
average fixation duration (seconds) (*) 0.43 0.52 
number of fixations on the agent’s face  26.25 29.20 
number of fixations on objects 63.50 60.25 
Proportion of time on the agent’s face (*) 16% 24% 
Proportion of time on objects 63% 56% 

 
In sum, the analyses of eye gaze data show that 1) humans were sensitive to whom they 
interacted with and accordingly generated different gaze patterns; 2) they spent more time 
overall on the social partner’s face in interactions with the artificial agent than with 
another human; and 3) although the overall eye gaze patterns were (more or less) similar 
between two groups, fine-grained data analyses exposed various differences, ranging 
from increased face fixations when holding or naming an object, to the duration and 
number of fixations.  

 
Fig. 4. A comparison of average fixation durations on either the agents’ face or visual 
objects in two experimental conditions.  
 

6.2 ANALYSES OF TEMPORAL DYNAMICS IN MULTIMODAL DATA 
The above analyses of speech, manual action and gaze data focused on aggregated 
statistical patterns from each data stream. In an effort to better understand the dynamic 
processes that lead up to moment-by-moment events as participants attempted to direct 
the social partner’s attention, we next present a time-course analysis of gaze data. In 
particular, we are primarily interested in gaze dynamics relative to three events: when 
participants were holding an object, when they were naming an object, and when the 
agent was switching its attention. 
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Fig. 5. The number of looks on the target object or the agent’s face when naming or 
holding a visual object.  
 
Speech actions and gaze patterns 
We focused first on naming utterances and the moments immediately surrounding them, 
using participants' visual attention to integrate speech data with gaze data. This approach 
is based on methods used in psycholinguistic studies to capture temporal profiles across a 
related class of events (Allopenna, Magnuson, & Tanenhaus, 1998). Such profiles allow 
us to discern potentially important temporal moments within a trajectory and compare 
temporal trends across trajectories. In the current study, the relevant class of events is a 
naming utterance; we aligned all the instances of naming events based on the onset and 
offset of each instance. Figure 6 shows the average proportion of time across all naming 
events (which can be viewed as a probability profile) that participants looked at the 
agent’s face, the target object mentioned in the naming utterance, the other two objects, 
or other body parts.  Thus, each trajectory in a plot shows the probability that participants 
looked at the associated type during the 5 seconds immediately prior to naming events 
(the left two plots), during naming events (the middle two plots; a fixed temporal window 
of 2 sec was used since name utterances had different lengths), or during the 5 seconds 
immediately after naming events (the right two plots). We observe several interesting 
patterns:  1) Overall, participants in both conditions spent a majority of the time during 
naming events looking at the named objects and the social partner’s face, and therefore 
only a small amount of time looking at other objects or body parts  (the two middle 
panels). 2) Participants in the human condition began fixating on the named object before 
the onset of a naming utterance. This is a well-documented behavior pattern in speech 
production, as fixating on the target object facilitates the planning of speech acts. This 
result is also consistent with the findings of a previous study (Griffin & Bock, 2000) 
showing that in face-to-face interaction, speakers are likely to look at the target object 
when they produced an object name. 3) However, participants in the agent condition 
spent a large proportion of the time gazing at the agent both before, during and after 
naming events.  Our results thus show that maintaining and monitoring joint attention in 
face-to-face human-agent interaction significantly changes participants' visual attention: 
they looked at the agent more frequently than expected in face-to-face human-human 
referential communication tasks (Griffin & Bock, 200), and they did so even during 
naming events. 4) Participants in both conditions shifted attention to the agent’s face 
immediately following the onset of a naming utterance, as demonstrated by an increase of 
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the face profile (the green line in the two middle panels). 5) Participants' visual attention 
on the target object decreased after a naming event. 
 
In sum, during the moments surrounding a naming event, human condition participants 
paid more attention to the named object than to any of the other categories. This 
particular gaze pattern is in line with results from psycholinguistic studies on the 
coupling between speech and gaze.  However, this pattern was not replicated in the agent 
condition before and during naming, suggesting that participants perceived the agent's 
random behaviors and attempted to adjust their own behaviors. By doing so, they failed 
to demonstrate typical behaviors that are well-documented in psycholinguistic studies on 
speech and simultaneous eye gaze. 
 
