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ABSTRACT
Emotions are crucial for human social interactions and thus people
communicate emotions through a variety of modalities: kinesthetic
(through facial expressions, body posture and gestures), auditory
(the acoustic features of speech) and semantic (the content of what
they say). Sometimes however, communication channels for certain
modalities can be unavailable (e.g., in the case of texting), and
sometimes they can be compromised, due to a disorder such as
Parkinson’s disease (PD) that may affect facial, gestural and speech
expressions of emotions. To address this, we developed a prototype
for an emoting robot that can detect emotions in one modality,
specifically in the content of speech, and then express them in
another modality, specifically through gestures.

The system consists of two components: detection and expres-
sion of emotions. In this paper we present the development of the
expression component of the emoting system. We focus on its dy-
namical properties that use a spring model for smooth transitions
between emotion expressions over time. This novel method com-
pensates for varying utterance frequency and prediction errors
coming from the emotion recognition component. We also describe
the input the dynamical expression component receives from the
emotion detection component, the development and validation of
the output comprising of the gestures instantiated in the robot, and
the implementation of the system. We present results from a hu-
man validation study that shows people perceive the robot gestures,
generated by the system, as expressing the emotions in the speech
content. Also, we show that people’s perceptions of the accuracy
of emotion expression is significantly higher for a mass-spring
dynamical system than a system without a mass-spring when spe-
cific detection errors are present. We discuss and suggest future
developments of the system and further validation experiments.

This paper is part of a larger project to develop a prototype for
a socially assistive robot for PD persons. The goal is to present the
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technical implementation of one robot capability: emotion expres-
sion.
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1 INTRODUCTION
People communicate emotion using multiple modalities, such as
tone of voice, facial expressions and gestures. However, in some
situations, one or more modalities may be absent, noisy, or damaged
and this may degrade how the human body expresses emotions.
Because people rely heavily on facial expression in attributing
and interpreting other’s emotions and motivational states, compro-
mised or missing modalities can deeply affect the person’s ability
to communicate which may lead to impaired social interactions
and reduced quality of life. Such is the case for people living with
Parkinson’s disease (PD) who, due to a condition called facial mask-
ing, are impaired in their ability to express their inner emotional
state.

Our long-term goal is to develop a robot that could help people
with PD express their inner emotional state and thus improve their
communication with caregivers. Our overall research objective,
which is the next step in attainment of our long term goal, is to
develop an emoting system for robots that is able to detect an
emotion in an unaffected modality, namely content of speech and
express it in an absent one, namely gestures. We suggest that an
emoting robot could help people with PD express their emotional
states and thus improve their communication with caregivers. In
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Table 1: Project scope.

Overall project This paper
Objective Develop a socially assistive robot for the social self-

management of health of people with PD.
Develop a prototype for an emoting robot that can de-
tect emotions in one modality (content of speech) and
express them in another (gestures).

Robot capabilities Simple interaction, observation of activities, mediation
of interactions.

Detection and expression of emotion.

Hypothesis The assistive robot will reduce stigma and improve com-
munication between people with PD and caregivers and
health-care providers.

Robust emotion expressions of the robot can be cor-
rectly perceived in both high and low frequency emot-
ing conditions.

Validation Clinical trial with people with PD and their caregivers. General population studies with robot emoting in dif-
ferent conditions.

this paper, part of a larger project (see Table 1), we describe the
emoting system which uses two components: an emotion detection
component and an expression component. This paper focuses on
the latter. We extended the unsupervised emotion prediction model
described in [38] and trained it to detect five different states of
emotional valence. The detected emotional state drives a mass-
spring dynamical system to smooth emissions from the detection
component, e.g., compensating for varying utterance frequency
and prediction errors. Detected emotions are expressed as gestures
in the Nao robot from SoftBank Robotics. The Nao robot has been
previously used in therapy for other groups of people, such as
individuals with autism [4, 10, 17, 31]. The mass-spring also ensures
that relatively more emotional “force” is needed to move a person
from a more extreme emotional state than from a more neutral state.
To test our system we conducted three experiments with human
participants.

This paper proceeds as follows. In section 2, we talk about the
prior approaches used to detect emotional content in text, review
prior work in applying dynamical systems to emotional modeling,
and discuss how emotions are embodied in humans and robots.
Section 3 discusses the development and implementation of the
mass-spring dynamical system. In section 4, we explain the three
human-robot interaction experiments we ran to validate the full
system and to highlight the contribution of the mass-spring. The
results of the study show that when embedded in the Nao robot, par-
ticipants recognized the connection between the robot’s gestures
and the speaker’s utterances more when the robot emoted based
on the model’s predictions than when the robot emoted randomly.
Additionally, the mass-spring dynamical system led to greater per-
ceived association between the robot’s gestures and the emotional
content of the speaker’s utterances than a model without a mass-
spring element, when the emoting was done at a low-frequency
(for every third utterance). This indicates that the mass-spring dy-
namical system is more robust to errors. Finally, in sections 6 and 7,
we discuss the advantages, disadvantages, and limitations of this
approach and further improvements that can be made to the system.

