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Abstract— Human-robot interaction requires robots to pro-
cess language incrementally, adapting their actions in real-
time based on evolving speech input. Existing approaches
to language-guided robot motion planning typically assume
fully specified instructions, resulting in inefficient stop-and-
replan behavior when corrections or clarifications occur. In this
paper, we introduce a novel reasoning-based incremental parser
which integrates an online motion planning algorithm within
the cognitive architecture. Our approach enables continuous
adaptation to dynamic linguistic input, allowing robots to
update motion plans without restarting execution. The incre-
mental parser maintains multiple candidate parses, leveraging
reasoning mechanisms to resolve ambiguities and revise inter-
pretations when needed. By combining symbolic reasoning with
online motion planning, our system achieves greater flexibility
in handling speech corrections and dynamically changing con-
straints. We evaluate our framework in real-world human-robot
interaction scenarios, demonstrating online adaptions of goal
poses, constraints, or task objectives. Our results highlight the
advantages of integrating incremental language understanding
with real-time motion planning for natural and fluid human-
robot collaboration. The experiments are demonstrated in the
accompanying video at www.acin.tuwien.ac.at/42d5.

I. INTRODUCTION

As robots become more involved in everyday life, they
are expected to interact seamlessly with humans. The inter-
actions involve commanding the robot to perform a certain
task or asking for help. Language instructions play a crucial
role in these situations and robots need to understand human
intentions. However, natural language is often ambiguous,
and humans may need to correct or specify their instructions
on the fly. An example is given in Fig. 1. The instruction
“Grab the mug” does not specify a particular way to grasp
the mug, whether by the handle or from the top. As the robot
starts reaching for the handle, the human can add “from the
top” to the instruction, to which the robot needs to react in
real time. Such a behavior requires a continuous interaction
between language understanding and motion planning. This
is lacking in current works, which often assume natural
language instructions to be given in text form [1], [2], [3].
Real speech input is used in [4], but the setting is limited,
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Fig. 1. Schematic of the incremental motion planning framework. The
natural language instruction Ly, is parsed to P*(L¢,). The resolver
translates this to a goal pose ps(Ls,) and a set of constraints C(L¢).
The ambiguity in of the grasping pose is resolved randomly to a side grasp.
Based on this, BoundPlanner [6] computes a set of admissible states X ([lto)
and cost function parameters ¢(L¢, ) and passes it to BoundMPC [7] which
computes the joint input u(¢) at 10Hz. As the grasp assumption is false,
the human instructor utters the language instruction L¢; at time ¢t1 > to to
correct the robot. This correction requires a replanning at pose p; which
uses the same steps as before. The robot then reaches the final pose ps.

and the instruction is still parsed in its entirety but not
incrementally. When the robot waits for the full instruction
in order to begin planning a suitable motion and then stops
and replans once the motion needs to be adapted, then this
is time-consuming and frustrating for the human instructor.
Existing work in [5] uses language corrections but requires
manual control interventions and only wrong actions are
corrected, but the task is not changed. Our work specifically
focuses on real-time speech parsing with online motion
planning, mandatory for real human-robot interaction.

Incremental language processing offers flexibility, allow-
ing robots to process linguistic input as it arrives rather
than waiting for full utterance completion. Humans naturally
employ incremental processing, continuously updating their
understanding and refining interpretations based on evolving
context [8], [9]. Similarly, a robot that processes language
incrementally can begin formulating an action plan based on
an initial command, and dynamically revise its plan as new
linguistic constraints emerge.

There are various incremental language processing sys-
tems; some focus on syntactic parsing [10] or semantic
parsing [11], [12], while others are designed specifically
for robotic agents [13] or built into incremental dialogue
processing software such as InproTK [14] and Retico [15].
We argue that incremental language processing can benefit
online replanning in robotic agents, in contrast to their non-



incremental counterparts. Non-incremental parsers—such as
Abstract Meaning Representation (AMR) parsers [16], de-
pendency parsers [17], or Large Language Models (LLMs)
used for text-based robot instructions [18]—require utter-
ances to be complete before parsing, delaying action plan-
ning and making real-time interaction infeasible.

