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Abstract

Natural human-like human-robot interactions require many
functional capabilities from a robot that have to be reflected in
architectural components in the robotic control architecture.
In particular, various mechanisms for producing social be-
haviors, goal-oriented cognition, and robust intelligence are
required. In this paper, we present an overview of the most re-
cent version of our DIARC architecture and show how several
novel algorithms attempt to address these three areas, leading
to more natural interactions with humans, while also extend-
ing the overall capability of the integrated system.

Introduction
The 2005 AAAI robot competition featured an “Open Inter-
action Event” where robots were supposed to freely and nat-
urally interact with humans. In preparation for the event, we
described an envisioned waiter scenario (reminiscent of the
1999 AAAI “Hors d’Oeuvres Anyone?” robot competition)
and introduced a novel hybrid robotic architecture called
DIARC (short for “Distributed Integrated Affect, Reflection,
and Cognition” architecture), which had been under devel-
opment in our lab for several years and was employed on our
robot in the competition. DIARC was specifically intended
to make the robot’s interactions more “natural” (Scheutz et
al., 2005), integrating novel algorithms for affective comput-
ing and incremental natural language processing.

Subsequently, we introduced the theme of “natural
human-like human-robot interaction” or “natural HRI”, for
short, to lay out a framework and research program that
would allow for the development of intelligent robots that
could interact with humans in natural ways (Scheutz et
al., 2007). In the context of HRI, we defined “natural” to
roughly mean that “any restrictions on possible interactions
are due to human capacities (i.e., the limitations of human
perceptual, motor, or cognitive system), and not the a pri-
ori functionality of the robot.[..] including interactions that
can occur in any typical human setting, such as the ability
to use language freely in any way, shape, or form; to make
reference to personal, social, and cultural knowledge; or to
involve all aspects of human perception and motor capabili-
ties.” (Scheutz et al., 2007). As a corollary, robots will have
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to respect human timings of actions such as the timing of eye
movements and eye gaze, gestures and other bodily expres-
sions, natural language understanding and production, auto-
matic situation- and knowledge-based inferences, and many
others. For example, it is critical that backchannel feedback
during natural language interactions be fast enough and oc-
cur at the appropriate places during a speaker’s utterance.
Similarly, it is critical that eye gaze patterns underlying joint
attention processes exhibit the appropriate coupling and de-
coupling among interactants. Failure to do so will in the
best case result in unnatural interactions, but in the worst
case in complete interaction break-down and frustration on
the side of the human. Critically, failing to respect the hu-
man timing might cause significant changes in the human
interactant’s cognitive processes (e.g., we discovered in an
HRI eye-tracking study that the human’s allocation of at-
tention was significantly altered throughout the experiment
when the robot failed to establish eye contact at the appro-
priate time (Yu, Scheutz, and Schermerhorn, 2010).

Among the many areas required for natural HRI, we pre-
viously highlighted three areas: (C1) social behaviors, (C2)
goal-oriented cognition, and (C3) robust intelligence. The
first class was intended to include natural language capabil-
ities, but also affective computing as well as non-linguistic
interactions (e.g., such as gestures or joint attention). The
second class was focussed on intentional behavior, includ-
ing both the robot’s ability to explicitly express and pursue
goals, as well as any mechanisms that would allow humans
to perceive the robot as an intentional agent. And the third
class was intended to include various monitoring mecha-
nisms that would allow the robot to detect all kinds of faults
and recover from them (e.g, crashed component or miscom-
munications with interlocutors).

