The APOC Framework for the Comparison of Agent Architectures

Matthias Scheutz and Virgil Andronache
Artificial Intelligence and Robotics Laboratory
Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA
{mscheutz,vandrona}@cse.nd.edu

Abstract

In this paper, we present APOC, an agent architecture
framework intended for the analysis, comparison, and
evaluation of agent architectures. We demonstrate how
four main architectures, GRL, ICARUS, PRODIGY,
and SOAR can be translated into APOC and briefly
discuss how these translations could be used to com-
pare architectures and possibly integrate features from
these different architectures within one common archi-
tecture.

Introduction

Agent architectures are blueprints of control systems
of agents, depicting the arrangement of basic control
components and, hence, the functional organization of
the overall agent control system. In addition to the
functionality of its control components, an agent archi-
tecture determines the representational repertoire avail-
able for data structures and information processing in
the system as well as the structural modifications that
can be made (if at all) to the components and their
connections. Typically, agent architectures use general
purpose programming languages to allow for the defi-
nition of data structures, processing components, and
their connections.

Various different architectures and architecture de-
sign methodologies have been proposed for intelli-
gent agents in the history of AI, ranging from cog-
nitive architectures for complex (possibly human-like)
agents (e.g., SOAR (Laird, Rosenbloom, & Newell 1986;
Laird, Newell, & Rosenbloom 1987), ACT-R (Anderson
et al.), PRODIGY (Veloso et al. 1995), and oth-
ers), to layered architectures for simulated and robotic
agents (e.g., 3T (Bonasso et al. 1997), ICARUS (Lan-
gley et al. 2003; Langley, Cummings, & Shapiro 2004)
, AuRA (Arkin & Balch 1997), subsumption (Brooks
1986), motor schemas (Arkin 1989), GRL (Horswill
2000)). While all of these architectures have intro-
duced new architectural concepts (such as new types of
components or new structural features specifying their
interconnections, etc.), it is difficult to compare these

Copyright (© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

concepts across architectures in the absence of a general
language or formalism, in which all the different archi-
tectural features can be expressed or formalized. We
believe that such a comparison, however, could be use-
ful for several reasons. For one, it might contribute to
an understanding of why some architectures are better
suited for a particular class of tasks than others (e.g.,
where processing bottlenecks are, why one functional
organization is more robust and less susceptible to sys-
tem overload than another, etc.). It might also help to
integrate proven features from different architectures
in an effective, efficient way (e.g., a hierarchical con-
trol system like RCS (Albus 1992) might be integrated
with a schema-based reactive control and a higher-level
planner). Finally, it might lead to a development pro-
cess for agent architectures that allows for the reuse
and integration of functional components akin to what
is typically done in software engineering with shared li-
braries, APIs, and other software abstractions (such as
packages, modules, etc.).

What is needed is an architecture framework, which
is general enough to allow researchers to evaluate and
compare different kinds of architectures, but is at the
same time conceptually parsimonious enough to employ
only a few intuitive, basic concepts by virtue of which
architectural features and mechanisms can be expressed
and defined.! To our knowledge, no satisfactory frame-
work is currently available that is conceptually “simple”
and “small” (in the number of basic concepts), while
achieving high expressiveness at different levels of ab-
straction (although promising efforts are under way, see
the other contributions to this workshop). As a first
step towards the development of such a general frame-
work, we propose the APOC agent architecture frame-
work under development in our lab. We will first pro-
vide a brief overview of APOC and then demonstrate
its utility as a framework for comparing agent architec-
tures by showing how four main architectures, SOAR,
PRODIGY, ICARUS, and GRL, can be translated into

!Being conceptually parsimonious is critical, for other-
wise the framework may end up being as complex as any
of the higher, universal programming languages in which
agent architectures are defined (obviously, such a framework
would defeat its purpose).

it. The subsequent discussion will briefly sketch how
such translations can be used to compare architectural
mechanisms and possibly integrate different architec-
tural concepts within one combined architecture.