 

 
 
Fig. 6. Gaze probabilistic profiles before/during/after naming an object in human-human 
and human-agent conditions representing the proportion of time that participants spent 
looking at the agent, the named target object, the other two objects, and the agent’s other 
body parts, before (left), during (middle), and after (right) a naming utterance. The top 
three plots represent naming events by participants in the human condition, while the 
bottom three are derived from those of participants in the agent condition. 
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Fig. 7. Gaze probabilistic profiles before/during/after holding an object in human-human 
and human-agent conditions representing the proportion of time that participants spent 
looking at the agent, the held target object, the other two objects, and the agent’s other 
body parts, before (left), during (middle), and after (right) a holding action. The top three 
plots represent holding events by participants in the human condition, while the bottom 
three are derived from those of participants in the agent condition. 
 
Manual actions and gaze patterns  
Eye-head-hand coordination is well-documented in naturalistic everyday tasks, such as 
making tea, and making peanut-butter-jelly sandwiches (Pelz, et al., 2001). We next 
investigate the extent to which either group exhibits standard coordination behaviors, as 
well as how and whether coordinated patterns may differ between the two conditions. 
Figure 7 shows the time course profiles before, during and after a holding event, with 
both similarities and differences evident in gaze patterns between the two conditions: 1) 
Participants in both conditions were more likely to look at the target (i.e., to-be-held) 
object just before grasping it. The stabilization of gaze on the target object may facilitate 
the ongoing reaching action by providing a reference frame in motor planning (Hayhoe, 
Shrivastava, Mruczek, & Pelz, 2003). However, those in the human condition paid much 
more attention to it than those in the agent condition. 2) Immediately after fixating on the 
target and even before grasping it, there was an increase of attention to the social 
partner’s face (the green lines in the two left panels), suggesting that participants checked 
the agent’s face to monitor its attention and potential reactions to the reaching and 
holding actions. 3) During holding, participants in the human condition were more likely 
to look at the target object than at the other objects, while agent condition participants 
were no more likely to look at the target object than at the others. 4) During holding and 
manipulating, participants in both conditions regularly monitored the agent’s face, with 
those in the agent condition looking at the face slightly more often (35%) than those in 
the human condition (27%).  
 
More generally, as shown in Figure 7, participants in the human condition demonstrated 
more natural gaze behaviors – they fixated on the target object before holding it, 
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maintained their attention on that object during holding and switched their attention to 
other objects after holding. In addition, immediately prior to the holding action, their 
attention began to shift to the face (as indicated by an increase in face fixation 
probability), presumably to monitor the agent’s attention. In contrast, participants in the 
human-agent condition showed quite different gaze patterns. They paid less attention to 
the target object prior to grasping it, showed an approximately equal amount of attention 
on the target object, the agent’s face, and other objects during holding, and were more 
likely to fixate on the agent’s face after holding. In short, participants in the agent 
condition were less engaged with the target object and more concerned about the agent’s 
attention. 
 

6.3 RESPONSIVE ACTIONS TO THE AGENT’S HEAD TURNS  
The results reported thus far are based on aligning the instances of two participant-
originated event types – naming and holding – without regard to the agent’s status. Next, 
we directly examine participants' responses to the agent’s actions. One critical design 
aspect of the present study is that both the human agent and the robot agent executed the 
same pre-defined action sequence. Thus, regardless of the participants' efforts, the agents 
always generated the same action at the exactly same moment in the two conditions, 
which allows us to directly compare, moment-by-moment, users’ responsive actions in 
the two conditions. For example, sometimes the agent's attention shifts happened to 
coincide with participants' naming or holding actions. Would participants be sensitive to 
the agent’s head turns and attention switches at those moments? 
 

 
Fig. 8. Gaze probabilistic profiles during/after the agent’s head turns. In both figures, 0 in 
the x-axis indicates the onset of a head turn, and the shaded areas indicate the span of the 
agent’s head turn. Note that in the human-agent condition, the agent took a longer time to 
generate the same head turn compared with what the human agent did. Nonetheless, the 
results showed that in both conditions, participants quickly switched their attention to the 
agent’s face soon after the onset of the head turn, and then back to the target object right 
after the offset of the head turn.  
 
