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ABSTRACT
Effective coordination is a critical requirement for human team-

ing, and is increasingly needed in teams of humans and robots.

Building on decades of work in the behavioral literature, we have

implemented a computational framework for coordination based

on Shared Mental Models (SMMs) in which robots use a distributed

knowledge base to coordinate activity. We also built a novel system

connecting the robotic architecture, DIARC, to the 3D simulation

environment, Unity, to serve as an evaluation platform for the

framework implementation, and also for more general explorations

of teaming with autonomous robots. Using this platform, we ran a

user study to evaluate the framework by comparing performance

of teams in which the robots used SMMs with those that did not.

We found that teams in which the robots used SMMs significantly

outperformed those without SMMs. This represents the first em-

pirical demonstration that SMMs can be successfully used by fully

autonomous robots interacting in natural language to improve team

performance, bringing robots a step closer to genuine teammates.

KEYWORDS
shared mental models; coordination; human-robot teaming

1 INTRODUCTION
Robots are uniquely suited to performing dull, dirty, or dangerous

tasks that can complement and enhance the work that humans do.

As a result, they are increasingly needed to serve as joint partners

with humans in a variety of domains, ranging from hospital operat-

ing rooms to space stations. The role of robots on human teams goes

beyond serving as mere tools for information retrieval, but extends

to scenarios in which the robots function as equal partners, or peers

[39]. In terrestrial teams, effective human-robot teaming is needed

for military applications, such as scouting and reconnaissance [23],

disaster relief applications such as urban search and rescue [26],

and assistive applications such as medical care [42]. Robots in these

kinds of teams have a host of interaction requirements, including

interpreting natural language instructions, carrying out actions in
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support of the team, and adapting to novel situations. Robots for

space exploration have some of the most challenging requirements,

as they need to coordinate their activities with humans as part of

highly distributed teams that operate at multiple spatial ranges,

time scales, and interaction modalities [9, 10]. These robots must

be able to work before, during, and after human activity, and must

have autonomous capabilities to operate with limited to no human

intervention [13]. These challenges highlight the need for a coor-

dination framework that can manage the interaction demands of

these complex domains.

2 SHARED MENTAL MODELS FOR
HUMAN-ROBOT COORDINATION

A promising approach to coordination is based on the concept of

Shared Mental Models (SMMs), which are distributed knowledge

structures that human teams build and maintain for effective coordi-

nation [4, 20, 25]. Decades of work from Organizational Psychology

has demonstrated that SMMs serve to improve team coordination

and performance in a variety of task domains [8, 21, 24, 38]. In a

multi-agent human-robot interaction (HRI) context, an SMM can

be between the robots (Robot SMM) or between the human-robot

team (Human-Robot SMM). A Robot SMM represents the set of

shared knowledge that is synchronized across all robots, and used

to inform planning and decision-making. This allows for a level of

alignment far beyond a human-human SMM (e.g., sharing internal

representations). On the other hand, the Human-Robot SMM is the

broader structure representing the common ground of all agents

on the team, including each agents’ knowledge and belief states

and the extent to which they are aligned. This paper focuses on Ro-

bot SMMs, to specifically address the SMM hypothesis for artificial
agents, which is that SMMs improve coordination and performance
in human-agent teams [34].

Several lines of computational work have incorporated elements

of SMMs into their approaches, though none have been sufficient

to truly test the SMM hypothesis. In [45] and [13], agents share a

knowledge base and use this to coordinate and make team-oriented

decisions. While [13] used a comprehensive SMM framework based

on [34] (including mental state representation, functional roles,

obligations and norms, etc.), [45] used only select parts of an SMM,

including team process, team structure, domain knowledge, and

dynamic information needs. Moreover, both of the evaluations used
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simulated agents (though [13] used a human-in-the-loop), which

does not sufficiently demonstrate improved human-robot team per-

formance. A proper evaluation would involve a user study in which

humans interact with autonomous robots in a collaborative task.

Another approach used shared mental representations for collabo-

rative planning, with the robot inferring a human’s plan and using

it to inform its actions [40]. This is closer to a true Human-Robot

SMM, although again, the scope of the SMM is limited and the

evaluation used a simulated human in a proof-of-concept scenario.

Finally, [27] used a POMDP to encode an SMM, however the for-

mal specification of the SMM was limited to high-level variable

descriptions such as “mental model variables" and “activity status

variables", and the proposed assembly manufacturing task was not

actually performed.