2 BACKGROUND
2.1 Emotional Modeling
Sentiment analysis most often refers to the techniques used to infer
the binary emotional polarity (e.g., positive, negative) of a person
as they interact with a text or a document, rather than determin-
ing the specific human emotion [20]. However, sentiment analysis
approaches may also attempt to classify additional emotion labels.
Rather than recognizing emotions as belonging to discrete and of-
ten binary categories, emotion recognition attempts to infer a set
of emotion labels such as happiness or satisfaction, both of which
fall under the positive category. The following overview covers
detecting emotions in text; emotion modeling is much wider and
includes using speech, gestures, facial expression modalities either
singularly or in combination to detect emotions.

The emotion labels to be detected computationally in text may
be derived from the various psychological theories of emotion. For
example, Eckman [8] argues that humans share six basic emotions:
happiness, sadness, fear, anger disgust, and surprise. Plutchick [24]
identified eight primary emotions: anger, anticipation, joy, trust,
fear, surprise, sadness and disgust, some being opposites (e.g. joy-
sadness) and some lending themselves to combinations and various
intensities. This trend towards measurability and continuity in
emotional models was solidified by Russell’s Circumplex Model
of Affect[27]. He arranges emotions in a circle around two axes:
arousal and valence. This creates a continuous two dimensional
space in which emotions can be plotted. Thus, some computational
models attempt to detect continuous values of emotional valence
or arousal e.g., [16, 33, 35].

Existing approaches to emotion recognition and sentiment anal-
ysis fall broadly into three categories: statistical, sentiment lexicon,
and a combination of the two [3]. The challenge for the statistical
approach is to find document features which will be sufficiently
discriminating so that a classifier can separate the document into
the desired sentiment categories. Deriving these features from the
speech signal directly as in [29, 30] has the advantage of using
both affect in the voice and in the content; however, this assumes
an intact vocal channel which is not the case in persons with PD.
Regardless of the modality, the challenge is to discover a set of dis-
criminative features and it is often difficult to discover them a priori.
As a result, features are often found through experimentation using
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various selection methods such as information gain [19], principal
component analysis for speech, and manually selected emotion
keywords for text [5]. In these cases, feature selection is tied to a
particular database which may result in poor generalization. A prin-
cipled way for feature selection would overcome these limitations
by utilizing features that operate at a higher level of abstraction,
one that is common across text or speech datasets. For example,
Shah [30] used Latent Topic Models to extract emotionally-salient
features from speech; VADER [16] and LIWC [23, 35] use a senti-
ment lexicon and rule-based approach to detect emotion in text.
More recently, results exceeding sentiment analysis benchmarks
have been reported by “fine-tuning” a pre-trained language model
such as the Bidirectional Encoder Decoder Transformer (BERT) for
aspect-based sentiment analysis [34]. To detect and characterize the
emotional content of communications from individuals with PD,
the prevalent approach employed so far has been to use a sentiment
lexicon such as LIWC [35]. However, Valenti et al. [40] suggested
that LIWC did not categorize positive and negative emotion con-
tained in a document as well as a topic modeling approach when
the word count approached that of the average sentence, i.e., 13
words.

2.2 Dynamical Systems of Emotion
Prior research suggests physical models, in particular the mass-
spring, can be used to simulate physical human movement and
create “plausible” behaviors [9]. Given their capacity to simulate
physical behaviors, mass-spring models can also be used to simulate
human movement qualities. Thus we chose to use the mass-spring
model to simulate human gesture movement when transitioning
from one emotion to another. Without this component, these move-
ments would be completely discrete, and would not give rise to
the continuous transitions between emotion states that we observe
in humans. The goal of this component is to initiate behaviors in
the Nao which imply transitions through intermediate emotional
states on the way to more extreme goal states, or on the way back
to neutrality from these extremes.

Previous studies on dynamic emotional models support the pres-
ence of continuity. Peng et al. [43] model emotional transitions
according to the probabilities that arise in transitions between emo-
tion states. The study shows that in a given emotional state, some
subsequent states are far more likely than others. Specifically, under
positive external influence, the researchers claim that negative emo-
tions are most likely to transition to neutral emotions, and neutral
emotions are most likely to transition to positive ones. In a discrete
model based purely on the affect of human speech, these necessary
intermediary steps are skipped and negative states may be forced to
transition directly to positive ones. Similarly, an adaptive emotional
model produced by Han et al. [13] was developed by mimicking the
emotional behavior of a human agent over the course of a conver-
sation spanning seven emotion-specific dialogues. When charted
along the two-axis Circumplex model, it is clear that their agent
undergoes continuous, incremental progression as it moves toward
the appropriate emotional region during each of these dialogues.