While significant progress had been made in intelligent
robots by 2005 (e.g., compared to the 1990s, see the discus-
sion in Scheutz et al. 2007) which was in part demonstrated
at the competition, it was also clear that “none of the systems
that competed in 2005 (including ours) has demonstrated the
second requirement for natural interaction with humans in
real-world environments: the ability to demonstrate and rec-
ognize intent.” (Scheutz et al., 2007). Unfortunately, the
development of integrated mechanisms for inferring human
intent and tracking interlocutors’ mental states in the con-
text of human-robot interaction has remained a challenge to



this day, and few current architectures for intelligent robots
attempt to address this problem. One of them is the current
version of our DIARC architecture, which has seen signif-
icant developments over the last decade in all three of the
above mentioned areas. In addition to addressing the second
class by way of introducing explicit mechanisms for build-
ing and maintaining mental models of interlocutors and han-
dling indirect speech acts that require the recognition of in-
tent (Briggs and Scheutz, 2011, 2012b, 2013), the first class
has also been addressed by developing novel mechanisms
for robust task-based dialogue interactions (Cantrell et al.,
2010; Scheutz, Cantrell, and Schermerhorn, 2011), includ-
ing a tight integration between vision and natural language
processing (Cantrell et al., 2012a; Krause et al., 2013), and
the third class has been addressed by developing fault detec-
tion and recovery mechanisms (Kramer and Scheutz, 2007a)
as well as novel notification mechanisms for multi-level in-
trospection (Krause, Schermerhorn, and Scheutz, 2012).

The goal of the present paper then is to present an
overview of the architectural changes and novel capabilities
of the integrated DIARC architecture in all three areas. We
start with a brief overview of DIARC and the robotic mid-
dleware ADE (Scheutz, 2006) in which it is implemented.
Then we focus on our developments for all three classes –
social behaviors, goal-oriented cognition, and robust intelli-
gence – briefly describing for each class the new functional
capabilities. We also briefly summarize the various diverse
application domains in which DIARC has been successfully
employed.

The DIARC Architecture for Natural
Human-Robot Interactions

The DIARC architecture for natural human-robot interac-
tion has been under development in our lab for more than a
decade and uniquely integrates typical (lower-level) robotic
capabilities (for visual perception, laser-based mapping and
localization, navigation, and others) with (higher-level) cog-
nitive capabilities such as robust incremental natural lan-
guage understanding (Brick and Scheutz, 2007; Dzifcak et
al., 2009; Cantrell et al., 2010), task-based dialogue inter-
actions (Scheutz, Cantrell, and Schermerhorn, 2011; Briggs
and Scheutz, 2013), task-based planning (Talamadupula et
al., 2010), one-shot learning of actions and plan operators
from natural language dialogues (Cantrell, Schermerhorn,
and Scheutz, 2011; Cantrell et al., 2012b), mental modeling
and belief inference (Briggs and Scheutz, 2012b, 2011), and
others. DIARC also deeply integrates various affect mecha-
nisms that bias goal prioritization, action selection, behavior
arbitration and general deliberative processing (Scheutz and
Schermerhorn, 2009; Schermerhorn and Scheutz, 2009b;
Scheutz et al., 2006), in addition to modifying speech and
facial expressions of the robot.

Analogous to other intelligent robotic architectures, in
particular, cognitive architectures, DIARC makes several
theoretical commitments, which we will briefly discuss:

• All processing in architectural components occurs asyn-
chronously to other components (e.g., as in the subsump-
tion architecture), and no assumptions can be made about

messages passed between components (e.g., about their
timely arrival). This is viewed as a feature, rather than a
constraint, that allows for the distribution of architectural
components over multiple computational hosts compared
to classical cognitive architectures that are monolithic.

• Each component operates on a “cognitive cycle” (the
“loop time”) and may run multiple threads of control
within itself (e.g., perception, natural language process-
ing, and action execution are examples of highly paral-
lelized components). This is in contrast to common cog-
nitive architectures (e.g., ACT-R and SOAR) where pro-
cessing occurs in one overall cognitive cycle.

• There is no centralized controller (“homunculus” as the
philosophers call it) such as the central rule interpreter
commonly used in production systems and thus classi-
cal cognitive architectures. Rather, control is distributed
and any synchronized activity must be accomplished by
way of multiple components working together in a fault-
tolerant, robust fashion.