Recently, we introduced the first comprehensive formal and

computational framework for SMMs (both Robot- and Human-

Robot SMMs) [34]. This framework enables artificial agents to store

and share a variety of representations, including agent capabili-

ties and propensities, agent and task states, norms and obligations,

activities and equipment types, and functional roles of agents in

teams. Agents maintain these representations, update them based

on inference and perception, and use them to adapt behavior. This

framework is uniquely suited for testing the SMM hypothesis be-

cause it supports the same kinds of comprehensive representations

that human teammates use, and informs how to incorporate these

representations into a control architecture. While prior work has

implemented only fragments of an SMM [40, 45], or failed to carry

out a proper evaluation [13, 27] an implementation and evaluation

of this framework can provide a true test of the SMM hypothesis.

3 METHOD
Building on our prior work [13, 17, 34], we first implemented and

extended the SMM framework in a space robotics task domain (see

Sec. 3.1 and 3.2). Next, we designed an evaluation platform in which

robots running a cognitive robotic architecture could interact with

humans in a virtual environment (see Sec. 3.3). Using this platform,

we ran a user study to evaluate the SMM framework by comparing

performance of teams in which the robots used SMMs with those

that did not (see Sec. 4).

3.1 Space Robotics Task Domain
The scenario we developed involves a collaborative maintenance

intravehicular activity (IVA) task on a spacecraft, and is meant

to loosely represent a use case for humanoid robots in space [5].

In the scenario, a human plays the role of an astronaut aboard

a spacecraft orbiting Mars. The human must work together with

a rover on the planetary surface to scout a territory for a future

colonization mission. This involves performing a geological survey

task in which the rover reports the location of landmarks on the

surface (various rock types and radiation zones) and the human

marks the coordinates on a map. While the rover task is the primary

task, the human must also attend to a distractor task in which

various tubes aboard the spacecraft become damaged and need to

be repaired. Repairing damaged tubes requires coordination with

two onboard autonomous robots. The human must first locate and

shut off a damaged tube, and then instruct a robot to go to the tube

and repair it. The human can then turn the tube back on after it

has been repaired.

We created an environment using the Unity game engine to

represent this task domain. The virtual spacecraft layout includes

a central area (containing the rover task map) connected to three

wings labeled Alpha, Beta, and Gamma. Each wing is identical and

includes a hallway with 24 tubes that (people were told) contain

fuel for a future Mars colony (12 on each side; see Fig. 1). The tubes

are identified by the wing that they are in, the side that they are

on, and the number, e.g., alpha left one. Only the robot can enter

the hallway with the tubes as the fuel is “radioactive".

Figure 1: Wing layout showing a robot repairing a tube.

3.2 Framework Implementation
Knowledge in the SMM framework is represented using a set of

logical primitives from several major categories, including domain
knowledge, agent capabilities, agent and task states, norms and obli-
gations, activities, and functional role of agents in teams. Below,
we introduce the formal representations that were developed for

each of the major categories as well as general rules that use these

representations to update the SMM state.

Domain Knowledge is represented as a set of predicates including

the agents, objects, locations, activities, and other domain-specific

representations needed to model the task and environment. The set

of agents, A = {H,R1,R2}, includes the human, H, and the two robots
R1 and R2. Objects include the set of 72 tubes, T, where a tube t ∈ T
is identified by the tuple <wing, side, number> (where wing ∈ {alpha,

beta, gamma}, side ∈ {left,right}, and number ∈ {1-12}), as well as its

damage level X, propertyOf(t,damaged(X)), and its status (whether it
is on or off), propertyOf(t,status). The set of locations, L, represents
areas in the spacecraft to which the robots can move; these include

each of the tubes, as well as the entryway to each of the wings. If

an agent, a ∈ A, is at one of these locations, l ∈ L, it is represented
with the predicate at(a,l).

Agent capabilities are represented using Capable(a,X ), which

signifies that agent a is capable of carrying out action X. For exam-

ple, R1 is capable of monitoring the Alpha wing:

Capable(R1,monitorWing(R1,Alpha)). In general, the robots are ca-

pable of carrying out the actions listed in Table 1. Perceivable(a,ϕ,σ )
signifies that agent a can perceive whether the proposition ϕ is true

in situation σ . For example, robots can perceive if a tube is off if

they are at that tube:

Perceivable(R1,propertyOf((alpha,left,one),off),at(R1,(alpha,left,one))).



Table 1: Robot actions, including preconditions and effects.

Action Precondition(s) Effect(s)

goTo(a,l)
¬at(a, l)
¬repairinд(a, t)

at(a,l)
¬movinдTo(a, l)

monitorWing(a,l)
at(a,l)
¬repairinд(a, t)

monitoring(a,l)

repair(a,t)
at(a,t)
propertyOf(t,damaged(X))
propertyOf(t,off)

¬propertyO f (t,damaдed(X ))

¬repairinд(a, t))

Agent
1
and Task States are represented using predicates for knowl-

edge (Knows(a,ϕ)) and belief (Believes(a,ϕ)). In general, knowledge

is used to represent the agent’s own state, and belief is used to

represent aspects of the task environment and the other agent. The

predicate Knows-Of(a,X) is used to represent knowledge of the exis-
tence of agents, actions, etc. The robots in our domain know about

one another and the starting status of the tubes on the spacecraft:

Knows-Of(R1,R2), Knows-Of(R1,(alpha,left,one),on), etc. Common-
Belief(ϕ) is used to represent beliefs shared by all agents. This is used
primarily in the SMM condition where robots share a knowledge

base (see Sec. 4.5). Goals are represented using Goal(a,γ ), where γ
is a goal state that includes the effects of actions in Table 1.