In addition, the mass-spring model ensures continuity using the
theory of emotional decay proposed by Velasquez in [42]. In this
theory, an emotional state is not maintained for the exact duration

of the triggering stimulus and dropped when the stimulus disap-
pears. Rather, the onset of a stimulus instigates the development
of an emotional state, which slowly reverts to neutrality over time.
The application of this theory can also be observed in the model
developed by Yang et al. via a different implementation than the
one proposed here [44].

2.3 Emotional Embodiment in Humans and
Robots

The challenge is to design the robot’s behavior so that it expresses
the detected emotion in a naturalistic way which compensates
for the lack of facial and gestural affect cues in the persons with
PD. Research has shown that humans can successfully estimate
an agent’s emotional state purely from their body movements [6].
For this study, we used the Nao robot to display the emotional
state detected from continuous speech through body movements.
A number of studies of human affective body language recognition
as well as robotic affective body language production have helped
ground our approach.

Studies regarding emotional body language fall into two cat-
egories: attempts to create models by which robots are able to
estimate the emotional state of a human agent through visual track-
ing, and attempts to assess how the same neutral action is executed
differently depending on the affect of the agent. In both cases, the
emotions examined were often a specific subset of the emotions de-
scribed by Russell’s Circumplex model. We chose to represent only
the valence axis of emotion, so the gestures designed are meant to
represent gradations of positivity or negativity, rather than specific
emotions. For this reason, the poses and movements observed and
produced in these other studies could not be replicated directly, but
do serve as the basis for our robot’s behaviors. In their research,
Shan et al. use the FABO video database to develop an algorithm to
assess human emotion from body gestures. This research provides
evidence for the recognizability of raised arms and hands as an indi-
cator of joy and excitement [32]. Another study, which also used a
Nao robot, confirms the recognizability of happiness through raised
hand and arm gesticulation [21]. Similarly, research by de Silva and
Bianchi-Berthouze analyze the salience of various body-feature
point collections as a method of quantitatively describing body lan-
guage to develop a classifier for emotionally labeled body language
performed by an actor. This data confirms the recognizability of
gestures such as drooping chest and raising hands towards one’s
face as an indicator of sadness [7]. These studies provided static
poses which could be generalized, and converted into animated
body movements, to emulate varying degrees of positivity.

Other studies showed how specific poses or motions can be
altered to convey a given emotion. One study experimented with
how the upward or downward angle of the robot’s head can help
clarify the emotion it displays. The results of this study suggested
that a down-turned head and face helped convey fear and sadness,
while an upturned head and face helped convey pride, happiness
and excitement. We use this in our gestural design as an increase in
head angle change in the appropriate direction to indicate increased
negativity or positivity. Amaya et al. [2] developed an algorithm for
determining the physiological effect of performing the same action
(e.g., drinking from a cup or kicking a ball) while conveying neutral,
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sad or excited affects. They determined that when excited, an action
is generally performed with higher joint velocity and more direct
movements, whereas when sad, the joints involved move slower
and less efficiently.

Figure 1: Within DIARC, the Emotion Pipeline consists of
the prediction (Detector) and dynamical system (Expres-
sor) components. It receives utterances from the Automated
Speech Recognizer (LVASR) and sends its predicted affect to
the Goal and Action Manager

3 DEVELOPMENT OF THE MASS-SPRING
DYNAMICAL SYSTEM

3.1 System Input
In Figure 1, we show the major building blocks of the robot’s emo-
tional regulation and natural language understanding systems of
the DIARC cognitive robotic architecture, of which a detailed de-
scription is given in [28]. The figure shows how we supplemented
DIARC with an emotion pipeline consisting of two components, the
Detector and the Expressor, along with their incoming and outgoing
connections. The Detector component receives a text utterance
from the Large Vocabulary Automatic Speech Recognizer (LVASR)
in the Perception layer and gives its prediction to the Expressor,
discussed in Section 3.3. The Expressor component then sends the
goal predicates representing the desired affective states to the Goal
Manager.

The LVASR is based on the chainmodel developed for the ASpIRE
Challenge [14] and trained on Fisher English that has been aug-
mented with impulse responses and noises to create multi-condition
training [41]. The chain model uses Kaldi, a toolkit for speech recog-
nition written in C++ and licensed under the Apache License v2.0
[25]. Kaldi has demonstrated low error rates in a variety of chal-
lenging acoustic environments using conversational speech [1, 15].
The challenge for the LVASR is to determine the endpoints of the
utterances, in which words are connected together instead of being
separated by speech codes such as pauses. Unknown boundary
information about words, co-articulation, production of surround-
ing phonemes, and rate of speech affect performance [12] and the
LVASR may generate textual representations that vary depend-
ing on the speaker, e.g., disfluencies, speech rate. As a result, the
continuous speech will likely generate utterance transcriptions

from which the detector may generate an incorrect prediction. Fur-
thermore, persons with PD may have long pauses or other speech
anomalies depending on the disease progression. The mass-spring
tries to smooth these prediction errors and compensate for different
emission frequencies from the LVASR and predictor.