A Brief Overview of the APOC
Framework

APOC is an acronym for “Activating-Processing-
Observing-Components”, which summarizes the func-
tionality on which the APOC agent architecture frame-
work is built: heterogeneous computational units called
“components” that can be connected via four types of
communication links.

Priorit
—) ati o { —
[N 5
Clinks i G links
—_— update function F == >
—k -7-'-r---------F\-7\-/<k - —
—_—3] ' N, A —S
O links ! ./ Y .",{‘ S O l'inks
ATinks P T e ——— T A-T1nks

T

Figure 1: The basic structure of an APOC component
showing bundles of incoming and outgoing links of each
of the four types as well as the priority and activation
levels together with the update function F' and the as-
sociated process.

The four link types defined in APOC are intended to
cover important interaction types among components
in an agent architecture: the activation link (A-link) al-
lows components to send data structures to and receive
data structures from other components; the “observa-
tion link” (O-link) allows components to observe the
state of other components; the “process control link”
(P-link) enables components to control and influence
the computation taking place in other components, and
finally the “component link” (C-link) allows a compo-
nent to instantiate other components and links among
them.

Each component in APOC has an activation and a
priority level and can receive inputs from and send out-
puts to other components via any of its links. Inputs
(from incoming links) are processed and outputs (to
outgoing links) are produced according to an update
function F, which determines the functionality that the
component implements, i.e., the mapping from inputs
and internal component states (e.g., the current activa-
tion and priority values) to outputs and updated inter-
nal component states (e.g., new activation and priority
values). The update function thus provides the specifi-
cation for a computational process that, in an instanti-
ated component, continuously updates the component’s
overall state. The particular algorithm for implement-
ing the update function F has to be defined separately
for each component type employed in an architecture.

Figure 1 summarizes the basic structure of an APOC
component.

Different from components in other formalisms such
as schemas in RS (Lyons & Arbib 1989) or the aug-
mented finite state machines (AFSMs) in the subsump-
tion architecture (Brooks 1986), an APOC component
can also have an “associated process” (in addition to
the computational process updating the state of the
component), which it can start, interrupt, resume, or
terminate. The associated process can either be a phys-
ical process external to the architecture (e.g., a pro-
cess controlling the motors in a wheeled robot), or a
self-contained computational process that takes inputs
from the component and delivers outputs to it (e.g., a
process implementing an image analysis algorithm that
takes an image and returns a high-level representation
of all three dimensional objects found in the image).

APOC serves at least three distinct roles: (1) as an
analysis tool for the evaluation of architectures, (2) as
a design tool for developing architectural components,
and (3) as a platform for the definition of agent archi-
tectures.

APOC is a useful tool for the analysis and compar-
ison of agent architectures because it can express any
agent architectures in a unified way (e.g., cognitive ar-
chitectures such as SOAR, ACT-R, and others, as well
as behavior-based architectures such as subsumption,
motor schemas, situated automata, etc.). Furthermore,
APOC has a notion of cost defined for components
and links that allows for the systematic assessment of
“structural cost” and “processing cost” of the whole
instantiated architecture at runtime. Consequently, it
is possible to analyze properties of architectures and
their subarchitectures (e.g., the action selection mech-
anism in Maes” ANA architecture (Maes 1989) requires
global control despite some claims that it uses only local
mechanisms) and compare their trade-offs with respect
to some particular function (e.g., two different archi-
tectures implementing an “target-finding task” can be
compared with respect to their performance-cost ratio).

As a design tool, APOC allows for the definition of
a large variety of different mechanisms within the same
architecture, hence concepts from one formalism can of-
ten be transferred to another by virtue of a unified rep-
resentation in APOC (e.g., semantic nets, neural nets,
conditions-action rules, or conceptual hierarchies can all
be defined in a similar way). It is thus possible to study
different designs of mechanisms (e.g., how to do behav-
ior arbitration or how to implement Sloman’s global
alarms, or how to actively manage finite resources at
the architecture level). Since algorithms are in general
implemented in APOC components, APOC automati-
cally yields a way of distributing computations in terms
of asynchronous computational units and communica-
tion links among them. Furthermore, the resource re-
quirements and computational cost of the architecture
can be determined and compared to other architectures
implementing different algorithms for the same task.