Obligations and norms are used to represent obligatory and per-

missible actions of the agents. We use Superior(a1,a2) to represent

the command hierarchy of the team. In our domain, Superior(H,R1)
and Superior(H,R2) indicate that the human is a superior to the

robots. In addition, the predicates Proposes(a1,a2,X),Accepts(a1,a2,X),
and Rejects(a1,a2,X) allow us to represent the outcome of a com-

mand from one agent to another. Following this, we introduce a

rule that requires subordinates to accept the command of a supe-

rior if they are available for that goal (i.e., the pre-conditions are

met): Proposes(a1,a2,γ ) ∧Superior(a1,a2) ∧ Available-For(a2,γ ) =⇒
Accepts(a2,a1,γ ). This ensures that the robots will always accept
the human’s command if they can, including in situations when

such a command will override their autonomy policy.

Activities are the set of actions that can be performed by the

agents. The human can move to various areas in the spacecraft,

instruct or request information from the robots, place landmarks

on the rover map, and turn tubes on and off. The robots are capable

of performing a number of actions including moving to a wing or

tube, monitoring a wing (checking which tubes are damaged), and

repairing a tube. Robot actions are represented by their precondi-

tions and effects, and are defined in Table 1. We define a number

of rules to enable the robots to track actions in progress, includ-

ing: Goal(a,monitorWing(a,l)) =⇒ monitoring(a,l), Goal(a,goTo(a,l))
=⇒ movingTo(a,l), and Goal(a,repair(a,t)) =⇒ repairing(a,t). The
robots use these inferred representations in their autonomy policy,

described in Sec. 4.4. Finally, functional roles on the team are de-

fined based on the corresponding goals, requirements, capabilities,

actions, and obligations of each agent (see [34]). Team structure is

defined in terms of the roles, command hierarchy, and equipment.

1
Representations of human knowledge and goal states are not included here, but are

an important topic for future work (see Sec. 5.3).

3.3 Evaluation Platform
In order to evaluate the SMM framework in our task domain we

developed an evaluation platform consisting of several components

described below. We use the DIARC robot architecture [33] for nat-

ural language understanding (NLU), inference, and action selection.

The Robot Operating System (ROS) [31] is used for path planning

and navigation, and the Unity 3D game engine for visualization.

We created an interactive 3D environment in Unity to simulate

the interior of a spacecraft based on our task domain (see Sec. 3.1).

Virtual robot models of the PR2 robot by Willow Garage are used to

ensure that our evaluation results are extensible to physical robots

in the real-world. Architecture components are implemented in the

Agent Development Environment (ADE), which is a middleware for

the DIARC architecture. For this task, we developed a configuration

of DIARC which connects the set of components shown in Fig. 2
2
.

For an overview of the architecture, see [35], but here we highlight

the key components that were modified for our task.

Figure 2: DIARC architecture diagram for the task domain.
Components with multiple “tabs" were shared by both
robots in the SMM condition, whereas in the Non-SMM con-
dition, each robot had its own instance of these.

In order to add flexibility to the NLU, we implemented a dual-

NLU pipeline into ADE. In one branch of the pipeline, an incoming

utterance is transcribed to text by an automatic speech recognition

(ASR) component using a custom in-domain language model in the

Kaldi toolkit [30]. The text is then sent to the Classifier component,

which uses the NPC-Editor [22] software to predict the semantic

meaning of the text in logical predicate form, having been trained

on a data set of in-domain text-to-semantics links (see [14] for a

similar approach). In the other parallel branch of the NLU pipeline,

the utterance is transcribed by the Sphinx4 ASR component [43],

which matches words using a dictionary and grammar constructed

from the task domain. The resulting text is parsed by the Parser

2
While the diagram only shows two robots, the architecture can scale to any number.



component, which uses a symbolic rule-based parser to produce a

semantic translation in predicate form. An additional NLU compo-

nent merges the two branches of the pipeline by choosing between

the two possible semantics based on parser confidence. The ad-

vantage of this approach is that simple, structured utterances (e.g.,

“Move to area Alpha") are processed quickly by the parser, whereas

atypical utterances (e.g., “Um can you like come to Alpha") are

processed by the classifier.