Figure 8 shows the temporal profiles of gaze patterns relative to agent-generated attention 
shifts (head movements from one pre-defined spatial orientation to another). As noted 
above, participants in both conditions focused more on the objects than on the agent's 
face (63% of the time in the human condition, 56% in the agent condition).  However, 
they quickly switched their attention to the agent’s face right after the onset of the agent’s 
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head turn, suggesting that they used their fovea to attend to the objects (probably for 
motor planning and visually guided actions) while simultaneously using peripheral vision 
to monitor the agent’s attention. As a result, they detected the agent’s head turn in real 
time and immediately switch their attention to the agent’s face. In addition, because the 
agent's slower head movement led to longer attention shift durations, participants in that 
condition demonstrated more sustained attention on the agent’s face before returning 
back to the objects. In both conditions, when the agent’s head stopped moving (and 
therefore participants knew to where the agent finally attended), participants quickly 
switched their attention away from the agent’s face and back to visual objects.  
 
In summary, participants in both conditions continuously monitored the agent’s attention.  
And they were sensitive to the agent’s head actions. Their attentional strategy was to use 
their focal vision on visual objects and their peripheral vision to monitor the agent’s 
status while the agent’s head was stationary. This allowed them to immediately switch 
attention to the agent's face whenever its head started moving. This attention tracking 
strategy was unexpected -- our original hypothesis was that participants would frequently 
switch their attention between objects and the agent’s face in order to monitor the agent’s 
attention. Compared with the peripheral vision strategy actually applied by participants, 
such an explicit monitoring approach would be less effective, as the agent's attention 
shifts would go unnoticed until the next “checking” event. This result is a good example 
of how this data-driven approach, based on fine-grained multimodal data, will not only 
quantify and connect with previously-observed phenomena, but can also lead to 
discoveries that were not expected in advance – the true value to advance our knowledge 
on human-human and human-agent communications.   
 

6.4 TIMING OF FACE LOOKING  
The above results based on time-course analyses provide a dynamic picture of 
participants’ gaze behaviors over time in the course of interaction. One strength of this 
approach is that it can identify general temporal trends by aggregating behaviors across 
multiple instances. However, this approach cannot capture the exact timing and 
synchrony between multiple behaviors and events. Our next step is to zoom in on 
individual instances and examine the synchronized gaze patterns elicited by salient 
events. 
 
We examine the exact timing of two multimodal behaviors/events, drawn from 
observations made in the time-course analyses above: 1) that participants were likely to 
look at the agent’s face in response to agent attention shifts, and 2) that participants were 
likely to look at the agent’s face immediately after initiating a naming utterance. In each 
case, we calculated, for each instance, the timing between the onset of the event (either a 
head turn or a naming utterance) and the first fixation on the agent’s face following that 
event. We report here the statistical patterns observed in these synchrony measures.  
  
Figure 9 summarizes the observed gaze behaviors in response to the agent’s head turns. 
At the onset of head turns, participants had already fixated on the agent’s face 20% of the 
time in the human condition and 27% of the time in the agent condition. These, of course, 
cannot be treated as responsive actions. However, in cases where participants were not 
already looking at the agent’s face, agent attention shifts led to a gaze fixation on the face 
within a window of 2 seconds after the onset of a head turn 42% of the time in the human 
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condition, compared to 60% in the agent condition. Taking as a baseline the overall 
likelihood of face fixation (16% in the human condition and 24% in the agent condition 
in Table II), there was a clearly substantial increase in fixations on the agent’s face driven 
by the response to the agent’s head turns.  Further, we calculated the timing delay 
between the onset of the head turn and the onset of the first gaze fixation on the agent’s 
face (among those instances with face fixation within 2 seconds), and found most 
fixations happened at around 800-900 milliseconds, as shown in Figure 7. Considering 
that it takes adults approximately 200-300 milliseconds to plan and execute a gaze shift 
and that there was also a perceptual processing time to detect the head turn action after it 
initiated, it is clear that participants in both conditions rapidly detected the head turn 
event and as a response, quickly switched their attention to the agent's face in real time. 
In addition, although participants in the agent condition were more likely to shift 
attention to the face, the timing between head turn and the first face gaze was similar in 
both conditions, suggesting that the timing discovered here is reliable. 
 