Finally, instead of transcribing and modeling other

architectures, APOC can be also used to define new
concepts and implement new architectures directly
(e.g., we coined the term “dynamic architectures”
(Scheutz & Andronache 2003b) for architectures that
modify themselves over time; for this an architec-
ture has to be capable of modifying its own descrip-
tion, e.g., as part of a learning process, which is
possible in APOC). For more details on APOC as
well as the APOC development environment ADE,
which is based on the APOC framework and allows
for the direct implementation of APOC specifications
in JAVA, see (Scheutz & Andronache 2003a; 2003b;
Andronache & Scheutz 2004b; 2004a).

Translation other Architectures into the
APOC Framework

Components in APOC can vary with respect to their
complexity and the level of abstraction at which they
are defined. They could be as simple as a connection-
ist unit (e.g., a perceptron) or as complex as a full-
fledged condition-action rule interpreter (e.g., SOAR or
PRODIGY). Hence, there are typically many ways in
which any given mechanism or architecture can be ex-
pressed in APOC.

One interesting way of utilizing the APOC com-
ponent model, especially in the context of translating
other architectures, is to view a component (i.e., the
process updating the state of a component based on
the definition in the update function F) as a process
manager of the component’s associated process. This
construal makes it possible to separate information con-
cerned with architecture-internal processing, i.e., con-
trol information, from other information (e.g., sensory
information that is processed in various stages).

In the following, we will sketch generic translations
of four main architectures, GRL, ICARUS, PRODIGY,
and SOAR, into the APOC framework.

GRL

GRL is a functional language for behavior-based sys-
tems (based on the programming language SCHEME),
which makes the generalization of treating arbitra-
tion mechanisms as higher-level procedures. The GRL
translation into APOC can be seen below:

e Each procedure maps onto an APOC component.

o A-links are used for data transfer from the environ-
ment to behaviors and among behaviors.

o O-links are used for data transfer from behaviors to
arbitration components.

e Arbitration schemes are defined as APOC compo-
nents. These components receive inputs from the ar-
bitrated components, process them according to in-
ternal rules and produce overall outputs for the sys-
tem. The internal rules can implement any arbitra-
tion mechanism: competitive, cooperative, or a com-
bination.

e Sequencing can be obtained through the use of “flag”
variables within components. Other components,
which depend on prior computation, use O-links to
observe the flag variables and only start their com-
putation once the flag variable has changed to a pre-
determined value.

The GRL definition of a behavior is as follows:

(define-group-type behavi or
(behavi or act-Ilevel notor-vector)
(activation-1level act-Ievel)
(ot or-vector notor-vector))

The weighted sum operator which would be required
for a motor-schema implementation is:

(define-signal (weighted-sum. behavs)
(apply + (weighted-notor-vec behavs)))

(define-signal (weighted-notor-vec beh)
(* (activation-Ilevel beh)
(ot or - vect or beh)))

In APOC, with each behavior and the arbitration
algorithm being embedded in separate components, this
systems creates the structure (left in Figure 2), where
b1 to b, are the behaviors used in the system.

ICARUS

ICARUS is a cognitive architecture with the capabil-
ity of learning hierarchical skills. The ICARUS rep-
resentation of skills is related to both production rules
and STRIPS operators. ICARUS divides memory space
into conceptual memory and skill memory. Conceptual
memory is the residence of states, such as a descrip-
tion of a desk, and relations, such as a description of
“on top of.” Skill memory contains the system’s knowl-
edge about actions, such as “put object A on object B.”
ICARUS also divides memory into long-term and short-
term memories. Each element in long term memory is a
symbolic description with an associated numeric func-
tion which computers the value of that description in
terms of the current sensory value reading. Each el-
ement in short term memory is an instance of a long
term memory element.