Another key component in the architecture is the Goal Manager.
The Goal Manager handles the high-level goals of the robots and

manages the execution of actions which are used to achieve those

goals. The actions in Table 1 were defined for the task, and the Goal

Manager interfaces with several components to carry them out,

including the PR2 Robot components for low-level movement, the

Unity Communication component for providing/requesting infor-

mation from the simulation environment, and the Belief component

for updating the knowledge base with the effects of actions.

4 HUMAN-SUBJECTS EVALUATION
To evaluate the benefit of a Robot SMM on team performance, we

conducted a between-subjects user study in which teams of humans

and robots performed a collaborative task. In one condition, humans

were partnered with two robots that had an SMM, and in another

condition the two robots did not have an SMM (see Sec. 4.5 for more

details about the conditions). We sought to test the SMM hypothesis

by evaluating whether Robot SMMs improve performance.

To maximize immersion, we ran the study in a Mechdyne virtual

reality (VR) CAVE
3
(see Fig. 3 for CAVE setup). Participants wore

eye tracking glasses, which tracked gaze location and also head

position for the CAVE. A game controller was used to navigate and

interact with the environment
4
.

4.1 Task Overview
The task domain from Sec. 3.1 was implemented in our Unity en-

vironment. The rover task involves the participant marking the

location of three types of rocks (sedimentary, sandstone, and basalt)

and a radiation zone on a map based on coordinates verbally an-

nounced by a planetary rover. The “rover" is just a script that reports

landmarks on a set interval (one every 60 s). The abbreviation for

the corresponding rock (or radioactive symbol for radiation zones)

appears above the map along with the coordinates, and this informa-

tion stays on top of the map until the next landmark announcement.

4.2 Participants
Overall, 36 participants were recruited from a University campus

through posted fliers, online advertisements, and snowball sam-

pling. The study was approved by the Tufts University Institutional

Review Board. All participants gave informed consent and were

randomly assigned to one of the two conditions (SMM or Non-

SMM). Participants received a base rate of $10 for their time, plus

an additional $5 as a performance incentive if they achieved an

accuracy of 75% or greater on the rover task and a task duration of

480 s (8 minutes) or greater.

3
https://www.mechdyne.com/hardware.aspx?name=CAVE

4
Video of the task recorded from the mobile eye tracker can be found at the following

link: https://vimeo.com/360632866.

4.3 Procedure
After reading and signing the consent form, participants took a

preliminary survey consisting of demographic questions. Next, par-

ticipants were set up with the equipment, including SMI mobile

eye-tracking glasses, a Shure push-to-talk wireless microphone,

and a wireless Xbox controller (see Fig. 3). The experimenter then

read the task instructions, which included the backstory and how

to interact with the environment and the robots. Participants were

then given a tutorial in which they were allowed to practice any

part of the task as long as they needed until they were ready to start.

In general, the experimenter made sure that participants could at

least navigate and perform all aspects of the primary and distractor

tasks, including talking to the robots.

Next, participants performed the task. A typical trial saw partic-

ipants using the game controller to navigate between the central

map and the various wings, and giving verbal instructions to repair

damaged tubes. The minimum task duration was 327 s and the max-

imum was 1015 s. At the end of the task, participants completed

a survey in which they answered questions about their workload,

situational awareness (SA), and attitudes about the robots (see

Sec. 4.6). Finally, payment of $10 was given, plus an additional $5

performance incentive if they scored above the set threshold.

Figure 3: Task setup in the VR CAVE showing the human
navigating in the central area. The rover map is visible in
the center, as is one of the robots, and the entryway to two
wings, Alpha and Beta.

4.4 Robot Behavior
4.4.1 Robot Autonomy. Robots in the task performed the actions

defined in Table 1 autonomously. The robots used a “supervisory

control" policy [1] inwhich all actions are carried out independently,

but the human can intervene if needed. If the human does intervene,

then the robots will always carry out the human’s instruction.

The autonomy policy that the robots use is shown in Algorithm 1.

First, the robot checks if it has received a new command (line 2).



If not, it monitors
5
the current wing for damaged tubes (line 3).

If one or more damaged tubes are detected then the robot sorts

them by damage and moves to the most damaged tube (lines 4-7).

When at the tube, the robot checks if the tube is off, in which case it

repairs the tube (lines 8-9). If the tube is still on, then it notifies the

human about this (line 11) and moves to the next most damaged

tube. If there are no damaged tubes in a wing or all damaged tubes

have been visited, the robot moves to the next wing that does not

contain a robot (lines 15-16). The robots are programmed to wait

5 s after finishing an autonomous action before moving on to the

next action, and the human can interrupt them at any point to issue

an overriding command.

