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Abstract. Learning new activities (i.e., sequences of actions possibly in-
volving new objects) from single demonstrations is common for humans
and would thus be very desirable for future robots as well. However,
“one-shot activity learning” is currently still in its infancy and limited
to just recording the observed objects and actions of the human demon-
strator. In this paper, we introduce a process called “Mental Elaboration
and Generalization by Analogy” to create a generalized representation of
an activity that has been demonstrated only once. By abstracting over
various dimensions of the learned activity, the obtained activity repre-
sentation is applicable to a much wider range of objects and actions than
would otherwise be possible.
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1 Introduction

Learning new activities on robots from human demonstration has been inves-
tigated for quite some time (e.g., see [1] for an overview). However, there are
surprisingly few attempts to learn activities in a more natural, human-like way
from a single demonstration paired with natural language instructions (e.g., see
[5]). The challenges in such “one-shot activity learning” include the processing
of fairly unconstrained task-based natural language instructions in real-time and
the difficulty of integrating demonstrations and natural language instructions in
a mutually synergistic way.

Determining the relevant features that constitute the activity is another prob-
lem. It is believed that human learners use their imagination invoking a mental
simulation to construct variations of the scenario. They are then able to distin-
guish those features that are relevant to the activity from those that are not.

In this paper, we introduce our first attempts at using mental simulations
to learn relevant features of single presentations of activities. Specifically, we
describe a first set of algorithms that can generate novel, yet similar, situations
from a given situation and use analogical reasoning to determine which of the
different features in the new situation matter for the previously observed activity.
From these simulations, we then generate a more abstract activity description
that includes the most relevant relations and entities.
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2 Background

Human lives are filled with learned activities that are performed on a daily
basis, from driving to the grocery store, selecting and fetching appropriate items
from the shelves, packing them in grocery bags at the cash register, stacking the
fridge at home, to preparing meals, cleaning the dishes, and so forth. Humans
are particularly good at learning and executing such activities, which are often
learned from one single demonstration by a teacher — we will call this “one-
shot activity” learning. In one-shot activity learning, the teacher typically uses
a mixture of natural language instructions, gestures, and action demonstrations
to teach the activity, while the learner uses multi-modal cues to make sense
of the demonstrated activity. This includes determining the relevant objects
and actions, as well as the appropriate sequencing of actions and events. When
successful, the learner will have formed an appropriate “activity representation”
that removes irrelevant physical details (e.g., the distance of the target object
from the hand before a grasp or the particular motion trajectories on the way
to the grasp, etc.) while capturing relevant details (e.g., the target object needs
to be picked up and placed in a particular location relative to another object).
Recent work in robotics has proposed solutions to different aspects of human
activity learning. For example, [2] showed how to learn new (primitive) actions
from natural language instructions. Beyond actions, [11] demonstrated how var-
ious additional properties of objects could be learned from one-shot natural lan-
guage descriptions. [12] demonstrated how a robot could learn to follow recipes
written in natural language on wikihow.com, also utilizing a variety of corpora
(the WordNet lexical database. The Kelia project has also made progress in al-
lowing robots to learn from written natural-language data [3] when gaps in the
robot’s knowledge base are detected. However, none of these projects allow for
learning abstractions from single presentations that lead to generalized activity
representations which include novel situations with new objects and features.

3 Architecture

The components and control flow of Mental Elaboration and Generalization by
Analogy (MEGA) are shown in the gray box of Figure 1. Also in the figure is the
control flow for a new scenario. The Measure Applicability of Novelty (MAN)
component receives a new scenario and compares it to the generalization using
the “structure mapping engine” (SME) [7]. If the generalized activity, which
includes a partial description of the context in which it may be applied, and
the new scenario are sufficiently similar, then the activity is applicable to the
scenario and analogical inferences generated by SME are inspected to find the
appropriate variable bindings. In the nest section, we will describe the two main
components of MEGA, Mental Elaboration and Generalization by Analogy.
The components of MEGA and MAN are are designed to be easily integrated
into the DIARC architecture [13]. We have defined the interface to the Action
Manager component to receive the propositional description of the demonstrated
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Fig. 1. MEGA process creates a generalized activity, which is later used to infer ap-
propriate activities and variables in a novel situation.

activity. MEGA then internally stores the generalized activity. Later, when the
Action Manager is selecting the appropriate actions to complete an activity,
it provides the new scenario to the MAN component, which will compare the
scenario with the generalized activities and return the applicable action.