As mentioned, a motion planner that can react to changes
in the instructions online is needed in order to couple it
with an incremental parsing system. This includes motion
constraints that may be added incrementally. Imagine the
robot manipulating a cup filled with a liquid. The robot might
not know that it needs to keep it upright to avoid spilling,
which the human can communicate with the corrective
statement “keep the cup upright”. This new motion constraint
needs to be taken into account during the motion of the
robot. Considering Cartesian constraints in an online motion
planner is challenging. Resolving ambiguity of language
instructions needs to work online and promptly because
otherwise, the actions taken by the robot might not be
reversible anymore. When the robot transports a filled cup
but is not aware of the upright constraint, an online correction
is able to limit the damage. When this is not the case, the
robot might spill the liquid during its motion, which is not
reversible.

Recently, [7] proposed an optimization-based approach
using a Cartesian bounded reference path which is used in
this work in combination with the bounded reference path
planner [6]. This combination is used for online motion
planning in this work. It is able to rigorously communicate
constraints from the language input to the motion planner
using a model-based approach with complete consideration
of the environment. The motion instructions are created by
the novel incremental language parser that utilizes explicit
reasoning to parse utterances incrementally and understand
at which point in time the utterance is meaningful to send
to the underlying motion planner. This way it is tailored
specifically to robot motion planning. The proposed approach
is demonstrated on a 7-DoF robot manipulator in four
scenarios. These scenarios demonstrate how the proposed
framework handles changes in goal pose, adding motion
constraints, i.e., a region avoidance and upright orientation
constraint, and changing the speed of the motion while the
robot is moving. We further demonstrate that using an offline
motion planner degrades performance.

The main contributions of this paper are

« anovel incremental language parser specifically tailored
to interact with robot motion planning.

« the tight integration of this incremental language parser
with online motion planning based on BoundMPC [7]
and BoundPlanner [6]. This novel combination allows
fast acting in human-robot collaborations and quick
corrections of undesired motions.

II. RELATED WORK
A. Incremental Processing

Humans process language incrementally, interpreting lin-
guistic input as it is received rather than waiting for full

utterance completion [8], [9]. This ability enables rapid
adaptation in interactive settings, allowing speakers and lis-
teners to dynamically adjust their actions based on evolving
context [19], [20]. Psycholinguistic research has shown that
humans make predictions about meaning in real time, guided
by syntactic, semantic, and pragmatic constraints [21].

Motivated by these human capabilities, computational sys-
tems for incremental natural language understanding have
been developed to support real-time processing and early
action execution [22]. These systems enable dialogue compo-
nents to process partial utterances, reducing response latency
and improving interactive fluency.

Several approaches to incremental language processing
have emerged, each focusing on different aspects of the
problem. Some systems prioritize incremental syntactic pars-
ing [23], [10], allowing for continuous refinement of the
sentence structure as new words arrive. Others emphasize
incremental semantic interpretation [11], [12], where mean-
ing is continuously updated based on available linguistic
and contextual information. One important subfield is incre-
mental reference resolution, in which systems dynamically
resolve a referent without waiting for a fully disambiguated
description [24].

While these systems have demonstrated the advantages of
incremental processing, most approaches are designed for in-
terpretation rather than planning and action execution. In sit-
uated environments, incremental processing must go beyond
language and integrate with an agent's perception, reasoning,
and action planning. Some systems have begun to explore
this intersection by incorporating multimodal cues such as
gaze and gesture to improve reference resolution [25]. Others
have focused on real-time robotic interaction, such as the
RISE system, which allows robots to maintain multiple pos-
sible interpretations of an unfolding utterance [26]. However,
a critical gap remains: most incremental systems do not
support real-time action planning and execution based on
partially complete utterances.