Figure 2: Individual gestures on the robot representing emo-
tional valence. Top row shows three levels of increasing pos-
itivity, starting with the least positive on the left. The image
in the center is neutral. The bottom row shows three levels
of positivity increasing from neutral. The M mean and SD
standard deviations of participant ratings are presented un-
der each gesture.

3.2 System Output
In order to express the results of the emotion detector and mass-
spring system in the physical world, it was necessary to define
behaviors in the Nao robot which would best reflect the emotional
data produced. All physical movement design took place in the
Nao’s companion software, Choregraphe. This software contains a
method entitled Animation Mode which allows for manual moving
and recording of each of the Nao’s joints at various time steps.While
the gestures defined here are generally based on observations of
human gesticulation, prior research has produced specific data
which was used to improve their efficacy and accuracy.

To produce reliable and easily interpretable gestures in the ro-
bot, we incorporated the prior research described in Section 2.3 as
follows. Gestures meant to convey positivity incorporated raised
arms and hands. This is supported by [32] as well as [21]. Gestures
meant to convey negativity include drooped chest and hands raised
towards the robot’s face. This is supported by research such as
[7]. Rotation of the head in upward or downward directions was
also used to further convey positivity or negativity respectively.
This feature is supported by the work presented in [18]. Finally, the
speed at which a gesture was performed was manipulated. In fol-
lowing with research presented in [2], more positive gestures were
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carried out with higher joint velocity and swift, direct movements,
while more negative gestures involved slower, less direct motion.
Still images displaying a frame from each animation developed
through this process can be seen in Figure 2.

Having designed potential gestures for the Nao to execute in
order to reflect a specific internal emotional position along a va-
lence scale, we sought to ensure that these gestures successfully
conveyed their target information. To accomplish this, we carried
out a validation study on these gestures in isolation from the rest
of the architecture and pipeline. We recorded 10 second videos
of each of the seven gestures show in Figure 2 which we showed
to 25 human subjects (28% Female; Mean age = 32.08, SD = 9.39)
who participated in the validation study on Amazon Mechanical
Turk. The videos were presented in random order and four foil
videos, of gestures from the standard Choregraphe database, were
interspersed in between. After watching each video, participants
answered the following question: “How positive or negative are the
emotions expressed by the robot in this video?” The answer was
given on a seven-point Likert scale from “Very Negative” to “Very
Positive" with a middle point labeled “Neutral”. We note that each
video was rated independently, which is a more stringent test than
simply ranking-ordering the videos from most negative to most
positive. Means and standard deviations of ratings for each gesture
are shown in Figure 2. When averaging across the positive gestures
and across the negative gestures separately, the positive gestures
are rated as expressing significantly more positive emotions than
the negative ones, 𝑡 (24) = 8.90, 𝑝 < 0.001.

3.3 Mass-Spring Dynamical System

Figure 3: Mass-spring model with emotion particle at neu-
tral valence. Applying a positive force 𝐹 compresses the
spring to move the particle toward a stronger positive va-
lence; applying a negative force stretches the spring, mov-
ing the particle in a less positive direction. In the absence of
a force, the spring’s restoring effect will move the particle
towards neutral.

We have attempted to replicate the physical behavior of human
expression by modeling the Nao’s emotional position along the
valence axis of emotion as a particle. In the current study, this
particle behaves as the mass in a mass-spring physical system (see
Figure 3). This physical model was selected because it aligns well
with the desired behavior of this particle. In the mass-spring system,

an external force applied draws the mass away from its neutral
resting position and the restorative force of the spring pulls it back.
Additionally, the further that the particle is from its resting position,
the stronger the external force must be to increase this distance.
The model we used is represented by the following second order
differential equation:

¥𝑥 =
−𝑘𝑥 − 𝑏 ¤𝑥

𝑚
+ 𝐹 (1)

where
• ¥𝑥 = the acceleration of the particle
• 𝑘 = the spring constant, which defines how easily the spring
is stretched or compressed

• 𝑚 = the mass of the particle, which in the current research
is set to 1

• 𝑥 = the position of the particle, relative to its resting position;
this is the value which is tracked internally to maintain
current emotional state

• 𝐹 = the force applied to the particle
• 𝑏 = the damping constant applied to the velocity ¤𝑥

The basic mass-spring model results in a system in which the
particle undergoes infinite oscillation between resting position and
the farthest distance attainable under a given external force. As this
fluctuation does not reflect standard human emotional behavior,
we incorporated a damping force into the model. The damping
constant, 𝑏, minimizes this oscillation by causing the particle to
lose energy as it returns to its resting point. Critical damping (𝑏𝑐 ), in
which no oscillation occurs whatsoever, is attained when 𝑏 = 2

√
𝑘𝑚.

This is the formula used to determine the value of the 𝑏 term in
Equation 1.

A number of the parameters provided to this model, such as 𝑘 ,𝑚,
and 𝑏, have been determined through in-lab experimentation and
tuning in order to produce consistent and expected behaviors in the
system. Future research which expands on the utility of applying
physical system constraints to emotional or social behavior may
include a more focused study on determining the optimal parame-
ter set for the mass-spring system to produce natural behavioral
transitions.