Algorithm 1 Robot Autonomy Policy

1: procedure Autonomy(Human H, Robot self, Location l)

2: while ¬Proposes(H,self,X) do ▷ No new command

3: monitorWing(self,l) ▷ monitor wing for damaged tubes

4: if damaged tubes are found then
5: tubes = ordered list of damaged tubes in wing

6: for all t ∈ tubes do
7: goTo(self,t) ▷ Move to most damaged tube

8: if propertyOf(t,off) then ▷ If off, repair it

9: repair(self,t)
10: else
11: Notify H that tube is on

12: end if
13: end for
14: else
15: l = next wing not containing a robot

16: goTo(self,l)
17: end if
18: end while
19: end procedure

4.4.2 Human-Robot Communication. Robots cannot directly

communicate among themselves (explicitly or implicitly), but they

are capable of engaging in dialogue with the human in mixed-

initiative interaction. The human communicates with both robots

on the same channel, though robots only parse messages addressed

to them. Since there are two robots, the human must preface their

utterance with “Robot One" or “Robot Two" to address them. Robots

can take commands to perform any of the actions in Table 1. They

will provide feedback after accepting an instruction as a form of

grounding, e.g., “Robot two here, okay I am moving to area Alpha".

This is useful to inform people if the robot understood the command

or if an ASR/parsing error occurred.

Robots can also answer a variety of status inquiries including

“Where are you?", “What are you doing?", “Which tubes are dam-

aged?", and others. Importantly, the robots can be told facts about

themselves and the other robot that they will assert to their knowl-

edge base. For example, Robot One can be told that “Robot Two is

moving to Alpha" or “Tube alpha left four has been repaired". This

allows the function of the SMM to be preserved in the Non-SMM

5
The autonomous version of the monitorWing action is similar to the standard action,

except that it does not hang indefinitely for a new command.

condition, albeit with the additional requirement of updating the

robots each time an action occurs. Robots will accept the knowledge

they are given unless it conflicts with something they know to be

true. This only occurs in the SMM condition when given knowl-

edge about the other robot, and in the Non-SMM condition when

given knowledge about itself. Finally, robots can initiate dialogue

to inform the human about their current action. They do this at

the onset of each action (e.g., “Robot Two here, I am moving to

area Alpha") and also at the end of an action (e.g., “Robot Two

here, I have moved to area Alpha"). Another time the robots initiate

dialogue is when they arrive at a tube to repair it but the tube is

still on; in this case they notify the human of this issue.

4.5 Conditions
We employed a between-subjects design in which participants were

randomly assigned to one of two conditions - SMM or Non-SMM.

The conditions were nearly identical except for a few key distinc-

tions which are discussed below.

Robots in both conditions used the same autonomy policy de-

scribed in Algorithm 1. The main difference between conditions

was the architectural configuration. In the SMM condition, all of the

components with “tabs" (see Fig. 2) were shared between the two

robots. The Non-SMM condition used the same set of components

except that the tabbed ones were duplicated (one instance for each

robot). The most critical difference lies in the Belief component

being duplicated in the Non-SMM condition. Since this component

serves as the world knowledge base, having separate instances

ensures that the robots do not have access to a source of shared

knowledge. To offset this limitation, participants in both conditions

were told that they could give the robots information about what

the other robot is doing, or about states of the world (see Sec. 4.4.2

for details). This ensured that the Non-SMM robots could behave

exactly as the SMM robots, but with the added overhead of the

human providing extra information. Finally, participants in both

conditions were read nearly identical task instructions, with people

in the SMM condition being read an additional line informing them

that the robots can share information and use that in the task.

4.6 Measures and Hypotheses
The SMM hypothesis is that SMMs improve coordination and perfor-
mance in human-agent teams. We used a number of objective and

subjective metrics to test this hypothesis. The main performance

metric was Score, which was task duration (in seconds) multiplied

by task accuracy. Task accuracy (in the rover task) was calculated as

the total number of correctly-placed landmarks divided by the total

announced landmarks plus any erroneous placements. We used a

composite score measure because neither of these metrics alone

is sufficient. It is possible to get a high task duration by ignoring

the rover task entirely, and the converse is also true. We also used

objective metrics of task efficiency, including the percentage of tubes
repaired (total tubes repaired / total tubes damaged) and the mean
tube repair time, or how long (in seconds) it took to repair tubes

after they became damaged. Finally, we included subjective mea-

sures of workload (NASA-TLX) [18], team workload (TWLQ) [36],

and SA (SART) [41]. These scales were administered in surveys at

the conclusion of the study.



We had three main hypotheses, each relating to the broader SMM
hypothesis for artificial agents:

H1: Task performance, including score, task duration, and task

accuracy would increase in the SMM condition (following similar

effects found in the human literature, e.g., [24]). Moreover, we

predicted that these effects would not be due to people in the SMM

condition being better at talking to the robots. To test this, we

looked at the percentage of correctly-formed instructions, which is

the total number of instructions that were interpreted correctly by

the robot divided by the total number produced. We expected no

difference in this percentage across both conditions.