B. Motion Planning

Motion planning for robot manipulators is a challeng-
ing and active research field. It is broadly divided into
offline [27], [28] and online motion planning [29], [7].
Offline motion planning is often employed in industrial
settings where minimum-time trajectories can improve the
production output or for very precise tasks which are dif-
ficult to compute. However, when the robot is acting in an
uncertain or dynamic environment, e.g., in an environment
shared with humans, the robot must be able to adapt its
behavior online [30]. The needed real-time capability can be
achieved by planning only over a finite time horizon. Popular
methods include sampling- and optimization-based model
predictive control (MPC) [29], [7], [31] and reinforcement
learning [32]. However, finite horizons for planning often
yield local minima due to obstacles and joint limits. Thus, the
works [1] and [6] split the planning problem into reference
path planning and trajectory planning. The reference path is
planned from the initial to the goal pose in Cartesian space



and guides the finite-horizon joint-trajectory planning. This
separation enables real-time planning. Popular path planning
methods include RRT [33] and convex sets [34], [1], [6].
In this work we use BoundPlanner [6] in combination with
BoundMPC [7], which was shown to be computationally
efficient and is able to adhere to Cartesian bounds.

C. End-to-End Learning

Another interesting development is the emergence of end-
to-end learning as used in [5], [4]. However, this lacks any
guarantees of constraint satisfaction and structured incremen-
tal understanding. Therefore, this approach is not further
considered in this work.

III. INCREMENTAL LANGUAGE PROCESSING

[35] present a high-level framework for designing incre-
mental language processing systems and outline key archi-
tectural considerations: modularity, granularity, and revis-
ability. In this section, we introduce an incremental parsing
approach that enables a robotic agent to process language in
real time, submit plans on the fly, and dynamically adjust
its actions based on evolving linguistic input. Our system
bridges this gap by supporting: 1) Partial parsing (modular-
ity): the system generates usable interpretations before an
utterance is complete; 2) Integration with motion planning
(granularity): words and partial parses are used to submit
and update robot action plans; and 3) Real-time plan revision
(revisability): the system dynamically updates actions and
utterance interpretations when new constraints are intro-
duced. By combining incremental parsing with the online
motion planning framework described in Section IV, our
system efficiently handles dynamic human-robot interactions,
adapting to spoken corrections and clarifications utilizing
replanning during the robot's motion.

Algorithm 1: Incremental Chart Parsing

Input: Language Instruction £+ = (wo, . .
Dictionary D

Output: Parsed utterance P (L)

if chart uninitialized then

| InitializeChart(n)

else

| ExpandChart(n)

foreach w; € L; do

// Add initial word node to chart
6 | & <« D.lookup(w;)

7 |if & # 0 then

8 | AddNode(&;, 1, 1)

9 for s =2ton do

10 |for j =0to n— s do

. wn71)7

[V R SRR S

11 ke jts—1
12 form=jtok—1do
13 foreach (L, R) € chart[j][m], chart|m + 1][k| do
// Try combining constituents
14 N < Combine(L, R)
15 if N/ # () then
// Add new node to chart
16 chart[j][k] < chart[j][k] U {Node(L, R, N')}

17 return best parse P € chart[0][n — 1]

Our parser constructs a hierarchical structure in several
stages. First, during lexical processing, the words are as-

signed their respective syntactic categories and semantic
representations (using CCG-style (combinatory categorial
grammar) parsing) combining syntax and semantics based on
predefined grammar rules. Words are dynamically inserted
into the chart and stored in separate cells as they arrive.
The parser then begins phrase-level combination. The final
parse is selected from the final cell of the chart. If a user
stops mid-utterance, such as saying “grab the mug...” without
completing or adding more to the utterance (“grab the mug
by the top”), the parser maintains a partial parse and uses it
as a basis for future input. This ensures that parsing remains
fluid and can accommodate dynamically evolving utterances.

The incremental chart parsing algorithm (Algorithm 1)
presents a more formal description. The algorithm takes as
input an utterance £; = (wp,w1,...,w;) at time ¢t and a
dictionary D containing stored grammar rules. It outputs
a parsed representation P(L;). The chart data structure is
initialized (lines 1-4) if not already allocated; otherwise, it
is expanded to accommodate newly received words.

Each word w; in the utterance undergoes lexical process-
ing (lines 5-8). The function D.lookup(w;) retrieves a set
of grammar rules &; associated with the word. If the word
is unknown (&; = (), it is skipped. Otherwise, a node' is
created from these rules and inserted into the chart at position
(i,1), see Table 1. Once all words are inserted, the parser
performs phrase combination using a bottom-up dynamic
programming approach (lines 9-16). It iterates over spans of
length s, progressively merging smaller phrases into larger
constituents. At each span, split points m are considered,
allowing for binary branching combinations of subparses.
The function Combine(L, R) checks whether two nodes can
be merged using grammatical constraints.