3.3.1 Mapping Categorical Predictions to Force. Equation 1 depends
on the force 𝐹 which acts on the mass to move it in the positive
or negative direction, depending on the valence classification of
speech. The Detector component generates five possible classifica-
tions, of increasing positivity. Calling get_prediction_value()
method of TopicModel (see Figure 4) returns an integer value in
the range [0,4] for the predicted class (see Section 4.1). This integer
value 𝑐𝑖 is then used as the new input to the following Poisson-style
exponential smoothing equation:

𝑒0 = 𝑐0, 𝑡 = 0 (2)
𝑒𝑡 = 𝛼𝑐𝑡−1 + (1 − 𝛼)𝑒𝑡−1, 𝑡 > 0

Here, 𝑒𝑡 represents the new emotional force. After 𝑒𝑡 has been
derived according to this formula, it is scaled from range [0,4] to
range [-100,100] when applied to the mass in the physical model.
The term 𝛼 represents the smoothing coefficient, which defines the
relative weights of the raw classification input 𝑐𝑡−1 and the most
recently calculated emotional force 𝑒𝑡−1. For the current research 𝛼
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was set to 0.6, but future research in this direction might consider
experimentally determining the optimal value for this constant.

Figure 4: Diagram displaying the overall process at work, be-
ginning with the speech act from a human agent and result-
ing in affective movement from the robot.

Figure 5: Emotion detector. (1) Document topic structured
built (2) For each sentence, topic probabilities are extracted
& used to train the classifier (3) Features are extracted from
the utterance by the trained LDAmodel and (4) presented to
the trained classifier to predict emotional state [40]

3.4 Implementation
3.4.1 Emotion Detector Component. We enhanced the three-state
sentiment detector described in [40] to infer five states of emotional
valence {strong negative, medium negative, neutral, medium posi-
tive, strong positive}. Socher et al. [33] reported that five levels of
positivity was sufficiently fine-grained to capture the continuous
values human evaluators reported and this informed the number
of states we chose to detect. Our validation suggests that humans
do indeed distinguish the different categorical levels of positivity
expressed through the mass-spring component which gives the
appearance of smooth transition from one emotion to another.

The mode consists of two processing steps: (i) extract the topic
probabilities from each document in the set (items 1 and 3 in Fig-
ure 5), and (ii) use these features to predict the emotion valence of
individual sentences as yet unseen by the model (items 2 and 4 in
Figure 5). Training of the LDA model and the classifier (items 1 and

2 in Figure 5) was done outside of the robotic architecture and the
results saved to files. These were subsequently used to initialize
the predictor component in the robotic cognitive architecture; in
principle, training could also take place in the architecture.

Latent Dirichlet Allocation (LDA) has been shown to be effective
for inferring affect in conversational speech [29, 30, 39, 40]. We used
the Gensim [26] implementation of LDA as the feature extractor
of our model; we used the default hyper-parameter values. The
generative model assumes a number of topics over which an initial
distribution of documents is estimated. For this implementation,
we set the number of topics to be 100, as described in [38] since we
used their dataset.

We used a multi-layer perceptron (MLP) with two layers of 50
artificial neurons each; these values were selected based on a pa-
rameter sweep using Scikit-learn’s GridSearchCV method. The pa-
rameter sweep also compared classifiers, i.e., MLP, Support Vector
Machine, and Linear Regression; we found this particular MLP con-
figuration to provide the best performance. We trained the model
using the tanh activation functionwith a constant learning rate with
initial value 0.001 and adaptive moment estimation (i.e., “Adam”) as
a fast optimizer. We used a stable, widely-used implementation of
the MLP classifier from Scikit-learn [22]. We trained the LDAmodel
and the classifier outside of the robotic architecture and the results
were saved to files. The Detector component used these files to
instantiate the trained model in the robotic cognitive architecture.

3.4.2 Model Training. Training input to the model used the dataset
described in [38]. This consisted of individual sentences drawn
from 448 documents with an average word count of 258 words,
the largest containing 1,732 and the smallest, 2. The documents
were constructed from selected interview transcripts from 106 male
and female participants with PD, living in the community, who
participated in a study [36] which asked them to recall two types
of experiences they had during the past week: a frustrating one
and an enjoyable one. The robot running the emotion detection
model could then be expected to accurately predict emotion from
utterances spoken in a similar contextual domain.

Ground truth labels for our model were obtained as follows. Two-
dimensional (valence,arousal) emotion values for each sentence
of the dataset were generated by human evaluators who used a
Web-based implementation of the Circumplex model of emotion as
described in [38]. In the Circumplex, valence and arousal can range
from -100 (most negative/calm) to +100 (most positive/aroused)
with 0 considered to be neutral. In that study, the researchers found
inter-rater reliability for arousal to be low and therefore used only
valence for model training and prediction. The human evaluators
(N = 1,058) rated 439 documents of various lengths (269 describing a
frustrating experience and 170 describing an enjoyable experience)
for a total of 7,713 sentences. Each document was rated by at least
four evaluators who rated between two and four documents each
depending on the length. We used human evaluators drawn from
the general population rather than, for example, asking PD persons
themselves to label the data in some assisted way or ask some PD
experts to conduct the task. The reason for this is as follows.