Long-term Conceptual Memory Long-term con-
ceptual memory contains definitions of concepts, such
as car, and of relations, such as “in left lane.” To trans-
late ICARUS long term memory into APOC we use the
following rules:

e Fach concept is represented as an APOC compo-
nent. The characteristics of each object are embed-
ded within its equivalent component. For example, a
component which represent a numeric concept, such
as speed or distance, embeds the arithmetic function
which computes the quantity associated with that
concept within its update function F'.

e Higher-level concepts, which have other concepts
as positive or negative preconditions check for the
achievement of those preconditions in F'.

Environment

Figure 2: An example of an APOC translation of a GRL structure (left) and an ICARUS structure (right).

e Higher-level concepts whose preconditions need to be
checked against specific objects connect via A-links
to the lower-level concepts representing those precon-
ditions. The links are used to send across the param-
eters to which the tests of lower level concepts are
applied.

e Higher level concepts connect via O-links to lower
level concepts to ascertain whether their positives
and negatives are satisfied.

e Higher level concepts can create “instances” of their
knowledge: the Lane-To-Right component can in-
stantiate a Lane-To-Right-Instance, identifying a
particular line found to the right. Therefore, con-
cepts are connected to each of their instances through
a C-link.

Long-term Skill Memory Long-term skill memory
contains knowledge about ways to act and achieve goals,
such as how to overtake a car moving slowly ahead.
To map long-term skill memory to APOC we use the
following rules:

e Each skill is represented as an APOC component.

e FEach skill connects through O-links to sub-
skills/rules in order to verify their completion.

e Each skill component connects through O-links to
concepts in order to verify that the pre-requirements
(start:) and the continuing requirements (required:)
are met (if necessary).

e Distinctions between ordered: and unordered: are
implemented in the update function, F, or in the as-
sociated process.

e The evaluation function for a skill decomposition is
defined in the update function, F'.

Short-term Conceptual Memory FEach instance
of a long term concept which can be created based on
current sensory information is represented as an APOC
component.

Short-term Skill Memory This memory contains
the skills the agent intends to execute. Each element
represents an instance of a long-term memory skill and
has concrete arguments. Each element is represented

as an APOC component and is linked through A-links
and O-links to the percepts and short-term memory
concepts which form its arguments. In primitive skills,
actions are mapped onto effectors.

Perceptual Buffer Percepts are represented as
APOC components. For example, the literal (#speed
car-007 20.3) is represented as a component. A concept
connects via O-links to percepts in order to read their
values.

To learn hierarchical skills in APOC, an analysis
component is connected to all skills and checks pre-
conditions. This component constructs the precondi-
tion hierarchy, as described in (Langley, Cummings, &
Shapiro 2004). In APOC terms, a new component is
created for each common precondition of two or more
skills and it connects to the skills which have the com-
mon precondition. The link structure thus created de-
termines the memory hierarchy and therefore the skill
hierarchy.

A simple example of a translation is presented below.
Consider the function

(in-lane (?car ?l ane)
(lane ?lane ?left-line ?right-1line)
(car car?)
(\ #xdi stance ?car ?left-line ?dleft)
(\ #xdi stance ?car ?right-line ?dright)
(< ?2dleft 0) (> 2dright 0))

An APOC translation following the above rules can
be seen on the right in Figure 2. It should be noted
that there are two instances of the #xdistance concept
in this description. We chose this implementation in
order to illustrate the flexibility of APOC and to show
how an APOC-based architecture could make use of
the facilities available in the system, in this case assum-
ing there are enough resources to duplicate a functional
unit, in order to maximize system performance. The
instance of in-lane, i-1001, sends object data to the lane
instance component, 1001 through the A-link. Then it
observes through the O-link to see whether the object
sent is a lane. Similar processes take place with the
other instantiated components. For this example, we
left the magnitude comparisons, < and >, in the up-
date function, F', of i-1001, due to the simplicity of the
functionality represented.

PRODIGY

PRODIGY is a mixture of planning and learning, con-
sisting of a general purpose planner and several learning
systems (see the left of Figure 3).