• Goals are explicitly represented in terms of pre-,
operating-, and post-conditions, have a priority that is
computed based on the goal’s urgency, expected utilities
and overall affective state (which, in turn, is computed
for each component based on its operation). Goals are
attached to skills that accomplish them, which can be re-
trieved based on their post-condition and executed.

• Action selection is distributed and priority-based (using
goal priorities for resource allocation and Behavior arbi-
tration) and uses locking mechanisms for mutual exclu-
sion of resources (e.g., robot effectors).

• No single architectural learning mechanism is prescribed;
rather, different forms of learning can occur in different
components (e.g., statistical learning in components close
to perception and action, symbolic learning in higher-
level components).

• No single knowledge representation is prescribed; rather,
knowledge representations may take different forms
within components depending on the nature of the process
operating on them (e.g., saliency maps inside the vision
processing component, dependency graphs in the parser,
clauses in the reasoner,...).

• Logical expressions are used as a common currency and
data representation format across components wherever
possible (e.g., between the natural language and vision
processing subsystems) and are used as part of introspec-
tive access to system features and capabilities.

• Architectural components can tightly interact with the un-
derlying implementation platform, the ADE middleware,
using the ADE notifications mechanisms which allow for
introspection, monitoring, and discovery of system fea-
tures and failures (to our knowledge, this is different from
any other current architecture for intelligent robotic sys-
tems).

DIARC is implemented in the “Agent Development En-
vironment” ADE (Scheutz, 2006) which was conceptualized
and developed as an implementation environment for future



complex distributed robotic architectures addressing various
challenges posed by natural real-time human-robot inter-
actions. Analogous to other current robotic infrastructures
(such as JAUS, Player/Stage, Yarp, ROS, and others)1, ADE
provides the basic communication and computational infras-
tructure for parallel distributed processes which together im-
plement various functional components of an agent architec-
ture (e.g., the interfaces to a robot’s sensors and actuators,
the basic navigation and manipulation behaviors, path and
task planning, perceptual processing, natural language pars-
ing, reasoning and problem solving, etc.). ADE also provides
interfaces to all widely-used robotic environments (Kramer
and Scheutz, 2007b), allowing for the seamless integration
and re-use of their components. In a running ADE system,
all participating ADE components start up independently and
connect to each other as prescribed in the architecture dia-
gram – the blue-print of the system – to allow for informa-
tion flow among architectural components. Different from
all other robotic infrastructures, ADE was designed to be as
secure, fault-tolerant and scalable as possible.

Being implemented in ADE, DIARC can run in a paral-
lel distributed fashion with its components distributed over
multiple computing hosts (based on host availability) to ad-
dress the critical real-time and robustness constraints re-
quired of intelligent robots in HRI domains. Different from
other infrastructures and architectures, we have been able to
repeatedly demonstrate the robustness of ADE in light of var-
ious system faults during task performance in human-robot
interaction experiments (Kramer and Scheutz, 2007a, 2006).
Moreover, different from many other intelligent agent archi-
tectures, DIARC can be easily extended by new architec-
tural components that are implemented via ADE components
“wrapping” existing software. These ADE components can
then be added to an existing ADE system (Scheutz, 2006)
and become available as services to existing components in
DIARC, addressing important questions concerning the ex-
tendability and scalability of intelligent agent architectures.

Novel Architectural Extensions for Natural
Human-Robot Interactions

Natural human-robot interactions require robots to be ca-
pable of a great variety of social behaviors, most critically
spoken natural language dialogues. We will thus first and
foremost address our developments on situated natural lan-
guage processing, which in the contexts of joint tasks, for
example, requires robots to handle the typical disfluencies
and infelicities of spontaneous speech exhibited by humans.
Moreover, dialogue interactions (and, a fortiori, task-based
interactions) require robots to maintain and update a men-
tal model of their interlocutors. Hence, we will describe our
work on developing a pragmatic framework that integrates
natural language understanding with mental belief model-
ing. And finally, sustained interactions require mechanisms
to cope with various types of errors and failures. We thus
also briefly point to our work on introspection, fault detec-
tion, and fault recovery.