4 MEGA

We will tackle the generalization of activities from single demonstrations using
SME. Similar to [9], we attempt to find correspondences between different cases
(activities in our work) using structure mappings, but different from [9] we de-
termine the generalization over all comparisons in parallel (instead of a pair-wise
sequence). Moreover, because we are concerned with the generalization of a sin-
gle activity, all comparisons are made to the demonstrated target activity. Our
approach uses a two-phase process. In the first phase (ME in Figure 1) a single
demonstration of an activity, e.g., “picking up a medical kit” as might be critical
for a search-and-rescue robot — the situation encoded in a “propositional frame”
is elaborated upon to develop alternatives cases. Each valid case is then com-
pared to the original case in the second phase (GenA). Comparisons attempt to
find an analogical mapping between the cases. Based on these mappings and an
evaluation of the similarity between the cases, the most salient items in the case
are identified and incorporated into a generalization of the activity.

4.1 Mental Elaboration

The Mental Elaboration (ME) phase of MEGA produces a set of alternative
cases based on a single given case. This process is described in Algorithm 1. The
case is altered along two dimensions, feature and object, to create combinations
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Algorithm 1 Mental Elaboration

Require: base case - propositional frame describing demonstrated action
H + {base}
H <+ H U objAlts(base)
OUT + )
for all hcase € H do
candidates < featAlts(hcase)
for all ¢ € candidates do
if valid(c) then
OUT + OUTUc
end if
end for
end for
return OUT

of variations. We begin with generating the object alternatives (objAlts) for
the base case, and then generating a set of feature alternatives (featAlts) for
each object alternative. Together this creates a set of candidate cases that are
varied along the feature and object dimensions. Candidates are filtered to check
for validity and consistency before being accepted as an alternative case for
generalization consideration.

Object dimension. The object dimension represents different entities that
are involved in the context on the activity. The intent of the object dimension
is to identify the range of objects to which the activity can be applied. The
mental elaboration process imagines other objects that may fit the scenario. To
illustrate this process, we will use the example of a “medical kit” that is defined
as “a white box with a red cross on it and a handle on top”. The alternative
cases will range over objects that have handles, some of which may be highly
similar to the medical kit, such as toolboxes or a suitcase. Some objects, however,
have handles in a different orientation, like a mug or a milk jug. Other objects
have multiple handles, like a suitcase (one on the side, one on top) and a tote
bag (two handles that come together to form a single handle). Additionally,
objects that have handles but are not intended for lifting, like a door, are also
included as alternative cases. Table 1 lists all considered objects, including the
number of alternative cases used in the generalization phase. The total includes
variations along the feature dimension and then checked to meet basic validation
constraints. Each of these processes are discussed further below.

Each scenario - which includes the object to be lifted, the agent doing the
lifting, and descriptions of the start and end states - is captured in a propositional
frame called a “case”. For each alternative object, a duplicate case is generated
with the original object and its corresponding facts removed and the new object
and its facts inserted in its place. The facts relating to the object are defined in
the knowledge base and include features like the shape, color, and position and
location of handle(s). Examples of facts from the knowledge base related to a a
medical kit and those related to one alternative object are shown in Table 2.
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Table 1. The objects considered vary in the number of handles, location of the han-
dle, and the purpose of the handle. The alternative objects generated that pass the
validation constraints are the source of the generalized action.

object # handles|handle location(s) |lifting handle|alternatives
medical kit 1 top yes 144
toolbox 1 top yes 1512
suitcase 2 top/side yes 5292
basket 1 top yes 648
tote bag 2 top yes 648
mug 1 side yes 324
milk jug 1 side yes 432
door 1 side no 432

Feature dimension. Exploring the relevant feature space is done through
alterations along the feature dimension. We include amongst the features not
only attributes like color and shape but also relations like spatial orientation. The
intent of making alterations along this dimension is to identify which features are
significant to the activity to be generalized. For example, in most cases the color
of an object has no influence on how one manipulates the object. However, the
orientation of the handle relative to the object is significant in many activities.

Only a small set of the features may be integral and necessary for the activ-
ity, and the challenge is to efficiently identify them. In analogical comparisons,
greater contributions to the similarity of two cases originate from higher-order
relations and enhance the systematicity of the case. Hence, we expect that the
features that are less important contribute less to the overall structure of the
representation of the context and should not be included in the generalization of
the action. One example of the difference between significant and insignificant
features is the color of the medical kit versus the force exerted on the handle
of the medical kit. The color is only referenced in relation to the medical kit,
and thus the color of the medical kit is irrelevant. The upward force exerted on
the handle is referenced in three relations, thus it is a significant feature and is
necessary for lifting the object by its handle.