Knowledge in this system is represented in terms of
operators. A central module decomposes a given prob-
lem into subproblems. In PRODIGY, a planning do-
main is specified as a set of objects, operators, and in-
ference rules which act on those objects. To translate
a PRODIGY system to APOC, we use the following

rules:

1. Each operator type maps onto an APOC type com-
ponent.

2. Each bindings component (instantiated operator)
maps onto an APOC component.

3. Each object in the knowledge base maps onto an
APOC component.

4. Each control rule maps onto an APOC component.
5. Fach goal maps onto an APOC component.

6. Goal and bindings components have a cost field and a
computation of cost implemented in the update func-
tion, F'. Operator types do not have costs; in APOC
types are not part of the traversed graph, resulting
in a slightly different, though functionally equivalent,
structure from the graph described with PRODIGY
(shown on the right in Figure 3).

7. Wherever applicable, each component computes its
own cost in the update function, F'. The cost of the
top component then represents the cost of the plan.

8. Operators have O-links to object representations or
other operators, which determine the meaning of the
operator.

9. The central module is implemented in its own APOC
component, with connections to all other compo-
nents in the system. This component has P-links to
the Back-Chainer and Operator-Application to de-
termine which executes at each step. Recursion is
obtained by repeated application, e.g., by cycling
through the architecture.

10. The Back-Chainer is an APOC component.

11. The Back-Chainer can create bindings components
and pass as arguments to the new components the ids
of objects/operators to which the new instantiated
operators should connect.

12. The Operator-Application is implemented in its own
APOC component, which has O-links to all objects
and operators. This component is connected through
an O-link to the Back-Chainer in order to observe the
state of the tail plan.

13. Each of the other elements of the system, such as
EBL and Hamlet, are separate components, which
connect to PRODIGY through both O-links and A-
links. These components connect only to those com-
ponents required for their functionality. For example,

QUALITY receives the current plan from PRODIGY
and attempts to refine the plan and generate new
control rules which will allow PRODIGY to gener-
ate better plans. QUALITY may need to connect to
all components which are part of the plan, or it may
simply operate on an abstract representation of the
plan and system state, created by PRODIGY.

14. An external user can create a plan using APOC com-
ponents. The components which need to use informa-
tion from this plan can connect to the user-created
plan through O-links.

The initial state of a problem is the initial state of
the system.

SOAR

The structure of the SOAR architecture, as described
in (Laird, Newell, & Rosenbloom 1987), can be seen in
Figure 4. Five main components are present in SOAR:

1. A Working Memory, which is a container with in-
formation about Objects (goals and states of the sys-
tem), Preferences (structures indicating the accept-
ability and desirability of objects in a particular cir-
cumstance), and a Context Stack, which specifies the
hierarchy of active goals, problem spaces, states and
operators.

2. A Decision Procedure, which is a function that ex-
amines the context and preferences, determines which
slot in the context stack requires an action (replac-
ing an object in that context), modifying the context
stack as required.

3. A Working Memory Manager, which determines
which elements of the working memory (contexts and
objects) are irrelevant to the system and deletes them

4. A Production Memory, which is a set of produc-
tions that can examine any part of working memory,
add new objects and preferences to it, and add new
information to existing objects.

5. A Chunking Mechanism, which is a learning mech-
anism for new productions

Since descriptions of architectures in APOC can be
done at various levels of detail, there are several possi-
ble translations of SOAR to APOC, with varying lev-
els of detail hidden in the process associated with each
APOC component. However, to better make use of the
intrinsic power of the framework, we describe SOAR
at a fairly detailed level. Two types of links can be
distinguished in Figure 4. Some links have associated
operations, which denote the fact that through those
links elements can be either created (+) or deleted (-
). The other links are simply data transfer links. The
latter link type translates directly onto the APOC O-
link. Thus, the following O-link connections occur in
an APOC implementation of SOAR.

e The Chunking Mechanism is connected to all
Preferences, Objects, and the Context Stack. The

EXPERIMENT QUALITY

Controlled experiments
refine incomplete domains

APPRENTICE

Graphical knowledge
acquisition

PRODIGY/EBL STATIC ALPINE PRODIGY/ANALOGY
Explanation-based Static domain Generation of Analogical
learning evaluation abstraction hierarchy reasoning
OBSERVE PRODIGY HAMLET
Expert observation| Planner Incremental and inductive
and own practice explanationa and refinemen|

Evaluation and quality analysi
of alternative plans

O Goal Node
© Operator Node

@ Bindings Node
(instantiated operator

o

s

Figure 3: The PRODIGY system with its component parts (left) and the structure of a PRODIGY plan (right).