1A detailed comparison of robotic infrastructures up to 2006
can be in found in Kramer and Scheutz (2007b).

Robust Natural Language Interactions
To facilitate robust social interactions, (1) the natural lan-
guage understanding (NLU) system must handle a wide
range of inputs, using failures (such as unknown words
and miscommunications) as learning opportunities; and (2)
spoken inputs must be grounded to actions, locations, and
agents the robot knows what to do with. The first require-
ment is handled by a robust trainable dependency parser
with online learning capabilities, while the second is ad-
dressed by systematic integration with the robot’s perceptual
and cognitive capabilities.

To facilitate robust speech recognition, we have devel-
oped a neural any-time speech recognizer using a liquid-
state machine (LSM) back-end and successfully applied it to
the recognition of both short and longer phrases (Veale and
Scheutz, 2012). The practical advantages of our approach
for real-world applications are (1) the ability to access re-
sults at any time and (2) the robustness of the recognition
in somewhat noisy environments. Intermediate predictions
can be accessed at any time during an utterance, enabling
early actions based on the recognizers predictions, or allow-
ing for the biasing of other cognitive components (such as
parsers, visual search systems, etc.) based on the current
best-guess. Conversely, the recognizer can be biased in par-
allel in real-time based on other information available from
other perceptual modalities or top-down information (Veale,
Briggs, and Scheutz, 2013). The system is also robust in
certain situations because, unlike traditional Markov-model
based speech recognizers, the neural circuit may find highly
non-linear relations between very different parts of phrases,
which will be used to separate the phrases at the holistic level
(in contrast to having to break down sound into phonemes
and using n-gram windows).

Robust parsing of spoken inputs requires (1) the ability
to handle verbal disfluencies such as interjections and rep-
etitions (Cantrell et al., 2010) and (2) the ability to learn
new vocabulary items on the fly. The NLU Component
(NLUC) of ADE uses an incremental dependency parser
trainable from annotated corpora. Because it does not re-
quire fully-connected parses, it is not strongly impeded by
spoken disfluencies such as interjections and repetitions. As
the NLUC identifies syntactic dependencies, it uses a dic-
tionary of known concepts and their semantic valancies to
produce semantic representations. If the identified structure
does not match the system’s expectation based on the dic-
tionary — or if the system has no expectations because the
word is unknown — the robot can request missing informa-
tion, and can learn either a new word or a new valancy for a
previously-known word.

However, a semantic representation is useless unless it is
grounded in the robot’s physical and cognitive environment.
For example, the name of an action is not useful unless the
robot understands (can perform, recognize or plan with) the
action. Thus the robot also learns new grounded concepts
from spoken interaction, for example it can ask questions to
elicit a procedural definitions for verbs (Cantrell, Schermer-
horn, and Scheutz, 2011) and information for use in plan-
ning (Cantrell et al., 2012b). Similarly, mentioned entities
must be grounded. The NLUC incrementally grounds refer-



ences by collecting and storing information about the entity
to which each noun phrase refers. If the noun phrase ulti-
mately appears to refer to a perceived feature of the environ-
ment or to co-refer with a previously-known entity, informa-
tion from both structures is merged.

In order to resolve referents in the environment, the
NLUC is integrated with perceptual components. When an
interlocutor begins a noun phrase, the NLUC requests that
components such as vision begin to search the environment.
Each search is incrementally modified as more information
about that noun phrase is collected (e.g., as adjectives and
nouns are heard). All descriptors (adjectives and nouns) are
sent to each perceptual component (unless specifically re-
stricted); unknown descriptors are ignored. When the end of
the noun phrase is identified, the NLUC notifies perception
to end the search and receives the final list of matching ob-
jects. The NLUC then compares the number of matching en-
tities it sees with the expected number (for example, “the red
block” should have a single referent, “the red blocks” should
have multiple referents, and “all blocks” or “any blocks”
may have any number of referents including zero). If there is
a discrepancy (e.g., multiple referents were returned for “the
red block”), the NLUC can mention this problem: “There is
more than one red block”.