Note that recognizing these differences is problematic for many statistical
approaches that primarily rely on frequency of features. E.g., if the majority
of the objects lifted are white, then it is inferred that the action requires the
object to be white. Similarly, to teach a robot to place a yellow object on a
higher platform requires a series of trials consistently demonstrating the proper
placing of the yellow object [6]. The intent of our approach is to leverage mental
simulation and analogy-based comparisons to enable the identification of the
significant and influential features of the scenario from a single demonstration.
If the color of the object is significant to the action, then this is captured in the
representation of the scenario with the color being related to some other entity in
the scenario. This information may originate from natural language instruction
and then encoded as a proposition in the scenario.
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Table 2. The facts on the left are related to a medical kit and are replaced by the
facts about a mug on the right when generating the alternative case for the mug.

medical kit mug

(medical-kit ?7instance ( (mug ?7instance (

(medical-kit ?7instance)
(box 7instance)
(rigid-object 7instance)
(has-color ?7instance whitel)
(white whitel)
(greater-than (width 7instance)
(height ?7instance))
(handle handleO)
(graspable handleO)
(has-part 7instance handleO)
(on-top-of handle0 7instance)
(connection c1)

(end-of cl1 ?7instance)

(end-of c1 handleO)
(rigid-object cl1)

(left-of ci

(center-of-mass 7instance))

(connection c2)

(end-of c2 7instance)

(end-of c2 handleO)
(rigid-object c2)

(right-of c2

(center-of-mass 7instance))))

(mug 7instance)
(cylinder 7instance)
(rigid-object 7instance)
(has-color ?7instance whitel)
(white whitel)
(equal (width 7instance)
(height ?7instance))
(handle handleO)
(graspable handleO)
(has-part ?7instance handle0)
(on-side-of handle0 ?7instance)
(connection c1)

(end-of c1 ?7instance)

(end-of c1 handleO)
(rigid-object c1)

(right-of c1

(center-of-mass 7instance))

(connection c2)

(end-of c2 ?7instance)

(end-of c2 handleO)
(rigid-object c2)

(right-of c2

(center-of-mass 7instance))))

Modifying propositions and creating sets of modifications generates new
alternative cases. Changes along the feature dimension consists of modifying
classes, attributes, and relations. Table 3 lists the features of each type that are
included in the demonstrated scenario. The knowledge base contains a range of
possible values for each feature.

Each type of feature requires its own rules for finding alternative values. Each
rule follows the pattern of verifying that the proposition is true in the scenario,
identifies a value for that feature, and verifies that the new value is different
than the original. A rule for changing the class of an entity is the following:

(<= (change-class (?type 7entity) (7new-type 7entity))
(instanceof 7entity 7type) ;; entity is an instance of type
(isa 7type 7super) ;5 type is known to have a super class
(isa 7new-type ?7super) ;; new-type is a member of the class
(different 7type Pnew-type)) ;; new-type and type are not the same

The change-class rule is applied to propositions in the case that define the
class of an entity. Similar rules are used to change attribute values and rela-
tionship types. Combinations of these values produces the new cases along the
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Table 3. Each feature and its set of valid values.

type feature values
class agent human, robot
class surface table, floor, shelf
class color white, red, blue, gray, maroon, pink, yellow
attribute shape box, cylinder, cube, flat, spherical
relationship spatial left-of, right-of
relationship inequality equal, less-than, greater-than

feature dimension. For example, an alternative case for lifting the medical kit
will have the agent modified to be a robot. Another case will have the robot as
the agent and the color of the kit is yellow.

Validation of features. Not all feature values or combinations of values are
always valid for all objects (e.g., cubic or box-shaped mugs are invalid). The
validation rules, which are based on knowledge of valid features of an object,
verify that the combination of features is acceptable. For example, we require
that any medical kit be either red or white. If no validation rules pass, then the
case is rejected. Once a generated case has been determined to be valid, it is
made available for the generalization process. The tally of valid cases generated
for each object type is shown in Table 1.

MEGA requires a knowledge base of facts and rules that are assumed back-
ground knowledge needed to quickly learn. However, the whole MEGA process
requires very little knowledge. The generation and validation of the alternative
cases requires less than 250 facts and 50 rules. The majority of the facts are
descriptions of objects, and the most of the rules define the Mental Elaboration
(ME) process and are independent of the objects and features included in the
knowledge base. Expanding the knowledge base to incorporate additional ob-
jects to be used in the ME process mostly requires an addition of roughly 20
facts (see examples in Table 2). Constraints on valid features of each object is
currently defined as a set of rules, which also would need to be added to the
knowledge base when including new objects.