If a valid rule A permits the combination of a left parse
L and a right parse R, a new node is created and inserted
into the chart (line 14). The process continues until the
entire utterance is analyzed. The final parse is retrieved
from chart cell [0,n — 1] (line 17), which stores the final
interpretations. Multiple parses of the same words can be
stored in the chart, allowing a reasoning mechanism to return
the best interpretation®. The structured storage of alternative
parses also allows the system to defer disambiguation until
further context is available. Our parser operates with a worst-
case time complexity of O(n?3), similar to CYK parsing
[36]. The proposed parser is designed to work with the
English language. Extending this to other languages requires
an additional translation step or language-specific adaptions.

A. Parsing Walkthrough

Table I illustrates the incremental chart parse for “grab
the mug by the top.” The parsing process begins at the lexical

'Nodes are created using the constructor new
Node (List<Entry> entries), which generates lexical
nodes from dictionary entries. As parsing progresses, the method
combine (Node left, Node right) merges  compatible
nodes into higher-level phrases.

ZMultiple parses of are stored in the last cell and a single parse can be
returned depending on the context (e.g. available referents or objects) of the
utterance that reflects the best interpretation.



Idx| 0 1 2 3 4 5
S b (th by the t¢

0 | grab| VP — grab | VP — grab the mug = EEd (e m) (ly e (r)

S —» grab (the mug by the top)
1 the NP — the mug

2 mug

3 iy PP — by the top
PP —» by the top (modifies NP)

4 the NP — the top

5 top

TABLE I

PARSING CHART FOR “GRAB THE MUG BY THE TOP”

level, where each word is inserted into its corresponding
diagonal cell. The first word, “grab”, is identified as a verb
and stored at position (0,0). Next, “the” and “mug” (at
positions (1,1) and (2,2), respectively) are recognized as
part of a noun phrase (NP — “the mug”). At the phrase
combination stage, the parser merges “the” and “mug”
into NP — “the mug”, stored at (1,2). This NP is then
combined with the verb at (0,0), forming a VP — “grab
the mug”, a candidate parse for a complete verb phrase
at (0,2). This is the first completed parse that can be
submitted as a goal for the agent (P*(L;,) at time ¢y rather
than “grab the” (P(L)). We use a first-order logic (FOL)
style semantic representation®:

INSTRUCT (speaker, listener, graspObject (listener, mug))

While the agent starts to achieve this goal (grabbing the
relevant mug), the parse continues until it gets to another
completed parse P*(Ly,) at time ¢;. The next word, “by”,
is inserted at (3, 3) as a preposition (PP — “by”). Similarly,
“the top” is recognized as a noun phrase (NP — “the top”)
and stored at (4, 5). The parser then combines these elements
into PP — “by the top”, stored at (3,5).

The final parse selection occurs at cell (0,5), where the
parser considers two interpretations: (1) Best Parse (Bold):
S — “grab (the mug) (by the top)”, where “by the top”
modifies the verb, indicating the manner of grabbing. (2)
Alternative Parse (Gray): S — “grab (the mug by the top)”,
where “by the top” modifies the noun, implying a location.

This approach ensures that multiple interpretations are
retained within the chart, enabling flexible reasoning about
attachment ambiguities in real time. Each parse stored in
chart[0] [n-1] can be evaluated and resolved using
additional context or external constraints. The final parse
places additional constraints on the original plan (P*(L;,)):

INSTRUCT (speaker, listener, graspObject
(listener,mug), by (mug, top))

IV. ONLINE MOTION PLANNING

The incremental language parsing system from Section III
is used to parse a motion instruction £, at time t; for a
robot manipulator. Once a meaningful phrase P*(L,) is
obtained, the motion planner needs to react online to the
adaptions. The resolver in Fig. 1 resolves P*(L;, ) into a
desired final pose p¢(L;, ) and a set of constraints C(L, ) as

3This representation includes the speaker intent (INSTRUCT) and the core
action (graspObject) on an object (mug). The object reference (mug)
can resolve to a specific object in the environment known by the agent.

inputs to the motion planner. For the purpose of this work, the
goal poses and obstacles are assumed to be known such that
the resolver simply maps the parses, e.g., from Section III-
A, to poses and constraints. In future work, this will be
extended to include vision information. For example, the
specification “keep the cup upright” will add a constraint
on the orientation to C(L, ).