Referents that are known but not immediately present in
the environment (e.g., previously mentioned objects or lo-
cations) are also identified. For example, the NLUC is in-
tegrated with the SPatial EXpert (SPEX) (Williams et al.,
2013), which reconciles place descriptions whose semantics
it receives from the NLUC with its representations of places
previously mentioned in dialogue or perceived by the robot’s
sensors. SPEX maintains a map of the robot’s environment
which can be used to perform spatial reference resolution for
the NLUC. For example, given the semantics for the phrase
“the third room on the right,” SPEX returns a reference to
a known room matching that description if one already ex-
ists in SPEX’s world model. Other components that can be
queried in this manner include belief, which maintains a list
of previously-discussed or encountered entities.

Finally, if these methods fail, the NLUC can resolve ref-
erences to hypothesized or inferred entities. Some men-
tioned objects imply other objects; for example, when a
door is mentioned, the NLUC assumes it is attached to a
room. Components such as SPEX enlarge their world mod-
els based on these new objects. For example, if a location
is described that does not match any on the map, SPEX en-
larges the map with a hypothesized unknown location and
returns a reference to it. Thus the robot’s world model is
updated not only from exploration but also from dialogue, a
novel ability compared to previous systems (e.g., Matuszek,
Fox, and Koscher 2010), which have been unable to update
their world model after the system’s initial training phase or
tour. This allows for more natural interaction between the
robot and its interlocutor, as navigation, discovery and dia-
logue can occur concurrently.

Mental Modeling and Indirect Speech Acts
For goal-oriented cognition and social cognition the ability
to model the mental states of an interaction partner is vi-

tal to successful interaction. This ability requires not only a
means of representing such a mental model, but also the abil-
ity to make inferences about an agent’s mental state based
on observed communicative acts (e.g. speech acts, gestures)
in addition to non-communicative acts (e.g. physical task-
relevant actions). Also, not only must one be able to model
the mental states of others, but one must also pro-actively
communicate one’s own beliefs and intentions to one’s in-
teraction partners using similar linguistic and non-linguistic
mechanisms. Below we will describe the progress made in
DIARC to construct mechanisms that assist in mental state
inferences in cooperative contexts– as well mechanisms that
allow for natural and human-like communication of one’s
own beliefs and intentions.

One mechanism found in human-human interaction is the
use of certain linguistic cues to communicate beliefs about
the mental state of the interactant, specifically certain adver-
bial modifiers such as “yet”, “still” and “now.” For example,
one would not say “are you at the store yet?” if he or she
did not believe his or her interlocutor had a goal to or an-
ticipated being at the store. In Briggs and Scheutz (2011)
we provided the first formal pragmatics for sentences con-
taining adverbial modifiers that link pragmatic representa-
tions to mental states of interlocutors (e.g., expected goals
or currently held beliefs). In addition, not only did we de-
velop pragmatic rules to infer the beliefs of an agent’s in-
terlocutor based on use of adverbial cues, we devised an ut-
terance selection algorithm for natural language generation
that would appropriately select utterances with the correct
adverbial modifier based the agent’s own belief (Briggs and
Scheutz, 2011).

Another phenomenon in human-human interaction are in-
direct speech acts (ISAs). These include indirect requests
such as “Could you get me a coffee?” or “I would like a cof-
fee” (as opposed to a direct request, “get me a coffee!”). Not
only did we develop rules to understand indirect requests,
but we also extended our utterance selection method and nat-
ural language generation system to select socially appropri-
ate request forms (which may or may not be indirect) based
on formalization of social roles, obligations, and context.
Additionally, we developed plan-reasoning mechanisms that
could assist with making sense of indirect answers – that
is, responses to questions that do not answer the immediate
question, but convey understanding of the broader goal and
assist with the completion of that goal. For instance, if one
were to ask, “Do you know where the meeting room is?”,
an example of an indirect answer would be, “Follow me!”
(Briggs and Scheutz, 2013). This extends previous work in
understanding indirect requests (Wilske and Kruijff, 2006;
Perrault and Allen, 1980) and generating indirect requests
(Gupta, Walker, and Romano, 2007).