4.2 (Generalization by Analogy

Once all the alternative cases have been generated, we identify the similarities in
the cases to construct the generalization. Using a computational model of anal-
ogy, we can select the items in the cases that are most significant. The structure
mapping engine (SME) [7] is an analogical reasoning engine that adheres to the
principles of structure mapping theory [8]. SME compares representations of the
two cases by finding correspondences between items in each representation. This
processes is governed by the constraints of structural consistency: one-to-one
mapping and parallel connectivity. A one-to-one mapping means that a struc-
turally consistent mapping between the base case and the target case does not
include any item in the base case being mapped to more than one item in the
target case, and vice versa. Parallel connectivity requires the arguments of a pair
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Fig. 2. The horizontal axis has the alternative objects considered, from left to right:
medical kit, toolbox, suitcase, basket, tote bag, mug, milk jug, and door. The vertical
axis is the number of feature differences. The size of the circle is how many cases were
generated. The color of the circle shows how similar the case is to the original case of
lifting a medical kit.

of statements to be mapped if the statements are in correspondence. Addition-
ally, SME implements the systematicity principle, which requires relations that
are included in the analogy to be part of a system of relations. It has been shown
that people identify the key facts in an analogy as the one that are part of a
system of connected relations [4].

These principles are key in identifying salient elements in a scenario where
an action is used. For example, a one-to-one mapping associates the agent in
the base case doing the lifting to the agent in the new case doing the lifting.
Mapping it to multiple agents is not appropriate as a two agent lifting action
has many differences compared to a single agent lifting. Systematicity is also
crucial because it helps differentiate between elements that are essential in the
scenario and those that are just surface features. Essential elements are likely to
take part in multiple relations. For example, the hand is essential in the lifting
action. It is part of the relations defining it as part of the agent, as part of the
action, and as the thing grasping the object. It is not necessary that it be a
hand, but some common entity must fill the role of being part of the agent, be
involved in the lifting action, and grasping the object.

The analogical comparison process done by SME constructs proposed corre-
spondences between an item in the base case and an item in the target. Each
correspondence, called a match hypothestis, is assigned a score based on an initial
value and some value inherited from a parent match hypotheses. The sum of
all the match hypothesis scores produces the overall structural evaluation score
(SES) for the whole comparison. This score is a measure of the structural sound-
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ness of the comparison and is thus a measure of the strength of the analogy. A
poor analogy, or a comparison that has few relations in common, will have fewer
match hypotheses with relations and thus less scores that can trickle down and
accumulate in match hypotheses containing the arguments of the relation.

Our approach to generalization by analogy takes advantages of the structural
evaluation score and the match hypothesis score. The base case is compared to
each target case generated by ME. Each item in the base case is evaluated for
its significance to the case. For each item i in the base case, the significance
score (Sig) is the weighted sum of the match hypothesis score (MHS) in which it
occurs in each case compared to the base. The weight applied is the structural
evaluation score (SES) for the base/target comparison.

Sig; = Z SES (base,c) * MHS(i, base, c) (1)

cecases

Extending this further, we can compare the base case to all of the variations
that were automatically generated as part of the Mental Elaboration process.
Figure 2 shows the SES of each of these comparisons. We now introduce GenA,
an engine for automatically doing these comparisons, identifying the most sig-
nificant elements of the cases, and producing a generalization of the base case.
Algorithm 2 describes this process. It begins with the demonstrated cases and
the alternative cases generated from it. For each of these generated cases, it is
compared with the demonstrated case. This is an analogical comparison that
produces a set of mappings between items in the cases. The mapping with the
best score is further analyzed. For each match hypotheses (mh) in the mapping,
the score of the mh is added to the score of the base item in the mh. At this point,
each item has a a significance rating associated to it. If the item significance is
greater than a threshold, it is included in the generalization.

Filtering all the expressions to include only those with a significance greater
than some threshold ensures that the generalization includes only the most im-
portant expressions. If an expression has a valid mapping in each analogy then
it is likely the expression is necessary for the generalization. If it has a mapping
in the majority of the cases, then it is still likely to be an important expression.
Given these assumptions, we calculate the threshold as the minimum score for
an expression if it has a mapping in the majority of cases and each of these cases
is a perfect analogy.