 
Fig. 9. The participants’ responsive actions to the agent’s head turns. Left: the proportion 
of time that participants were already gazing at the agent’s face at the onset of head turn 
in both conditions. Also shown is the proportion of instances that participants focused on 
other ROIs (Regions of Interest) at the onset of the head turn but shifted gaze to the face 
within a window of 2 seconds. The results show that those in the agent condition were 
more likely to respond to the agent’s head turn than those in the human condition. Right: 
the exact timing delay between the onset of head turn and the onset of the first fixation on 
the face. The timing delay was similar in both conditions: 800-900 milliseconds.  
 
Next, we measured the synchrony between the onset of speech naming acts and the onset 
of the first follow-up look to the agent’s face. We already know that participants in both 
conditions were likely to check the agent’s face after they named the object. However, 
what is unknown is how this naming act was synchronized with their agent face fixations. 
Figure 10 shows the results. First, participants in the agent condition were more likely to 
gaze at the agent’s face at the onset of a naming event (26%) than those in the human 
condition (20%). In both cases, the results were similar to the baselines reported above 
(16% in the human condition and 24% in the agent condition). However, within a 
window of 2 seconds after a naming event onset, the likelihood of face fixation increased 
by more than 10% in both conditions. More interestingly, the calculation of the timing 
between the onset of a naming event and the onset of the first look yields a reliable 
timing metric of 600-700 milliseconds. This suggests that right after the naming event 
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started, a significant proportion of participants immediately switched their attention to the 
agent’s face to check whether the agent was paying attention to the named object. 
  
We note that our gaze data are from user’s naturalistic behaviors without any 
instructions/constraints to bias participants on where they are supposed to look and at 
what moments. Therefore, they were free to shift their gaze moment by moment. In this 
context, it is clearly not the case that all the participants generated exactly the same 
behaviors every time an event happened. Thus, they might or might not look at the agent 
face after naming and even if they do so, they might generate the first face fixation at 
different timing moments. Considering those potential variations from naturalistic gaze 
behaviors in both human-human and human-agent interactions, the exact timings 
extracted here are informatively reliable.  

 
Fig. 10. The participants’ gaze patterns after object naming. Left: the proportion of 
naming instances in which participants in both conditions were already attending to the 
agent’s face at the moment of the onset of a naming utterance and within a window of 2 
seconds. Right: the exact timing between the onset of a naming event and the first gaze 
on the agent’s face. The timing delay is 600-700 milliseconds after the onset of the first 
spoken word in a naming utterance.  
 

7. GENERAL DISCUSSION AND FUTURE WORK  
The present study set out to investigate micro-level behaviors of humans in interactions 
with human and artificial agents. The starting point was human-human interaction, for 
which there is a wealth of empirical evidence of what may be considered “normal” 
responses and behaviors in various laboratory tasks. The experimental paradigm 
presented here examined multimodal couplings of key sensorimotor behaviors during 
face-to-face interactions in a word learning task, in particular, how gaze changes are 
related to and affected by one's own speech acts and manual actions, and the actions of 
the social partner. In addition, the comparative experimental design explored similarities 
and differences in human micro-level behaviors during interactions with another human 
versus an artificial agent.  Uncovering differences at this micro-level is important, as it 
allows us to establish patterns of differences that can inform future agent and human-
agent interaction designs. The data-driven approach described above yielded a varied 
spectrum of results.  However, one consistent theme emerged: participants in the artificial 
agent group paid significantly more attention to the agent's face than those in the human 
group, who instead tended to fixate more on the target (named or grasped) object. This 
could be due to any number of factors (e.g., the novelty of the agent, more difficulty 
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determining its gaze target, the difference in head motion durations; we discuss this in 
more detail in the following subsection), but whatever the reason, it is an important 
phenomenon of artificial agent interactions and it is critical to firmly establish it before 
any attempts can be made to explain it or to mitigate its effects. 
 