H2: Task efficiency would improve in the SMM condition, as

indicated by an increase in the percentage of tubes repaired, and a

decrease in the mean tube repair time. Here we predict that teams

in the SMM condition would be more vigilant about repairing tubes

as soon as they become damaged due to the reduced overhead of

managing the robots. This would lead to more tubes being repaired

over the trial, and also a reduced tube repair time.

H3: Workload, team workload, and SA would not change across

conditions. Though the SMM hypothesis might predict an improve-

ment in these measures, it is likely that any effort saved by the

SMM would be re-applied to the primary task. In support of this,

SMMs have been shown to increase task productivity under high

workload [37] (without reducing workload), so we do not expect to

see a decrease in workload or team workload in the SMM condi-

tion. In terms of SA, while robots in the SMM condition have more

accurate task knowledge, this knowledge is mainly used in their

autonomy policy to guide behavior. The human has limited access

to this knowledge, except when receiving responses to queries. In

general, we predict that the imposing time pressure will cause peo-

ple in both conditions to have high demands on their attentional

resources, ultimately limiting their understanding of the situation.

4.7 Results
We excluded from analysis a total of 10 participants who either

failed to follow instructions or that experienced technical issues

during their trial. Due to the involved nature of the task and the

complex technical setup, this number was higher than anticipated.

Failure to follow instructions was determined by a task duration

within one minute of the minimum possible time of 326 s (so < 386

s) and/or scoring 0% on the rover task
6
. Eight participants’ data

were excluded based on this criterion, and two were excluded due to

technical issues during the task. The remaining 26 participants (13

per condition) were used for the analysis. The mean age of the final

sample was 24.9 (SD = 8.6) and 19 of the participants were male. We

conducted between-subjects ANOVAs (N=26) to compare the effect

of our independent variable, Condition (SMM vs Non-SMM), on our

objective and subjective measures (see Sec. 4.6). For our analysis of

the subjective survey measures, we averaged the various subscales

and report a single composite score for each.

4.7.1 H1: Task Performance. In terms of our objective task per-

formance measures, we observed a significant increase for task
accuracy [F (1,24) = 5.796, p < .05, η2p = .195] and task duration

6
The minimum possible task duration is achieved by not turning off or repairing any

tubes, and the minimum accuracy is achieved by not marking anything on the rover

map (or marking everything incorrectly).

Figure 4: Results for task performance. Error bars represent
standard error.

[F (1,24) = 10.893, p < .005, η2p = .312] in the SMM condition. Not

surprisingly, score (accuracy x duration) was also significantly in-

creased [F (1,24) = 10.432, p < .005, η2p = .303] (see Fig. 4). Based on

these scores, only 4 of 13 people received the performance bonus in

the Non-SMM condition, compared to 10 of 13 in the SMM condition.

Finally, we found no difference in the percentage of correctly-formed
instructions that participants gave to the robots between both con-

ditions [F (1,24)=.001, p > .05, η2p < .001]
7
. Overall, these results

support H1 - teams in which the robots had SMMs displayed im-

proved performance in the task over teams in which the robots did

not have SMMs. Moreover, the SMM benefit was not due to people

in that condition being better at talking to the robots. See Table 2

for an overview of the results.

4.7.2 H2: Task Efficiency. There was a significant effect for the
percentage of tubes repaired [F (1,24) = 13.175, p < .005, η2p = .354],

with the SMM group averaging .54 (SD=.12) and the Non-SMM

group averaging .35 (SD=.15). There was no significant difference

in average repair time [F (1,24) = 2.267, p > .05, η2p = .086], but there

was a numeric reduction of 22 s in the SMM condition compared

to the Non-SMM condition. These results partially support H2 in

that there was a higher percentage of tubes repaired in the SMM

condition, but the mean tube repair time was not different between

conditions (see Table 2).

4.7.3 H3: Workload and Situational Awareness. We did not find

a statistically significant effect for any of our subjective survey

measures, including NASA-TLX [F (1,24) = .3419, p > .05, η2p = .014],

SART [F (1,24) = .1255, p > .05, η2p = .005], and TWLQ [F (1,24) =
1.5645, p > .05, η2p = .061]. These results support H3 in that there

was no difference in workload, team workload, and SA between

conditions (see Table 2).

7
While 50% seems low, we distinguish correctly-formed from misinterpreted and unac-
tionable instructions, which denote parsing errors and failed preconditions, respectively.
Unactionable instructions were interpreted correctly, but simply could not be executed.



Table 2: Table of results for task measures.