Underlying the abilities to handle these are general prin-
ciples and rules for updating mental models, which we will
outline here. We will use τ to denote the interlocutor, ρ to
denote the robot, and [[..]]c to denote the “pragmatic mean-
ing” of an expression (e.g., a natural language utterance) in
some context c, which often includes task and goal informa-
tion, as well as beliefs (about the interlocutor, perceptions,
objects, etc.) and discourse aspects (about the previous in-



teractions with the interlocutor). Overall, updates to robot’s
mental model of the interlocutor will be triggered by vari-
ous events, mediated through the robot’s perceptual system.
For example, the robot might perceive a new task-relevant
object. Assuming that all agents store such perceptions, we
can formulate a general principle that if an agent α perceives
an object o at location l at time t, then αwill believe (B) that
it perceived o at l at t:

Perceives(α, o, l, t)⇒ B(α, Perceives(α, o, l, t))

Another example would include natural language utter-
ance from the interlocutor, such as “can you get me a cof-
fee?”, which in certain social contexts c should be treated
as a request. In addition to updating its own beliefs, the
robot ρ needs to model the interlocutor’s τ beliefs in re-
sponse to its utterances, (i.e., ρ has to derive its mental model
{ψ|B(τ, ψ) ∈ Belρ}) and update it by using them same
rules it applies to its own beliefs. The same is true when ρ
notices that τ has certain perceptions or performs certain ac-
tions. The above principles (and a few related ones) have
already been successfully integrated into a special belief
modeling component part of DIARC and evaluated in sim-
ple human-robot interactions (Briggs and Scheutz, 2012b,
2011).

Introspection and Architectural Adaptation
To support long-term sustained interactions, ADE provides
advanced architectural mechanisms for system-wide sim-
ulation and introspection on component services that can
be used to detect faults and failures (Kramer and Scheutz,
2007a), but also missing competencies, and it allows the
robot to discover new capabilities at run-time. Specifically,
ADE provides support for fine-grained architectural simula-
tions by duplicating all architectural components and run-
ning the duplicated architecture with a simulated robotic
body in a simulated environment which is initiated based
on the state of the current environment. As a result, it is pos-
sible for agents to discover that they are missing low-level
capabilities to complete a task such as certain perceptual
algorithms or motor primitives that are not explicitly rep-
resented in any part of their system (e.g., in a self-model).
Moreover, ADE supports the discovery of dynamic changes
to the architecture, including the addition of new capabilities
at run-time.2
ADE also integrates introspection mechanisms at all lev-

els of the architecture: agent-level, infrastructure-level, and
component-level. Typically, self-adjusting agent architec-
tures employ either component-specific introspection mech-
anisms or attempt to integrate all levels of self-reasoning and
self-adjustment into a single system-wide mechanism (Mor-
ris, 2007; Haidarian et al., 2010; Sykes et al., 2008; Geor-
gas and Taylor, 2008). Our approach combines the benefits

2See, for example, the demonstration video at http://
www.youtube.com/watch?v=9KLwELMatcg which shows
a robot that simulates itself performing a task to discover that it
has no ability to perform a visual search; but when it is given the
missing camera, it immediately notices that it is now capable of
completing the task and consequently resumes the task right away.

of system-wide and component-specific mechanisms and al-
lows for self-observation, self-analysis, and self-adjustment
at all three levels of the architecture. These mechanisms not
only provide the typical failure detection and recovery and
system reconfiguration, but have also been show to provide
performance improvements. In a concrete implementation
on a robot, we demonstrate how the high-level goal of the
agent is used to automatically reconfigure the vision system
to minimize resource consumption while improving over-
all task performance (Krause, Schermerhorn, and Scheutz,
2012).