Additionally, the data-driven approach also allowed for the identification of interesting 
consistencies in the two experimental conditions that are informative to agent and agent 
interaction designers. In particular, we discovered the exact timing of participants' eye 
gaze at their social partner’s face during the interactions.  Participants in both groups 
exhibited very similar face looking patterns after the onset of agent head movements 
(800-900 ms) and after the onset of naming acts (600-700 ms). Regularities such as these 
should be exploitable by agent and agent interaction designers, as they can be directly 
incorporated in real-time human-agent interfaces to enhance efforts both to predict 
human social peers' actions by using gaze as a precursor, and to identify the exact timings 
for the agent to execute head turn and gaze shift actions when social partners are gazing 
at the agent’s face. In addition, the results from the present study can also be used to 
discriminate human-human and human-agent interactions when both interactions happen 
in the same environment with multiple human users and artificial agents working together 
in a collaborative task (e.g. Katzenmaier, Stiefelhagen, & Schultz, 2004).   
 
Each of the results summarized here, as well as the many others described in Section 5, 
could be useful when designing artificial agents that need to interact with humans. 
Whether they are relevant in any particular context will, of course, be up to the designer 
to decide. The important point here is that these similarities and differences need to be 
exposed.  And the data-driven, micro-level approach pursued in this paper represents the 
first steps toward this direction.  

 
High-Level and micro-level user data    
The primary goal of most human-agent interaction studies is to develop new 
computational models to generate more human-like behaviors.  These behaviors are then 
evaluated by asking users to answer questions on post-experimental surveys after they 
had interacted with the intelligent agent. For the purpose of evaluating human-agent 
interfaces and models, this methodology is sufficient as the ultimate goal of building 
intelligent systems/interfaces is to enable human-like interaction so that users can enjoy 
interacting with artificial agents (as much as they enjoy interacting with other human 
beings, at any rate).  Thus, survey data obtained contain direct feedback from users that 
can be used to compare and evaluate different interfaces and models.  
 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Katzenmaier:Michael.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Stiefelhagen:Rainer.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schultz:Tanja.html�
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Table III: Summary of primary results (without temporal dynamics results)  

behavioral 
type descriptions of measurement 

results (H: stands for the human 
condition; R: stands for the robot 
condition)  

speech 

# of word types H: more distinct words  
# of spoken utterances no difference 
# of tokens  H: more tokens/words 
# of one-word utterances  H: more one-word utterances 
# of naming utterances no difference 

# of one-word naming utterances  H: more one-word naming 
utterances 

eye gaze 

# of eye fixations no difference 
# of eye fixations on the social 
partner no difference 

prop. of time on face R: more looking  
fixation duration on face R: longer 
fixation duration on objects no difference 
fixating on the target object when 
holding it H: more looking 

fixating on the target object while 
naming it H: more looking 

response to 
the social 
partner's 
head turns 

prob. of gazing at the face at the 
moments of head turns  R&H: 20-25% 

prob. of gazing at the face right after 
head turns  R&H: 50-60% 

timing latency of gazing at the face 
after head turn onsets R&H: 800-900ms 

multimodal 
synchrony 
between 
speech acts 
and face 
looking 

prob. of gazing at the face at naming 
onsets R&H: 20-25% 

prob. of gazing at the face right after 
naming onsets R&H: ~35% 

timing latency of gazing at the face 
after the naming onset R&H: 600-700ms 

 
 
Besides user evaluation, another important reason to acquire user’s feedback from 
interacting with current models or interfaces is to collect empirical evidence that can be 
used to guide us on designing better ones in the future. While survey-based measures are 
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ideal for user evaluation, they are rather high-level and subjective for providing insights 
for better designs.   For example, users may report that they find artificial agents “eerie" 
(MacDorman & Ishiguro, 2006) which makes them not want to interact with agents 
again; or they may report that they find an agent “friendly” and that they would like to 
interact with more in the future.  While such self-reports serve the general purpose of user 
evaluation, they provide few details that could be used to precisely “pin down” where the 
agent failed to meet expectations, and in what ways designers can improve their systems 
and models based on current results. This is because, even though users may have high-
level feelings and impressions of how well they interacted with an agent, they cannot 
recall details about their subconscious reaction to the agent, nor might they be able to 
remember important subconscious effects and micro-behavioral differences in real-time 
interactions. For example, typically participants are not consciously aware of or able to 
recall these micro-level behaviors (e.g., where their gaze fell during the past two minutes, 
how long they looked at a certain location, how many fixation events they generated, 
etc.). This is because users' reactions to an agent typically happen at both a conscious and 
subconscious level and only parts of the conscious level (which is the basis for verbal 
reports on surveys) are accessible to introspection.   
 