Non-SMM SMM
Objective Measures M SD M SD F-Value P-Value

Task Performance (Score) 5.60 2.51 9.51 3.56 10.43 .004*

Task Duration (s) 516.20 92.58 689.16 164.72 10.89 .003*

Rover Task Accuracy .63 .21 .81 .17 5.80 .024*

% Tubes Repaired .35 .15 .54 .12 13.17 .001*

Mean Tube Repair Time (s) 159.64 35.98 138.06 37.09 2.27 .145

% Correctly-Formed Instructions .50 .13 .50 .16 <.001 .976

Subjective Measures M SD M SD F-Value P-Value

Workload (NASA-TLX) 4.24 .50 4.12 .61 .34 .564

Team Workload (TWLQ) 4.24 .75 4.60 .72 1.56 .223

Situational Awareness (SART) 5.73 1.09 5.59 .98 .13 .726

5 DISCUSSION
The results of our user study support the SMM hypothesis in that

teams in which the robots used SMMs outperformed teams without

SMMs. While the SMM partially improved task efficiency, it had no

impact on workload (at the individual or team level), or SA. Overall,

these results support the findings of [13] in which SMM-like policies

were found to improve performance and efficiency but not reduce

workload. However, this is the first time that a comprehensive SMM

framework has been implemented and evaluated in autonomous

robots with natural language capabilities. Below, we interpret the

findings and discuss future work.

5.1 Interpretation of Results
5.1.1 H1 Supported: Robot SMMs Improve Task Performance.

The finding that Robot SMMs improve task performance in human-

robot teams serves as the first empirical support for the SMM hy-

pothesis to date. We found improvements in all of our performance

measures, including task duration, rover task accuracy, and the

composite score measure (see Table 2). These improvements were

largely due to robots in the SMM condition having more accurate

knowledge of the task and team state, and accessing that knowl-

edge through shared architectural components to coordinate more

effectively. As a result, they required less monitoring, allowing the

human to attend to the primary rover task.

Despite the fact that robots in both conditions used the same

autonomy policy (described in Algorithm 1), the resulting behavior

was different due to the robots having different knowledge. For ex-

ample, when determining the next wing to move to, the robots use

their belief about the location of the other robot, e.g., Believes(self,
at(R2,Beta)). However, in the SMM condition, this belief was more

accurate since both robots knew one another’s location at all times

through sharing a knowledge base; this is represented as Common-
Belief(at(R2,Beta)). In the Non-SMM condition, knowledge of the

other robot’s location was usually outdated unless the human gave

frequent verbal updates. As a result, robots in the Non-SMM condi-

tion were more likely to end up in the same wing, which could lead

to inefficiency since no one is monitoring or repairing tubes in other

wings. Note that the SMM robots could still be in the same wing if

the human instructed them to do so, however, their autonomous

actions were still more efficient since they would immediately know

when tubes were repaired by the other robot.

Another factor explaining the performance difference between

conditions was greater alignment of the Human-Robot SMM, which

was partly mediated by improved accuracy of responses to the

humans’ queries. Since a specific robot is addressed for each query,

it will respond with the knowledge that it has. However, in the

SMM condition, robots have access to their own knowledge as well

as that of the other robot. So if the human asks “Robot Two which

tubes are damaged?”, Robot Two will respond with all the tubes it

knows to be damaged as well as all the tubes that Robot One knows

to be damaged. Providing more accurate information in this way

may have helped the humans to plan which tubes to prioritize for

repair. Overall, H1 is supported, suggesting that Robot SMMs serve

to improve task performance.

5.1.2 H2 Partially Supported: Robot SMMs Improve Some Mea-
sures of Task Efficiency. As discussed in the previous section, in-

creased inefficiency in the Non-SMM condition was an important

factor in the observed performance difference. Another source of

inefficiency occurred when a robot moved to a wing that was just

handled by the other robot. This is wasteful because robots take

about 30 s to move from one wing to another, so arriving at a wing

with no damaged tubes will prompt the robot to move again, thus

wastingmore time. Note that this could still happen in the SMM con-

dition, but it was usually less problematic because the robots spread

out more effectively. This problem could be alleviated if the human

micromanaged the robots at every step or gave them information

about the other robot, but the complexity of the task tended to pre-

vent micromanagement, and people in both conditions generally

did not provide information to the robots. As a result, teams in the

Non-SMM condition repaired a fewer proportion of damaged tubes

(35%) compared to the SMM condition (54%). Despite this, mean
tube repair time was not significantly different between conditions,

although we observed a small qualitative difference. This suggests

that teams in both conditions repaired tubes at about the same rate,

but that the Robot SMM enabled more tubes to be repaired, likely

due to more efficient actions. As a result, H2 is partially supported,

though further analysis and/or studies are needed to track the exact

nature of the efficiency gain.