A. From Parsed Instruction to Safe Robot Motion

In this work, a combination of global reference path
planning in the Cartesian space with subsequent trajectory
planning in the joint space over a finite time horizon is used.
A reference path 7 is planned by BoundPlanner [6] and
bounded by convex sets such that the robot's end effector
is collision free if it remains within the bounds along 7 that
ensure the satisfaction of constraints C(L;, ). These bounds
define the set of permissible states

X(ﬁtk) - Xsafc(»ctk) U Xtask(ﬁtk) U Xrobot (1)

for the robot, which constitutes safe states Xsae (L, ), task-
specific states Xyasx(Le, ), and kinematic and dynamic states
of the robot Xopot- The set of safe states Xsago(Ly,,) will
always ensure obstacle avoidance. Convex sets define the task
set Xiask(Le, ) and the safety set Xsage(Ly,, ) for the position
and orientation of the robot's end effector and the collision
avoidance of the robot's kinematic chain. The set X,opot 1S
independent of the instruction £;, as the robot's limits do not
change. The original formulation of BoundPlanner [6] does
not handle orientation constraints. This work lifts this limita-
tion by using box constraints for the orientation formulation
introduced in [7]. The parsed language instruction P*(L;, )
defines ps(L;, ) and C(L;, ), which need to be translated to
the set X'(Ly, ), and the parameters ¢(L;, ) using BoundPlan-
ner. The parameters ¢(L;, ) parametrize the cost function for
the subsequent trajectory optimization influencing the shape
and speed of the trajectory. Specifically, this work presents
the following adaptions in several examples:
e pi(Ls,) — Xiask(Le,): Change of the goal pose by
replanning the reference path,
o C(Ly,) — Xaate(Ls,): Change of the avoidable obsta-
cles or allowed orientations,
o C(Ly,) — ¢(Ls,): Change of the motion speed as a
soft constraint.
The adaptions will be discussed in more detail in Section V.
The sets and parameters introduced above are further
provided to BoundMPC [7], which uses online optimization
to compute the joint input u(¢) over a finite time horizon
from time ty > t; to the end time t.. The finite horizon
planning problem is formulated as
te

min C¢(£tk)(x(te)v u(te)) +
u(t) to

J¢(£tk)(x(t)v u(t))dt
s.t. X(to) = Xy
ll(to) = Up
x(t) € X(Ly,) Vit <t<t,
(

u(t)eU Vi:itg<t<t.,
2



with the state x(t), the input u(¢), and their initial values
xo and ug at tyg. The objective function is composed of
the terminal cost cg(z, )(x(te), u(te)) and the stage cost
Jo(c,,)(%(t),u(t)), which are parametrized by ¢(L, ). The
permissible inputs are given by the set /. For more informa-
tion on BoundPlanner and BoundMPC, the reader is referred
to [7] and [6], respectively. The instruction L£;, is constant
in (2) because it is not predicted over the time horizon.

Remark. This work focuses on adding constraints that
need to be enforced immediately at time ty, e.g., reacting
to a new obstacle, which may render the current state
infeasible. To overcome this, the respective constraints are
enforced using slack variables. This is a common practice in
optimization [37].

B. Taxonomy of Constraints in Incremental Language Pro-
cessing

Incremental language processing enables dynamic adap-
tation of robot motion plans based on evolving linguistic
constraints C(L;). These constraints may be explicitly stated
in speech or inferred from context and can emerge at
different stages of execution. We categorize them into six
types: manner, target, object, action, safety, and sequential
constraints, as summarized in Table II.