Table III summarizes a set of results from the current study. These results are informative 
for two reasons. First, they represent a degree of micro-level detail which cannot be 
obtained by asking participants survey questions. We argue here that high-level feelings 
of the agent and interaction are influenced by and reflected in these micro-level 
behaviors. Second, these results can be directly incorporated in future agent designs. If 
we want to understand how micro-behavioral events that are often being processed only 
at the subconscious level can cause such overall evaluations, we need to focus on events 
such as head movements, gaze shifts, speech prosody changes, and even postural 
adjustments (e.g., leaning fractionally toward or away from the social peer). Each of 
these subtle external cues reflects the internal states of ongoing cognitive processes, 
whether interacting with an artificial agent or another human. Yet, those micro-level 
behaviors may be key to understanding what makes some interactions feel more natural 
than others.  Therefore, incorporating these micro-level behavioral patterns into future 
designs has a promise to lead to better human-agent interactions.  
 
Connecting micro-behaviors with high-level psychological constructs 
While the current study focused on analyzing micro-level data, our results can also 
be connected with high-level psychological concepts. For example, the difference in 
how much participants looked at the human confederate or the agent may relate to 
intimacy regulation (e.g., Argyle & Dean, 1965, Argyle & Ingham, 1972). Research 
on this topic suggests that people avoid gaze to control the level of intimacy between 
themselves and their partners. This explanation is consistent with low levels of gaze 
between strangers and high levels of gaze with inanimate characters (e.g., people do 
not avoid gaze when they watch characters on TV). In the current study, participants  
might be regulating intimacy with the human confederate more but less with the 
robot. In addition, the difference may also be caused by uncertainty in the agent’s 
capabilities to understand/learn names, and uncertainty in the robot’s social skills 
(maintaining joint attention). A third high-level factor is the unfamiliarity of 
participants with interacting with a robot. As a result, they may look at the robot 
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more due to their curiosity. Even though we didn’t find any difference in their face 
looking behaviors at the beginning vs. the end of the interaction, this novelty effect 
may still play a role given the overall interaction is relatively short (<30 minutes 
including instructions, eye-tracking calibration and breaks between trials). As further 
studies are required to obtain a clear answer, connecting micro-level patterns with 
high-level constructs and theories can be an important component in this data-driven 
approach. First, high-level theories may allow us to make predictions of micro-
behavioral patterns which can be used to guide pattern discovery in data analysis. 
More importantly, micro-level patterns may reveal how high-level behaviors, e.g. 
intimacy regulation, are implemented through moment-by-moment multimodal 
behaviors. In this way, bottom-up behavioral patterns and top-down theoretical 
knowledge can work together to lead to a better understanding of human-agent 
interaction and better agent designs.   
 