5.1.3 H3 Supported: Robot SMMs Do Not Improve Workload or
Situational Awareness in the Tube Repair Task. We found no improve-

ments in workload, team workload, or SA in the SMM condition,

supporting H3 (see Table 2). In the SMM condition, people repaired

more tubes, indicating that they were more productive and did

not benefit from increased downtime (or workload reduction). Re-

garding SA, since robot behavior was the same in both conditions,

the only way SA could be reduced was if people frequently asked

the robots about task status, which they generally did not. An-

other factor was that the surveys were taken at the end of the task

(when workload was highest), so this may have also contributed to

increased perceptions of workload and reduced SA in both condi-

tions. In future studies, perhaps it may be useful to supplement the

existing surveys with a freeze probe method like SAGAT [6] for

measuring SA or a physiological measure of workload (e.g., [19]).

Importantly, these results do not suggest that Robot SMMs cannot
be used to modulate workload or enhance SA, as evidence from

human teams shows that these concepts are highly related [7, 29, 32].

For example, [2] found that SMMs are one factor among others

(shared displays, communication, etc.) that influences SA. Other

evidence suggests that SMMs may not explicitly reduce workload,
but may enable a team to maintain its performance under stress

and time pressure [12, 28, 37]. Our results support this position, as

teams in the SMM condition were able to maintain a high level of

performance throughout the increasing workload of the task.

5.2 Contributions
This study offers several contributions to the fields of HRI andmulti-

agent systems. First, it provides the first empirical support for the

SMM hypothesis for artificial agents. Since the only difference be-

tween our experimental conditions was the shared architectural

components, the results suggest that Robot SMMs have a practical

benefit for teaming - a result that has not previously been reported.

Importantly, since the robots in the task did not communicate with

each other, this result is not simply a replication of prior findings

that communication improves performance [3]. Similarly, this re-

sult does not demonstrate that robot “telepathy" [44] improves

performance, since telepathy is a form of covert communication

that requires a sender and a receiver, which is unlike how the robots

accessed the SMM in our study. Instead, the system described here is

most closely related to blackboard architectures or centralized plan-

ning, with key differences being that it does not involve iterative

problem solving and we do not use a planner. To our knowledge,

there has not been any prior empirical evidence that such systems

serve to improve performance in a human-robot collaborative task.

Another contribution is the novel task domain, which serves as

a test bed for studies on human-robot teaming. The task involves

interdependency of action, ramping workload, and is scalable with

respect to the number and kinds of agents on the team. In general,

the domain is extensible to cover a wide range of interaction require-

ments expected for HRI in space domains [9, 10]. Additional robot

and/or human agents can be added either in the virtual environ-

ment, or remotely (simulating ground operators). While the present

study focused on co-located teaming (with periods of remote in-

teraction), such additions support the study of truly distributed

interaction over various spatial ranges and time scales.

A set of design requirements for evaluating SMMs in human-

robot teams has also come out of this work, along with a system

that implements the requirements. These requirements are specifi-

cally aimed at teams in which the robots are expected to serve as

human-like partners, and include the need for: 1) an SMM that is

formally defined within the context of a robotic architecture and

implemented in real or virtual robots (not tele-operated or simu-

lated agents), 2) a team structure that includes a combination of real

humans and robots in which the robots possess robust NLU and

autonomous capabilities that leverage the SMM to adapt behavior,

3) a collaborative task requiring interdependency of action, and 4)

an evaluation that involves the human-robot team performing the

specified collaborative task (not a simulation or proof-of-concept),

and which measures various objective and subjective aspects of

team functioning. These are challenging requirements, but we feel

that they provide for a true test of the robot-as-partner paradigm.

5.3 Future Work
Several directions for future work are currently being explored.

First, we plan to use our evaluation platform to run additional

conditions in the current domain, further exploring the relationship

between an SMM and team coordination. These studies will also

help to understand the relationship between task structure (e.g.,

communication constraints, time pressure, etc.) and SMM. Another

important direction for future work is to include more aspects of the

humans’ mental states into the SMM. We are currently exploring

epistemic planning to generate robot behavior based on models

of all agents’ knowledge states. With this approach, it becomes

possible to track what each agent on the team believes, and to take

actions to align these beliefs, thus supporting Human-Robot SMMs.

Finally, we seek to extend the system’s natural language capabilities

in order to better handle phenomena such as disfluency and speech

overlap, which are common in team discourse [11, 15, 16].

6 CONCLUSION
We have demonstrated for the first time that a comprehensive com-

putational framework for SMMs in human-robot teams serves to

improve performance in a collaborative task. This is the first demon-

stration of the SMM hypothesis for artificial agents, and shows that

shared knowledge representations in robots can support coordina-

tion and improve team performance in complex domains. In testing

this hypothesis we have developed a novel, scalable evaluation

platform for studying human-robot teaming that allows for the

modification of team organization and task parameters to further

explore the SMM and other aspects of teaming. We hope that our

design guidelines, platform, and results will spur further research

toward the goal of making robots genuine teammates.
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