Chunking
Mechanism

il
Production
Memory

Working-Memo
Manager

Decision
Procedure

Figure 4: The SOAR architectural structure

items observed are the working memory elements
created in the subgoal being processed. Thus, in-
stead of choosing to describe the Working Memory
as an APOC component, we describe Preferences,
Objects and Goals as the basic components of an
APOC-based implementation of SOAR, imposing
the structure of the SOAR architecture through
APOC links. Similarly, the production memory is
mapped at the level of each production as an APOC
component.

The Chunking Mechanism is connected to all
Productions in order to trace the productions fired
during the subgoal being processed. Thus, the item
observed is a boolean variable indicating the status
of a production.

The Working Memory Manager is connect to all
Productions. QObserved items are preferences and
objects produced, whose information can be gath-
ered from the production such that a direct O-link
to those objects can be created.

The Working Memory Manager is connected to the
DecisionProcedure. Observed items are the con-
texts produced, whose information can be gathered
such that a direct O-link to those objects can be cre-

ated.

e The Working Memory Manager is connected to all
Preferences, Objects, and the Context Stack. The
contents of each context of the Context Stack are
compared against the identifiers of elements of the
Preferences and Objects sets. Thus, the items ob-
served are the elements of contexts and the identifiers
of objects.

e The Decision Procedure 1is connected to all
Preferences and the Context Stack. The contents
of each context of the Context Stack are observed
and processed. Preferences are observed for content
and checked for matches against the context currently
being processed.

The creation/deletion functionality of SOAR maps
directly onto the APOC C-link. The creation process
may require additional information to be passed to the
newly created node (e.g., the conditions in which a new
production fires need to be sent to the production when
a generic production is created and objects need to be
given identifiers). An A-link is then created through
the C-link and used for information passing.

The deletion process requires that information is
known about the situation state of working memory
(e.g., determining if an object is used in any context
on the context stack). This information is retrieved in
APOC through the O-link mechanism. Thus, a C-link
from the “Decision Procedure” or “Working Memory
Manager” to a preference, object, or a goal create an
O-link upon their creation and this link is thereafter
used to observe that entity as described above.

Discussion

In the previous section we have indicated how four
major architectures could be expressed in the APOC
framework. Here we will briefly discuss how these trans-
lations could be used for a comparison of different archi-
tectural features and possibly their integration within
one architecture.

Comparisons of Agent Architectures

First and foremost, APOC translations of architectures
allow for a direct comparison of their structural ar-
chitectural mechanisms as they have to be formulated
within the same APOC link model. Depending on

the level of detail of the translation, this might only
allow for the comparison of the very general control
flow within any two given architectures, or it might re-
veal a very detailed control and information flow many
among components that might be useful to analyze and
compare performance bottlenecks and other limitations
across architectures. In particular, for the performance
of an architecture on a given task, APOC translations
can be used assess the cost induced by an architecture,
which can be defined in terms of the cost associated
with its structures, its processes, and the actions that
can be performed on it (e.g., modifications of the lay-
out, instantiation of new data structures, etc.):

e Structural costs are incurred as a result of merely hav-
ing a certain component or link instantiated. They
can be thought of as maintenance costs that are as-
sociated with any work that needs to be done to keep
the object up to date.

e Process costs are those associated with running pro-
cesses. They include computational costs, and possi-
bly the costs of I/O and other such operations. Typ-
ically process costs will be proportional to the com-
plexity of the computation performed by the process.

e action costs are those associated with primitive op-
erations on the architecture (such as instantiating a
new component or link, or interrupting a process).
Each action has a fixed cost, making the computa-
tion of action costs a simple matter of assessing the
associated cost whenever the action is executed.