5 Measure Applicability of Novelty

When a new, and potentially novel, scenario is presented, a comparison of the
scenario with the generalized action case reveals the applicability of the action to
the new scenario. This process, called Measure Applicability of Novelty (MAN),
uses SME to compare the new case to the generalized case. If the cases are
sufficiently similar, then the inferences produced by SME are examined. The
candidate inferences provides potential projections of the generalized case onto
the novel case. The most important projections are the action and its parameters.
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Algorithm 2 Generalization by Analogy

Require: base - demonstrated case
Require: generatedCases - generated alternative cases
items < items(base)
for all gencase € generatedCases do
mappings <—compare(base, gencase)
bm <—greatestSES(mappings)
ses <—score(bm)
for all mh €mhs(bm)) do
baseltem <base(mh)
if baseltem € items then
sig(baseltem) <—score(baseltem) + score(mh)
end if
end for
end for
threshold <—computeThreshold(base)
keeprItems <filter(items, threshold)
return expressions(keeprltems)

The comparison with the generalization and inferences made about the new
situation is a similar process to that used in case-based reasoning [10]. However,
SME is a domain-general engine for adapting the new scenario. Additionally, it
provides a common mechanism across the MEGA and MAN components.

We evaluate the quality and utility of the generalized action by presenting
a novel scenario to MAN. It is our hypothesis that the generalized action will
be most similar to novel scenarios that have a handle for lifting on top of the
object. It is also expected that the process will be resilient to feature variations
that were not previously seen.

The novel scenario has a brown briefcase sitting on a desk. The goal is for the
robot to be holding the briefcase above the desk. We also introduce additional
features to the scenario to show that these are easily ignored. We add that the
handle is black and, the briefcase is metallic, and the briefcase is heavy. The
intent is for MAN to determine that the generalized action case for lift-up is
similar to this novel scenario and that the parameters to the lift-up activity are
the robot and its hand.

Comparing the generalized activity to a variety of other novel scenarios shows
a consistent pattern. In all these novel cases, the surface is a desk, which was
never seen in the original demonstration or the mental elaboration of it. We also
introduce new objects: a hammer, a desk drawer, a cooking pan, and a soda
can. It is important to note that a soda can clearly does not have a handle, and
it would be anticipated that this scenario would be less similar. Additionally,
we try objects that were included in the elaboration phase but with never seen
before features (e.g., black handles, red cross on medical kit, and suitcase with
a single handle). In keeping consistency with our intent to have the robot learn
to perform these actions, all of these novel cases have the robot performing the
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Fig. 3. The generalized action is most similar to objects with a handle on top. Other
orientations and uses of handles result in even less similarity. Finally, an object without
a handle is least similar.

action. Figure 3 shows that one class of scenarios (medical kit, suitcase, briefcase,
toolbox, and mug) have nearly the same similarity score to the generalized case.
This similarity drops off as the action becomes less applicable to the scenario.
The cooking pan and hammer each have a handle, but the handle is attached to
the object in a different manner, leading to the diminished similarity. The door
and the desk drawer have handles, but they are not lifting handles. Finally, the
least similar case is a soda can because it does not have a handle.

6 Discussion and Conclusion

Being able to quickly learn is not only a feature of human learning but is critical
for developing natural interactions with robots. We have presented a system that
learns to apply an activity to novel situations based on a single demonstration
of the activity. Through a process of Mental Elaboration and Generalization by
Analogy (MEGA), we are able to determine the most significant elements in the
application of an action and create a generalized action. We demonstrated the
quality of the generalization by comparing to new situations. In addition to the
comparison results being as expected, the analogical comparison produces infer-
ences that includes the action and the proper bindings of the action’s variables.

While the solution proposed here bears great promise, there are some po-
tential issues. The representation of the cases is important, but much of the
information included is general world knowledge. The Mental Elaboration phase
relies on a knowledge base that contains facts about the structure and features of
objects and ontological relations of entities. However, rapid learning by humans
is also greatly dependent on background knowledge. In addition to requiring a
relatively small knowledge base, SME (which is at the core of our approach) does
not require any background knowledge.

Future work will focus on integrating the algorithms introduced in this paper
into a robotic architecture. This type of integration will bring various challenges
such as extracting the symbolic expressions needed for MEGA from the percep-



12 Analogical Generalization of Robot Actions

tual components. However, it will also allow us to utilize other features of the
architecture, namely the simulation components. Supplementing MEGA with a
simulation of cases that are sufficiently similar will reveal which of the cases are
physically impossible and thus can be ruled out. An additional future develop-
ment is reducing the overall computational complexity of MEGA. The greatest
efficiencies can be gained from limiting object alternatives to similar objects, a
heuristic search on which features to vary, and only generating enough alterna-
tive cases to construct a cohesive generalization.
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