Correctly detecting the emotion of PD persons is a challenge
because their facial expression do not match what they convey
through words. Often, a person with PD can have an angry or
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apathetic-looking expression even when they are talking about
joyful experiences. Research has shown that even specialists have a
very hard time inhibiting their incorrect impressions of the person
with PD when faced with dissonant emotion expressions across
channels [37]. When evaluating the emotion expression in the un-
affected channel alone (content of speech), people should have no
issues with detecting the correct emotion. This is exactly what our
raters did: they read text transcriptions of interviews conducted
with people with PD - they never saw the facial masking in con-
junction with what was being said.

Using k-means clustering of the (x,y) data we collected from
the AMT study, we found five classification center points. This
classification gives valence scores of -100 to -10 as negative, -10
to 25 as neutral, and 25 to 100 as positive. Upon model evaluation,
we found that classification by constant valence scores of -100 to
-24 as negative, -24 to 24 as neutral, and 24 to 100 as positive give
the most predictive ranges to use for classification as evaluated
by its 𝐹1 score, a common measure of classifier performance. We
suggest that users view the Circumplex as a square graph, with the
center as true neutral. We therefore use constant valence values
away from the center to delineate classification boundaries.

3.4.3 Expressor Component. In order for the mass-spring to oper-
ate in real-time as the robot engages in a human interaction, we
built a Java component which uses a second order integrator imple-
mented by the Apache Commons Ordinary Differential Equations
(ODE) package [11]. Figure 4 displays the control and data flow for
this entire process. The component is constantly running in paral-
lel with the other processes in the pipeline. A method within the
mass-spring, named Ready_update is called with rapid frequency
by the scheduler of the cognitive architecture. Each time it inte-
grates Equation 1 over a given time step, it first updates 𝐹 to reflect
the current force derived from the most recent emotional valence
prediction received from the Detect component. Each time a predic-
tion is generated, this force attribute is modified accordingly for six
seconds before reverting to 0. It then saves the state of the particle
at the end of this time-step, and begins the next time-step from this
saved state. This state data includes 𝑥 , the position of the particle,
which is used to determine which gesture to send along to the Nao
for execution.

As is described in the previous section and displayed in Figure 2,
the Nao robot is able to produce seven different gestures, intended to
be dispersed evenly along the valence axis from extreme negativity
to extreme positivity. In order to translate from the 𝑥 produced by
the integrator into an embodied behavior, we defined numerical
thresholds between each gestural space along this axis, derived
through observation of the distance from neutral that the particle
reached during the application of various positive and negative
forces. At each time step, after integration, this component assesses
whether the particle has crossed a threshold from one gestural
range into another, at which point the robot is instructed to switch
from one behavior to another. Each behavior is designed so that it
may be repeated continuously for the entire time that the particle
occupies the corresponding region. Whenever this position crosses
one of the predefined thresholds into a region associated with a
different body language behavior, the new desired movement is
reported back to the Goal and Action manager component of the

cognitive architecture, which relays it to the Robot Controller Nao
component for execution.

Figure 6: Still photo of Nao robot and PD person (i.e., a con-
federate) used in online evaluation of model.

4 METHODS
4.1 Design and Procedures
To validate our system we conducted three on-line experiments.
The procedures were the same for each of the experiments, but the
robot emoting was varied as explained below. In each experiment
we asked participants to watch a video of a person being accompa-
nied by an emoting robot (see still shot in Figure 6). We conducted
the experiments on-line and used videos because we wanted, for
a fair comparison, to keep constant what the person was saying
across conditions. This would have been problematic in a natural
interaction scenario between the participant and the assisted per-
son. Moreover, an in-person interaction presented ethical concerns:
using a confederate that actually suffered from PD for testing the
robot at this stage of prototyping would have put unnecessary bur-
den on someone vulnerable from a health-perspective, and would
have created potential for stigma, while using an actor to imperson-
ate someone with PD mimicking all motor aspects of the disorder
would have constituted deception of the participant much beyond
what was needed for the purpose of the validation of the system.
We thus opted for a video in which a male actor speaks directly to
the camera reproducing the facial masking and the affectless tone
of voice that is typical of PD. The script was extracted verbatim
from an actual interview with a person with PD who was talking
about one enjoyable and one frustrating experience they had had
the previous week. This interview was set aside from the dataset
that was used to train the prediction model.