Manner constraints adjust how an action is performed
without altering its goal. These constraints are often intro-
duced via adverbs or prepositional phrases, such as “Pass
the screwdriver but go faster,” which modifies the execution
speed. Target constraints refine the intended destination.
For instance, “Put the apple in the box... no, the one on
the right” forces the robot to update its spatial goal in
real time. Object constraints resolve referential ambiguity
when multiple items fit a description. If a robot initially
reaches for the wrong object, additional clarification—such
as “Grab the mug... no, the blue one”—helps disambiguate
the target. Action constraints redefine or modify the task
itself. A command like “Grab the apple” might initially be
interpreted as a grasping action, but a correction such as
“no, push it” redirects the execution to a different motion.
Safety constraints introduce requirements to prevent damage
or failure. Commands like “Move the cup upright” ensure
that the robot adjusts its trajectory to maintain a stable
orientation. Sequential constraints establish dependencies
between actions. A directive like “Pick up the apple after
you put down the mug” enforces a sequence that the robot
must integrate dynamically into its plan.

This taxonomy highlights the need for an incremental
parsing system capable of maintaining multiple candidate in-
terpretations and refining them in real time as new constraints
emerge.

V. EXPERIMENTS
In this section, the proposed framework is evaluated in
three experiments on the real robot:

1) Grabbing a mug and changing the desired grasp direc-
tion during the motion,

e N
Ours [
g 0.5 —— VP-STO
B
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0
0
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y/ m

Fig. 2. Experiment 1: The robot is visualized during the grabbing of the

mug at the initial pose po, the replanning pose p1, and the final pose ps.
The black mug rests on a green box in front of the robot.

2) transferring a mug filled with liquid where additional
constraints (keeping the mug upright and avoiding
going over a laptop) are added during the motion, and

3) giving a screwdriver to a human where the human con-
trols the speed of the robot's motion through speech.

These and more experiments are demonstrated in the ac-
companying video at www.acin.tuwien.ac.at/42d5.

Natural language from the human operator is the only
input for the motion generation in all experiments. The
position of the objects, as well as the grasp poses, are
assumed to be known to focus on the language processing
and motion generation of the framework. The proposed
method is compared to the offline trajectory planner VP-
STO [28], a state-of-the-art global trajectory planner. The
maximum iterations are set to be 1000 to balance optimality
and planning time. The reader is referred to [7] and [6] for
more comparisons of the used motion planner with state-of-
the-art planners. The computational effort for the language
parsing is below 10 ms for each parse which makes it real-
time capable and more performant than querying an LLM.

A. Experiment 1: Grab a mug with replanning

In the first experiment, the robot is instructed to grab a
mug using Lo = “Grab the mug” at time t(. This instruction
does not contain information about how to grab the mug.
There are different grasp possibilities, i.e., grab the handle
or the body from the side or from the top. The robot starts
to grab the mug from the side, but then the human operator
intervenes and adds the instruction £, = “from the top” at
time t1. This requires the robot to change its plan during
its motion. Specifically, it changes the set Xi.sk at t1. The
trajectory of the robot is visualized in Fig. 2. The robot's
initial end effector pose is ppo. When hearing the instruction
Ly,, it starts moving to grab the mug from the side until
the instruction £, triggers a replanning at time t;, where
the end effector is at p;. The robot then proceeds to the
final pose ps. The end-effector trajectory of planning with
VP-STO is also visualized. As VP-STO is unable to plan



TABLE I

TABLE III
EXPERIMENT 1: COMPARISON OF OUR METHOD

TAXONOMY OF INCREMENTAL CONSTRAINTS. EACH CONSTRAINT CORRESPONDS TO A

SPECIFIC ADAPTION IN THE MOTION PLANNING (2).

Type of Constraint C(L;) Adaptions Example

WITH VP-STO [28] FOR THE TWO PLANNING
INSTANCES DURING THE GRABBING OF THE MUG.