There are two factors at the sensorimotor level that may be relevant to the results 
reported in this paper. First, there might be differences in how easy it is for 
participants to read the human’s gaze and the robot’s gaze, even though they observe 
from the same distance in the current experimental setup. Second, as reported earlier, 
differences in the duration of motion exhibited by the human confederate and the 
robot during attention shifts may not only cause different responsive behaviors at 
those moments (only a small proportion) but also have a carryover effect through the 
whole interaction.  Both factors are worth further study in future work. One way to 
answer these questions is to use embodied virtual agent platforms. With the advance 
of computer graphics technologies, visual details of virtual characters can be 
rendered with high resolution, making them much more human-like. Along this line, 
research on android science has successfully built human-like robots with artificial 
skins (e.g. MacDorman & Ishiguro, 2006). However, the cost and effort of this 
embodied approach are prohibitive; using virtual agents is effective at relatively low 
cost and in a short development time. In addition, the actions executed by virtual 
agents are not constrained by motor and mechanical delays in a physical robot, and 
therefore they can be precisely controlled and programmed to match with the timing 
of natural human action.  One noticeable difference between a physical robot and an 
embodied virtual agent is the physical co-locatability – a robot can share the physical 
environment with human users while virtual agents need to be rendered in a display 
and cannot directly execute an action to change the physical environment that users 
live in. Recently, Hasegawa, Cassell and Araki (2010) conducted a comparison study 
in an interaction task in which either a physical robot, a virtual agent or a GPS device 
gave directions to human participants. They found no difference in direction-giving 
performance between the robot and the embodied conversational agent, but did find 
behavioral differences (e.g., participants interacting with the virtual agent used more 
complementary gestures than those interacting with the physical robot). With 
interactive systems available in different forms, comparisons of different systems in 
the same experimental setting, such as the present work and the study reported in 
Hasegawa, et. al (2010), can generate new empirical evidence and insights that 
cannot be obtained from studying a single system alone.  
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Experimental control vs. free interaction  
In the current experimental paradigm, the behaviors of the robot and the human 
confederate were pre-determined. We chose this controlled design to allow us to 
compare, in a rigorous way, how human users may respond differently when they interact 
with two types of agents with the same action sequences.  That is, any differences or 
consistencies found are due to differences between the two agents (the visual appearance 
and the participants' mental models of the agents). This controlled experimental design is 
typical of most empirical studies. Meanwhile the interaction itself was free-flowing 
without any constraints on the user end in terms of what they should do or say. An 
alternative approach is to study human-agent and human-human interactions in 
completely unconstrained naturalistic contexts.  For example, Gergle & Clark (2011) 
used a naturalistic paradigm in which two participants were asked to freely interact with 
each other in a conversation elicitation task. The naturalistic aspect of interaction studies 
is critical because the ultimate goal of human-agent interactions is to design an 
agent/robot that can interact with users in an unconstrained environment with naturalistic 
behaviors. From an ecological perspective, there is always a need to confirm whether 
results and findings from well-controlled experiments can be easily extended and 
generalized to more naturalistic situations. Compared with well-controlled experimental 
paradigms, a challenge in naturalistic studies is to analyze rather complex data (generated 
from free interactions) and reach reliable conclusions by discovering interesting patterns 
and factors (and meanwhile excluding confounding factors). In brief, these two 
experimental paradigms are complementary and ultimately converging evidence is 
expected to be collected from both paradigms. In addition, we can build a closed loop – 
results from naturalistic studies can be used to guide the design of experimental controls, 
while the results from well-controlled studies can provide insights for naturalistic studies 
on which patterns and factors should be focused on in order to generate reliable results 
while maintaining the naturalistic nature of interaction. In this way, these two lines of 
research can inform and bootstrap each other.  
 
Future work 
The employed experimental paradigm (from data collection, to data processing, to data 
analysis) can be easily extended to other collaborative human-human and human-agent 
interaction tasks, allowing further investigations to both refine and generalize our present 
findings in other contexts.  Along this line, we are also interested in comparing virtual 
agents rendered by computer graphics with physical robots, while continuing to use the 
human confederate as a baseline. This will allow us to determine how factors such as 2D 
vs. 3D, physical embodiment, and rendering quality may create differences in user 
responses at the micro-behavioral level. Another important direction for future work is to 
use our experimental findings to guide the development of an artificial gaze control 
system.  For example, we can predict based on our data what object a participant will 
name based on their eye gaze patterns in the 2 to 3 seconds immediately preceding the 
naming event. Similarly, we can predict which object a participant is likely to reach for 
even before the grasping action starts. Hence, an artificial agent with access to real-time 
human eye gaze data could be programmed to change its focus of attention to that object 
as soon as the human intention is discovered. This could result in better coordination 
between humans and artificial agents, or reduced human cognitive loads.  Moreover, by 
studying in detail the temporal coupling of eye gaze and naming, we will be able to 
design behavioral scripts that will allow artificial agents to assume the role of a teacher 
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that is intuitive and easy to follow for human learners. Incorporating those findings into a 
gaze model and implementing that within virtual and physical agents will allow us to 
explicitly test the real-time mechanism. In turn, we will acquire additional empirical 
results from those studies which will guide us in improving the agent model. In this way, 
we can establish a positive feedback loop between knowledge discovery from empirical 
studies and improved model building.  Overall, we believe that the kind of empirically-
grounded and sensorimotor-based study of human-agent interactions exemplified in this 
paper will ultimately allow us to systematically investigate important aspects of human 
social interactions that can form the foundation for developing truly natural human-agent 
interactions. 
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