Applications of DIARC
Robotic architectures for human-robot interaction can be
employed in two important ways (in addition to being de-
ployed on robots in application domains): as experimental
tools and as computational models. In the first case, the ar-
chitecture is used to study human social cognitive processes
that unfold in real-time and where interaction responses de-
pend on past behaviors (“contingent experimental design”),
including the evaluation of human responses to and interac-
tions with future robots. In the second case, the architecture
is used to develop and implement computational models of
“situated embodied cognition” which focuses on the role of
body situated in an environment for understanding cogni-
tion, including the evaluation of different human-machine
interfaces and their efficacy.

As an experimental tool, DIARC has been run on various
robotic platforms to study
• Joint attention processes (e.g., establishing and maintain-

ing joint attention, or breaking joint attention through “ab-
normal attention”) (e.g., see Yu, Scheutz, and Schermer-
horn, 2010; Yu, Schermerhorn, and Scheutz, 2012)

• Human attitudes about robots (e.g., social facilitation and
social inhibition to probe agency, or investigations of the
effects of robotic voices, social presence, etc.) (e.g., see
Crowell et al., 2009; Schermerhorn, Scheutz, and Crow-
ell, 2008)

• Human reactions to autonomous robots in cooperative
tasks (e.g., to robot affect, robot autonomy, to lo-
cal/remote HRI) (e.g., see Schermerhorn and Scheutz,
2011; Scheutz et al., 2006)

• Robot ethics (e.g., whether humans will accept robots that
ignore commands in the interest of team goals or that
point out unethical aspects of commands) (e.g., see Briggs
and Scheutz, 2012a; Schermerhorn and Scheutz, 2009a)

• Philosophical and conceptual inquiry (e.g., what it is like
to be an agent/have a red experience, or the effects of “eth-
ical robots” on human decision-making)
As a model, DIARC has been used to demonstrate various

advanced capabilities:3

• Spoken natural language and dialogue interactions (e.g.,
instructing and tasking in natural language, dialogue-
based mixed initiative, robust NL interactions under time
3For videos of DIARC in operation, see http://www.

youtube.com/user/HRILaboratory/.



pressure) (e.g., see Cantrell et al., 2010; Scheutz, Cantrell,
and Schermerhorn, 2011)

• Planning, reasoning, and problem solving in open worlds
(e.g., planning and reasoning with incomplete knowledge,
determining optimal policies in open worlds) (e.g., see Ta-
lamadupula et al., 2010; Joshi et al., 2012)

• Knowledge-based learning (e.g., one-shot learning of new
actions, new plan operators, and new perceivable objects)
(e.g., see Cantrell, Schermerhorn, and Scheutz, 2011;
Cantrell et al., 2012b)

• Mental models, simulation, and counterfactual reasoning
(e.g., adverbial cues for inferring false beliefs, automatic
inference from mental models, simulations of actions)
(e.g., see Briggs and Scheutz, 2011, 2013)

• Introspection and self-awareness (e.g., detecting faults
and failures, detecting capabilities, automatic adapta-
tion of architectural components for improved autonomy)
(e.g., see Kramer and Scheutz, 2007a; Krause, Schermer-
horn, and Scheutz, 2012)

Conclusion
We provided an overview of the current version of the
DIARC architecture for human-robot interaction and de-
scribed some of its novel extensions that are intended to
address critical shortcomings of prior versions of the ar-
chitecture in an effort to allow for more natural human-
robot interactions. Specifically, we reviewed developments
on the situated natural language processing side, the mental
modeling and intent inference algorithms, and the mecha-
nisms for multi-level introspection and fault tolerance mech-
anisms. We also provided a brief summary of the diverse
application domains in which DIARC has been employed.
In the architectural development phase, DIARC’s compo-
nent model will be extended to improve introspection ca-
pabilities that will increase the “self-awareness” of the ar-
chitecture and thus its ability to predict intended and unin-
tended future states. These predictions will then be used to
adapt the robot’s behavior in a way that will make its in-
teractions more reliable and robust, and improve its overall
performance. Most implemented DIARC components im-
plemented in ADE are freely available for download from
http://ade.sourceforge.net/.
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