O VP-STO
Manner Constraints (L) “Pass the screwdriver... but go faster.” — urs
. @ . P Planning time tp1an / S 0.02 5.60
Target Constraints Xrask (L) Put the apple in the box... no, the one on the right. 0.02 562
Object Constraints Xiask (L) “Grab the mug... no, the blue one” Trarectory duration I 7 = 3'10 2.89
Action Constraints Xiask(Le)  “Grab the apple... no, push it” Y Y traj 170 2'97
Safety Constraints KNsate (L) “Move the cup... and keep it upright”” — — - '
Sequential Constraints Xiask(L:)  “Pick up the apple... after you put down the mug.” Total task duration tyask /s 7.84 17.08
I 0.8
| -
w100 Ours
o
N 50 - —— VP-STO 0.6 — X(Lty)
T g
= 0 T \ T \ ~ 04+
0.0 3.1 56 78 14.1 171 "
t/s 0.2 4
. . .. . . . 0 T
Fig. 3. Experiment 1: Norm of joint velocity q while grabbing the mug.

online, see Table III, the robot proceeds to the first grasping
point at pyvp_sto and stops. Then, the trajectory from
P1,vP—sTO to P is planned, and the robot moves to ps.
With our proposed framework, the robot reacts promptly to
the replanning and repositions its end effector according to
the new grasping position. The norm of the joint velocity g
in Fig. 3 is only zero at the start and end of the motion, but
there is no need to stop for the replanning at ¢{; = 3.1s. In
comparison, VP-STO needs to plan for ¢,,n = 5.6s after
receiving the first instruction £;, before starting to move
and has to remain at p; yvp_sTo to plan a motion according
to L. Due to the longer planning times tpjan, VP-STO
takes longer to finish the task. The planning times tpjan
and the trajectory times t,,; are summarized in Table III
Our method has faster planning times 1., due to the fast
planning times of BoundPlanner [6]. Resolving ambiguity
in instructions needs to work online and promptly. The
trajectory times ty,,; are faster for VP-STO as it plans the full
trajectory instead of only a finite-horizon approach. However,
the overall task time t,5x is considerably lower with the pro-
posed framework, which justifies using an online trajectory
planner. The sets of permissible states X' (L,) and X (L,)
for the robot's end effector before and after the replanning
are shown in Fig. 4. These sets are defined by BoundPlanner
and initially constrain the robot to stay to the left of the mug
and then grab it. After the replanning, the space above the
mug is added to the permissible states X'(L;, ) and the final
convex set guides the robot in performing a safe grasping
motion from the top.

B. Experiment 2: Transfer a mug with task constraints

In the second experiment, visualized in Fig. 5, the robot
is instructed to Ly upright = “Pass the mug” at time to.
For this, the robot has to pick up a mug and transfer it to a
predefined position where the human can receive it. The mug
is initially placed on a table next to a laptop. As the mug
contains a liquid, spilling the liquid onto the laptop must

Fig. 4. Experiment 1: Visualization of the sets of permissible states X' (L, )
in blue and X (L¢, ) in yellow for the mug grabbing in the y-z-plane. The
blue sets overlaps with the yellow set in the striped area.

be avoided, but the robot is not aware of this constraint. As
the robot starts moving, the human realizes that the robot
will move over the laptop and specifies the instruction at
time ¢, = 6.4s by saying L, upright = “but don’t spill
it”. In the next run the human specifies L¢, avoid = “Pass
the mug but keep it upright” at time %y, the human further
specifies L, avoida = “and avoid going over the laptop” at t,
to increase safety. Both applications create a task constraint
online. This does not change the desired final pose p¢ but the
motion to reach it. Spillage avoidance creates a constraint on
the orientation of the robot's end effector, whereas avoiding
the laptop adds an obstacle to the path planning.

The utterance Ly, upright avoids spillage on the laptop by
keeping the mug upright. The resulting deviations from the
upright orientation are described by the two error angles
in Fig. 6 for the time after the pickup, i.e., t > 4.5s. The
gray areas indicate the set of permissible deviations from
the upright. Initially, the trajectory deviates largely from the
upright as no constraint is specified. When the language
specification Ly, upright is taken into account at ¢; = 6.4s,
the upright constraint is added, changing X;.s. At this
point, the end effector has already deviated from the upright,
which makes strictly enforcing x(t) € X' (L¢, upright) in (2)
impossible. Therefore, the upright constraint is enforced with
slack variables, effectively bringing the orientation into the
desired bounds. Furthermore, the maximum deviation from
the upright is at the time of replanning, meaning no further
spilling happens afterward. This behavior is safe as the
constraint is added before reaching the space over the laptop.
Without upright constraints, the deviation from the upright
increases further, leading to spillage onto the laptop.