The notion of cost induced by an architecture is then
inductively defined in terms of these three basic cost
types. For rule-based systems, this cost can be deter-
mined at a very fine-grained level if each goal, each rule,
and each concept (where appropriate) is directly mod-
eled by a separate APOC component (e.g., as in the
above translation for ICARUS).

Assuming that the respective costs of two archi-
tectures can be assessed for the same task, their
performance-cost tradeoff can then be determined if
their respective performances on the task (e.g., based
on a task-dependent performance measure) are known.
In the ideal case, it will be possible to abstract over
the individual task and make some general statements
about the mechanisms, either in absolute terms, or rel-
ative to mechanisms in other architectures (e.g., the ar-
bitration mechanism in architecture A, all other things
being equal, makes better decisions about what action
to execute that arbitration mechanism B).

We believe that the performance-cost tradeoff is an
important measure for the evaluation of architectures
and/or architectural mechanisms, as it is one way to
assess their utility based on the involved processing,
structural, and action costs. While absolute perfor-
mance (i.e., performance regardless of cost) is a good
way to evaluate systems in principle or in cases where
computational resource requirements are of no or only
minor concern, relative performance is what matters in

practice, especially under severe resource constraints.
For an embedded, autonomous system, for example, the
absolute performance (e.g., how close it is to a perfect
solution) will often matter much less than the actual
energy and resource expenditure (e.g., in the case of a
rover roaming the surface of a distant planet). Hence,
specific mechanisms that are very “efficient” with re-
spect to some notion of cost while still giving rise to
acceptable performance might by preferable over much
more costly universal mechanisms (e.g., universal rule-
based systems).

Integration of Architectural Mechanisms

Translations of architectures in APOC can be use-
ful beyond the comparison of agent architectures, as
they might suggest ways of combining and integrating
architectural mechanisms from different architectures
within one common architecture. A first simple exam-
ple would be the combination of GRL behavior-based
procedures with any of the other three architectures de-
scribed above. Such a combination would allow for a
direct way of connecting symbolic reasoning engines to
embodied, robotic agents. In the simplest case, GRL
could be used to implement the mechanism by which a
goal of the system, for example, a “move left goal” (pos-
sibly a subgoal of the “pass the car in front” goal) could
be achieved in the real world (e.g., a schema-based car
navigation system).

More generally, GRL could be used to implement
“alarm mechanisms” in any of the three other architec-
tures, which achieve the high reactivity necessary for
the survivability of autonomous, embodied systems like
robots. This could be done in at least two ways: (1) the
other architectures are implemented in the same way as
“behaviors” in GRL; that way behavior arbitration in
GRL would allow them to become active and remain
in control of the agents’ effectors as long as no emer-
gency requires special emergency behaviors that would
override them. Alternatively, (2) right-hand sides of
rules that contain effector commands could be directly
connected to arbitration schemes via the GRL signal-
ing mechanisms, thus allowing for a tight integration
of behavior arbitration and the rule-based system (this
integration, moreover, allows for the dynamic modifica-
tion of arbitration schemes through the rule interpreter,
a possibility we are currently investigating further).

Another example of a whole category of potential
combinations would be the transfer of learning mech-
anisms from one cognitive architecture to another:

e The chunking mechanism in SOAR, could be used as
a learning mechanism in the context of PRODIGY.

e The reverse can also be employed: the goal stack
structure in a SOAR-based system could be passed
to one of the analysis tools in PRODIGY.

e The hierarchical structure learned by ICARUS can
be adapted and used in a SOAR system within the
context of APOC, exploiting similarities in the hier-
archical organization of the goal structure.

In general, any architectural mechanisms from differ-
ent architectures that are by definition not knowledge-
based can be integrated as such within one architecture
(i.e., at the level of the architecture—for an example, see
(Scheutz & Andronache 2003b)). Among the advan-
tages of such an integration are:

e a richer architecture with more built-in capabilities,
which allows agent designers to use these features and
algorithms directly without having to re-implement
them in terms of other architectural mechanisms
(e.g., in terms of condition-action rules)

e a processing speedup (as architectural mechanisms
can be directly implemented in the underlying virtual
machine without the need for intermediate interpre-
tation)

e the possibility of integrating existing systems and
thus reusing functional components that have proven
successful (e.g., a system A utilizing architectural
mechanisms M4 and a system B utilizing architec-
tural mechanism Mp could be run as part of one
architecture)

Conclusion

The APOC framework is still in its infancy. Yet, we
believe that it already demonstrates the potential util-
ity of agent architecture frameworks for the design and
use of future agent architectures.

