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Abstract

Contentionscheduling(Cooper& Shallice2000)is a well-

known action selectionmechanisnin cognitive science. It

can accountfor normal action sequencingof daily routine
actionsin humansas well as for various errors exhibited
by impaired humansubjects. In this paper we examine
the potential of contentionschedulingas an action selec-
tion mechanisnfor artificial agentsjn particularrobots. We

first introducethe APOC architecturéframework in orderto

summarize—iran "architecture-neutralSpecification-théa-
sic propertiesof the contentionschedulingnodel. Thenwe

analyzevarious aspectsof contentionschedulingthat may
causeproblemsn thecontext of thedesignof artificial agents
andsuggesmodificationsthat may be ableto overcomethe
difficulties,concludingthatthe contentiorschedulingnodel,
asit stands,is not yet an appriopriatecandidatefor action
selctionin artificial agents.

Intr oduction

Much work in the fields of autonomousgentsand robots
hasfocussedntheproblemof how to selecttheright action
for anagentat theright time. This so-called‘action selec-
tion problem”(Tyrrell 1993)hasbeenaddresseby different
researchers variouscontets, dependingfor example,on
whetherthe investigationfocussedon naturalagents(e.g.,
(Lorenz1981))or artificial agentqe.g.,(Maes1989)). Var-

ious solutionshave beenproposedn the past, which can
bedistinguishedilongseveraldimensionse.g.,whetherthe
action selectionmechanismis competitive or cooperative
(e.g., (Arkin 1998)), or whetherit is centralized or decen-

tralized (for anoverview of differentmechanismsndapre-
liminary taxonomy see(Pirjanian1999)). Furthermoregx-

plicit action-selectiomechanismsouldbeincorporateds
separatecomponentsnto an agentarchitecture(e.g., vot-

ing schemesasin DAMN (Rosenblati997)).Alternatively,

actionselectioncanbe achiezed implicitly by placingcon-
straintsonthearrangementonnectvity andinteractionsof

partsof thearchitecturde.g.,(Brooks1986)).

Not all of thesemechanismshowever, areequallywell-
suitedfor ary task. While (motor) schemaand subsump-
tion style action-selectiomave provento work well for rel-
atively simple robotic agents,it is not clear for example,
how they would generalizebeyond low-level motor con-
trol (e.g., to comple action sequenceshat may be real-
ized in a large numberof possiblephysicaltrajectoriesof

a manipulator). There are various attemptsin behaior-
basedroboticsto extendreactie architecturesand produce
“hybrid systems”that integrate action planninginto reac-
tive controlmechanismso improve andgeneralizehe sys-
tem's motor control (e.g.,(Arkin & Ali 1994)). In particu-
lar, a three-layereccompetitve model of action-selection,
the contention scheduling model originally introducedby
Normanand Shallice(Norman& Shallice 1980)to model
humanaction selectionandrecentlyelaboratecby Cooper
andShallice(Cooper& Shallice2000),seemsa promising
candidatdor actionselectionin naturalagents.Cooperand
Shallicedescribeafully implementedontentiorscheduling
model togetherwith computersimulation experimentsin-
tendedo captureheactionselectiormechanismemployed
by humansn daily routineactionssuchas“making coffee”.
Dependingnvariousparametesettingsthe modelexhibits
both behaioral patternsof normal humansand action se-
quencingerrorsthat aretypical of patientswith a rangeof
neurologicaimpairmentsTheresultssuggesthatfor cases
suchasthe onesstudiedcontentionschedulingcanexplain
humarbehaior, andhenceseemdo bearobustmodelof ac-
tion sequencindor comple actionsequencego the extent
thathumansperformroutineactionswell). It is, therefore,
reasonabléo askhow contentionschedulingwould fareas
anactionselectiormechanisnior comple, roboticagents.

In this paper we examine the contention scheduling
model proposedn (Cooper& Shallice2000)with respect
to its applicabilityto autonomousobots.We first introduce
a generalframevork architecturecalled APOC, which will
allow usto discussvariousaspect®f contentionscheduling
andcomparehemto otherarchitecturesAfter asubsequent
brief review of themainstructureof the contentionschedul-
ing model,we analyzethe actionselectionrmechanisnpro-
posedby contentionschedulingn greaterdetail andargue
thatcontentiorschedulingn its presenform maynotbean
appropriateway of structuringand designingarchitectures
for autonomous;oboticagents.

APOC - A Framework Ar chitecture
Why an Ar chitecture Framework?