As the upright constraint without consideration of the
dynamics is only an approximation for avoiding spillage, the
human decides in the second trial to specify L¢, avoia for
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Fig. 5. Experiment 2: The robot is visualized during the transfer of the

mug at the initial pose po and the final pose pf. The replanning for the
upright constraint happens at pose P1 upright» Which is approximately at
the same position as for the avoidance pi, avoid- The black mug and the
laptop rest on a green box.
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Fig. 6. Experiment 2: Deviations from the upright orientation during the

mug transfer after picking up the mug at ¢ = 4.5s. The two error angles
e1 and ez correspond to the two RPY-angles that constitute the deviation
from the upright, see [7] for the orientation error formulation. The gray
areas are the constraints that change during the motion and define the set
of permissible states X'(Lt, ) that change at time 1 to X' (L¢; upright) for
the upright scenario. For the avoidance, the robot is aware of the upright
constraint at all times.

additional safety. In this scenario, the robot is aware that the
mug should be upright during the entire transfer according
to Ly, avoid, but the laptop avoidance is added online. The
trajectories in the x-y-plane in Fig. 7 show that the motion
planner is able to adapt its trajectory online to account for
the added task constraint. The replanning happens at pose
P1,avoia shortly before the robot's end effector reaches the
space above the laptop. This requires a fast, safe, and decisive
reaction from the robot. The added obstacle is only relevant
to the robot's end effector pose but does not affect the
position of other parts of the kinematic chain.

C. Experiment 3: Handover of a screwdriver

In a human-robot interaction scenario, the robot needs
to be able to adapt to human preferences. This scenario is
visualized in Fig. 8 and assumes that a human works on a
task for which a screwdriver is needed, but the screwdriver
is not accessible to the human due to obstacles. The human
instructs the robot with the utterance £;, = “Hand me the
screwdriver” at time t( to help with the task. The robot plans
to pick up the screwdriver and provide it to the human at
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Fig. 7. Experiment 2: Trajectories for the laptop avoidance during the

mug transfer in the z-y-plane. The set of disallowed states Xynsafe(Lt; )
is shaded and constitutes the space above the laptop.
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Fig. 8. Experiment 3: The robot is visualized during the handover of the
screwdriver at the initial pose pg, the pickup pose, and the handover pose
ps. The screwdriver rests on the green table and the robot has to avoid the
black walls while transitioning to the handover location ps.

a predetermined handover location pf. The human expects
this task to take a certain time, but the robot moves too
slowly to adhere to these expectations. Thus, at time ¢, the
human specifies the utterance at time t; to £y, = “but move
faster”. This prompts the robot to change the cost function
parameters ¢(L;,) in (2) to value speed more strongly.

Remark. Human-robot handovers are complicated interac-
tions requiring many factors to be considered. This exper-
iment simplifies this scenario by disregarding, e.g., human
motion prediction and psychological factors, for exemplary
reasons. A more rigorous approach is presented in [30].

With and without the speedup instruction £, the robot
is able to finish the task and reach pf as seen in Fig. 8.
However, the robot takes considerably longer without the
speedup, as shown by the norm of the Cartesian end effector
velocity v in Fig. 9. In both cases, the robot avoids obsta-
cle collisions and safely reaches p¢. Thus, our framework
enables online modifications of the objective to account for
human preferences.

VI. CONCLUSION

This paper presents an incremental language process-
ing system integrated with an online motion planner for
real-time human-robot interaction. Our approach enables a
robotic agent to dynamically interpret linguistic instructions,
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Fig. 9. Experiment 3: Norm of the end-effector velocity v during

the screwdriver handover with and without the speedup. The speedup is
instructed at t; = 6.1s using L¢; .

continuously update motion plans, and refine its actions
based on evolving constraints, unlike previous methods that
assume fully specified language input. The system adapts
to speech corrections and new task constraints in real time,
such as modifying grasp strategies or avoiding obstacles,
reflecting more naturalistic communication and interactions.
The effectiveness of our approach was demonstrated in the
real world using a 7-DoF robot manipulator. Future work
will focus on extending the system to incorporate visual
information, refining adaptation mechanisms to support more
complex task hierarchies, and conducting a thorough human
subject evaluation study.
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