We are currently working on a formal specification
of APOC that will eventually integrate methods from
model checking, process algebra, Petri nets, and hy-
brid systems to provide a formalism for APOC that
has provable properties (e.g., the correctness of inter-
actions among components, the timely routing of data
through a network of components, etc.) and allows for
the application of the many formal tools used by soft-
ware engineers to verify the functionality of their code.
We believe that at least the possibility of formal verifi-
cation of properties will be crucial for the development
of future agent architectures, especially in the context
of complex, autonomous, intelligent agents.

References

Albus, J. S. 1992. A reference model architecture
for intelligent systems design. In Antsaklis, P. J., and
Passino, K. M., eds., An Introduction to Intelligent
and Autonomous Control, 57-64. Boston, MA: Kluwer
Academic Publishers.

Anderson, J. R.; Bothell, D.; D., B. M.; and Lebiere,
C. An integrated theory of the mind. To appear in
Psychological Review.

Andronache, V., and Scheutz, M. 2004a. Ade - a
tool for the development of distributed architectures
for virtual and robotic agents. In Proceedings of the
Fourth International Symposium ”From Agent Theory
to Agent Implementation”.

Andronache, V., and Scheutz, M. 2004b. Integrating
theory and practice: The agent architecture frame-
work apoc and its development environment ade. In
Proceedings of AAMAS 2004.

Arkin, R. C., and Balch, T. R. 1997. Aura: principles
and practice in review. JETAT 9(2-3):175-189.

Arkin, R. C. 1989. Motor schema-based mobile robot
navigation. International Journal of Robotic Research
8(4):92-112.

Bonasso, R. P.; Firby, R.; Gat, E.; Kortenkamp, D.;
Miller, D.; and Slack, M. 1997. Experiences with an
architecture for intelligent, reactive agents. Journal
of Experimental and Theoretical Artificial Intelligence
9(1).

Brooks, R. A. 1986. A robust layered control system
for a mobile robot. IEEE Journal of Robotics and
Automation 2(1):14-23.

Horswill, I. 2000. Functional programming of
behavior-based systems. Autonomous Robots (9):83—
93.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
SOAR: An architecture for general intelligence. Arti-
ficial Intelligence 33:1-64.

Laird, J.; Rosenbloom, P.; and Newell, A. 1986.
Chunking in soar: The anatomy of a general learning
mechanism. Machine Learning 1:11-46.

Langley, P.; Shapiro, D.; Aycinena, M.; and Siliski,
M. 2003. A value-driven architecture for intelligent
behavior. In Proceedings of the IJCAI-2003 Workshop
on Cognitive Modeling of Agents and Multi-Agent In-
teractions.

Langley, P.; Cummings, K.; and Shapiro, D. 2004.
Hierarchical skills and cognitive architectures. In Pro-
ceedings of the Twenty-Sixzth Annual Conference of the
Cognitive Science Society.

Lyons, D. M., and Arbib, M. A. 1989. A formal model
of computation for sensory-based robotics. IEFE
Transactions on Robotics and Automation 5(3):280—
293.

Maes, P. 1989. How to do the right thing. Connection
Science Journal 1:291-323.

Scheutz, M., and Andronache, V. 2003a. APOC - a
framework for complex agents. In Proceedings of the
AAAI Spring Symposium. AAAT Press.

Scheutz, M., and Andronache, V. 2003b. Growing
agents - an investigation of architectural mechanisms
for the specification of “developing” agent architec-
tures. In Weber, R., ed., Proceedings of the 16th In-
ternational FLAIRS Conference. AAAI Press.
Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; Fink,
E.; and Blythe, J. 1995. Integrating planning and
learning. Journal of Experimental and Theoretical Ar-
tificial Intelligence 7(1).