The emoting robot’s behavior was varied across experiments
and conditions in the following way: in Experiment 1 we compared
the robot emoting based on the model described above (including
the Detector and Expressor components) with a video in which
the robot was emoting randomly. The purpose of this experiment
was to obtain a baseline of how much people associate the robot’s
gestures with the person’s speech. We hypothesized that a higher
association to the content of speech would be perceived for the
model-based emoting an the random emoting. In Experiment 2
we compared the robot emoting based on the mass-spring model
described in this paper, to the robot emoting using the model but
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without the mass-spring element. The robot produced gestures cor-
responding to the emotional content of every utterance made by
the person. We hypothesized that there would be no differences
between the mass-spring and no mass-spring models when the
emoting frequency was high (for every utterance). In Experiment
3 we used the same comparison as in Experiment 2, but this time
the robot was emoting at a low frequency, only expressing the
emotional content for every third utterance made by the person.
This experiment was meant to showcase the robustness of the mass-
spring model. We hypothesized that when the frequency of emoting
drops, which might happen due to failures of the LVASR or of the
Detector component, the mass-spring model would compensate for
these errors. By returning to a neutral state instead of perseverating
on one particular gesture, it would improve the perceived emoting
accuracy. In all experiments participants were given the following
instructions: “In this video you will watch a person being inter-
viewed about some enjoyable and some frustrating experiences
he’s had in the past week. Accompanying him is his assistive robot.
Please watch the video carefully. You will be asked questions about
the person and his assistive robot.”

The study used a between-group design, each participant being
randomly assigned to one of the conditions mentioned above. After
watching the video, participants answered the following questions:
“Is the robot’s behavior connected to what is being said?”, which
participants answered with either “yes” or “no”; and “How well do
you feel the robot’s gestures matched what was being said?”, which
participants answered on a five-point Likert scale from “not at all”
to “very much so”. Additionally, they answered further open-ended
and multiple-choice questions about the robot’s behavior and the
person in the video, but analyses of those answers are beyond the
scope of this paper. A total of 161 participants completed the study
on Amazon Mechanical Turk and also passed our attention checks
(42.6% Female, Mean age = 37.4 years, 𝑆𝐷 = 11.85). The research
was approved by the university’s Institutional Research Board (IRB),
and participants were compensated with $1.00 USD for their time.

5 RESULTS
5.1 Experiment 1
When the robot was emoting based on our model, 80.7% of the
participants indicated that the robot’s behavior was connected to
what was being said, significantly more than when the robot was
emoting randomly, 41%, 𝜒2 (2) = 8.86, 𝑝 = 0.003 (see Figure 7).
Also, when the robot was emoting based on the model, the mean
participant rating of how well the robot gestures matched what
was being said (𝑀𝑒𝑎𝑛 = 1.96, 𝑆𝐷 = 0.87) was significantly higher
than the mean participant ratings when the robot was emoting
randomly (𝑀𝑒𝑎𝑛 = 1.14, 𝑆𝐷 = 0.91), 𝑡 (53) = 3.41, 𝑝 = 0.001 (see
Figure 7). This suggests that people understand the robot’s emotive
gestures as related to the content of the person’s speech.

5.2 Experiment 2
In this high-frequency emoting comparison between our mass-
spring model and the same model without the mass-spring ele-
ment, we found no differences between the robot emoting based
on the mass-spring model and the robot emoting without the mass-
spring element. There was no significant difference between the

two conditions in terms of perceived connection between the ro-
bot’s gestures and what was being said (mass-spring:76%, no mass-
spring: 74%, 𝜒2 (2) = 0.03, 𝑝 = 0.868), or between the mean par-
ticipant ratings of how well the robot’s gestures matched what
was being said (mass spring: 𝑀𝑒𝑎𝑛 = 1.92, 𝑆𝐷 = 1.04, no mass-
spring:𝑀𝑒𝑎𝑛 = 1.74, 𝑆𝐷 = 1.10), 𝑡 (46) = 0.58, 𝑝 = 0.559.

5.3 Experiment 3
When the frequency of emoting was low however, the robot emot-
ing using the mass-spring model outperformed the robot emoting
without themass-spring element. The use of themass-spring led to a
higher perceived connection between the robot’s gestures and what
was being said (mass-spring: 85% nomass-spring: 48%, 𝜒2 (2) = 8.65,
𝑝 = 0.003) and participants rated the mass-spring emoting as better
matching what was being said (mass spring: 𝑀𝑒𝑎𝑛 = 1.96, 𝑆𝐷 =

1.09, no mass-spring: 𝑀𝑒𝑎𝑛 = 1.16, 𝑆𝐷 = 0.90) 𝑡 (56) = 3.07, 𝑝 =

0.003. This suggests that the mass-spring emoting model is robust
to potential LVASR or recognition errors and is perceived by ob-
servers to be more accurate at expressing emotions from speech
content.

Figure 7: Ratings of perceived robot behavior in (A) high-
frequency and (B) low-frequency emoting conditions. Top
and bottom rows indicate participant responses to questions
(1) and (2).

6 DISCUSSION
We hypothesized that gestures could be an effective mode for con-
veying emotion in a robot, and that the mass-spring would be a
robust design that ensures high perceived accuracy of emoting even
when emotions are detected at low frequency. This might occur,
for example, when utterances are spatially separated because of
pauses in speech or when detection frequency is reduced to con-
serve power in an embedded system. We further recognized that
emotion detection models are fallible and that some means would
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be necessary to smooth the impact of erroneous predictions on the
robot’s expression or when critical, emotion-bearing utterances
are omitted or not recognized by the LVASR component. There-
fore, we designed the mass-spring component to mediate between
the prediction component and the gesture generation to serve this
purpose.

Our findings support our hypotheses that humans do indeed
distinguish the different categorical levels of positivity expressed
through the mass-spring component which gives the appearance of
smooth transition from one emotion to another. Compared to ran-
dom emoting, when evaluating the overall perception of the robot’s
behavior and gesticulations produced by the detector and mass-
spring components in concert, participants perceived a significantly
higher association between the robot’s emoting and the person’s
content of speech. The findings suggest that this system provides
a suitable basis for a emoting robot companion for persons living
with Parkinson’s disease. Additionally, the mass-spring dynamical
system led to greater perceived association between the robot’s
gestures and the emotional content of the speaker’s utterances than
a model without a mass-spring when the emoting was done at a
low-frequency (for every third utterance). This suggests that the
mass-spring provides necessary robustness for the emoting system,
which is critical given the targeted population - people with PD
often have difficulties with speech production, which might make
the error rate of the LVASR component higher. Our results suggest
that the mass-spring could help compensate for this.

During in-lab system testing, we noticed some delay, not ex-
ceeding 1.5 s on average between what the person uttered and the
generated gesture depending on how the speech end-point was
detected by the ASR component. This also impacted the accuracy
of the predicted emotion. If there were disfluencies in the speech, or
the person paused, the utterances would be broken up into smaller
segments. While this reduced the delay, this increased the likeli-
hood of there being insufficient context to accurately detect the
intended emotion. As noted in Section 22, the LDA method used in
the detector has been shown to be more accurate than, for example,
a sentiment lexicon approach such as LIWC in detecting emotion in
short bursts of text. When evaluating the gesture set, we found that
while overall the participants were able to recognize the relative
positivity of the set, within the three less positive and three more
positive sets surrounding the neutral gesture, there was some lack
of distinction. We attribute this to having insufficient context to
situate the gestures. Further research is needed to design a more
definitive sequence.

At this point we integrated a pre-trained speech recognizer [41].
Since speech recognition is not within the scope of this particular
paper, one way in which we circumvent noise and multiple people
is by using a microphone. However, we recognize that for this to be
completely functional, speech recognition in noisy environments is
essential. We are however showing that the spring-model actually
aids with noisy or low-frequency data and performs better than a
model without a spring component.

6.1 Future Work
We based our model on Russell’s Circumplex bi-axial model of
emotion. It cannot be easily flattened onto a single dimension while

retaining specific, discrete emotional categories because multiple
recognizable emotions may exist at the same general valence while
deviating in arousal. However, in futurework it would be interesting
to compare performance of the system on a continuous vs. a discrete
model of emotion.

A future study would do well to investigate the contribution
of each component of the full system in an empirical experiment
under varying conditions of emotion detection frequency and er-
ror rates. Utterances containing high and low emotional variance
and sequences of abrupt transitions between positive and negative
emotions would further help in the analysis of mass-spring’s con-
tribution. Furthermore, human emotional state can change in far
more complex ways and in more subtle gradations than the five
emotional categories detected in this system. Refining the emotion
detector to generate not only valence but arousal measures would
could reproduce more accurately the complexity of human emotion.
The challenge, then, will be to design suitable emotion expressions
in the robot that reflect this complexity.

7 CONCLUSION
We developed and evaluated a model which detected five degrees
of emotional valence in the continuous speech of a person with PD
and used a spatial-temporal dynamical system to compensate for
emotion detection errors and frequency of emission. We embedded
the model in the DIARC robotic cognitive architecture running in
a Nao robot which expressed emotion using its body movement.
The system equips the robot with the ability to provide immedi-
ate feedback on the emotional state of the person with PD during
conversations with their care-givers or in social-situations. Prior
research has shown providing feedback on the emotion content of
a conversation is not only beneficial for improving the social inter-
action with the PD patient, it can improve the quality of life in the
home. Since human emotion is communicated via multiple modali-
ties, and through different channels, (e.g., voice, facial expressions,
gestures) situating such a tool in a robot that appropriately controls
its expressive motors could compensate for the compromised vocal
and facial modalities when communicating emotion.

We found encouraging results that showed participants in our
study connected the robot’s gestures to what was being said. Once
enhanced with finer prediction resolution and further tuning of
the dynamical system, the robot should be able to express emo-
tion using any bodily movement available in a natural way and
under a variety of conditions (e.g., noisy speech, rapid emotional
changes). We envision that this system can be generalized to serve
as a conversational agent which can monitor the emotional content
between any two individuals and provide immediate feedback on
the emotion content during the course of the conversation.
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