Analyzing differentaction selectionmechanismspr more
generally architecturesand comparingthem can be diffi-
cult, for onesincedifferentauthorstendto introducetermi-



nologicalidiosyncrasieslIn the bestcase this mayleadto
insignificantmisunderstandingsn the worst it will result
in fundamentaimisconceptions.The term “reactive” asin
“reactive architecture’is a caseof the matter where“reac-
tive” canmeanarnything from “stateless” to “fast, timely,
response”to “non-representationaldr “non-deliberatve”.
It shouldbeclearthatmuchtheoreticalweighthingesonthe
exactreadingof “reactive” giventheabove differences.

Anotherdifficulty in comparingarchitecturestemsfrom
thefactthatauthorsoftencannotagreeonacommorvocab-
ulary, despitethe factthattheremay be striking similarities
betweerwhatterm X signifiesin architectureY” andwhat
termU signifiesin architecturd’. In sucha case,t would
be advantageou#f Y andV could be viewed asbelonging
to a category C' of componentssub-architecturesr archi-
tecturesand X andU couldbereplacedoy amoregeneral
termT referringto instance®f C.

An architectureframavork that suppliescommoncate-
goriesC (of architecturafeaturespndtermsT’ to talk about
themcanovercomeboth problems.Hence we will firstin-
troducea commonframework that allows usto talk about
variousarrangementsf component@andtheir interactions
in architectures.

The Framework Components

The APOC architectureframavork consistsof heteroge-
neouscomputationatomponentsalled“nodes”,whichcan
have ary of thefollowing four kinds of links amongthem:
(1) Activation,(2) Priority, (3) Obsener, and(4) Component
links (hencethe name“APOC"). All four links can have
a time paramete@mssociatedvith themthat determineghe
timeit takesto passinformationthroughthelink.

Eachnodehasa numericalactivationanda priority. The
formeris ameasuref the overall desirabilityfor the action
associateavith the node regardles®f whetherthe actionis
performeddirectly in the ervironmentor whetherit is only
internalto the agent. The latter is usedto determinewho
getsthe control over a nodethatis part of a collection of
nodes(seethe componentink belaw). If the activation of
a nodeexceedsa given thresholdthe nodeis “active” and
can/will performits action.

The classof architectureghatfall underthis framewvork
canall be seento be directedmulti-graphswith respecto
thearrangemenandconnectvity of their componentsThe
nodescould,for example jmplementbehaiors (understood
in the senseof behavior-basedoboticistslike (Arkin 1998)
and (Brooks 1986)), direct motor actions(suchasforward
movement),or actionsand processeénternalto the agent
(e.g., reactive processesuchas adjustmentf control pa-
rametersor deliberatve processesuchasplanning).

The Activation Link The first type of link is an activa-
tion passindink, suchasthoseusedby (Tyrrell 1993)and
(Maes1989). Eachnodecanhave any numberof incoming
andoutgoingactivation links. The valueson incomingac-
tivation links determinethe activation of eachnode. How
theseactivationlink valuesarecombineds adecisionto be
madeon a caseby casebasis.For typical connectionishet-
works, for example,theincomingvalueswill be multiplied

by weightsandsummedup.

The Priority Link The secondtype of link is a prior-

ity link. The purposeof a priority link is to allow a node
higherup in the hierarchyto changethe priority of nodes
furtherdown andthusbiasthe systemtowardsexecutingthe
actionsassociatedvith thosenodesunder certaincircum-
stancege.g.,if a globalalarmmechanisnmis active, asde-
scribedby Sloman(Sloman& Logan1998)).

The Obsewer Link  Thethird type of link, the obsener
link, allows nodesto supervisethe execution of another
nodes. An observingnodewill automaticallybe informed
aboutary changegof state)thatoccurin theobserednode
(for example, whetheran action associatedwvith a node
wasinterruptedoecaus¢henodesactivationdroppedoelon

threshold).Obserer links remove the necessityof explicit

communicatiorfor informationupdate.

The ComponentLink Finally, thefourthtypeof link is a
componentink (in the sensdndicatedin the graphsdrawn
by ethologists.e.g., (Lorenz1981)). It connectsmore ab-
stractor generalprocesse®r behaiors with their consti-
tuting subprocessesr sub-behdiors. An actve node N
canactivate or deactvate actionsof nodesconnectedo it
throughcomponentinks, evenif their activationis below
activationthresholdaslongasthe priority of thecomponent
nodesds lowerthanthepriority of N (activating/deactiating
an alreadyactive/inactve componennodewill not change
arything). Optionally, a nodemaypasson parameters/hen
activatingcomponennodes(e.g.,a speednaybe passedo
a“moveforward” node).

Competitive Clusters and Winner-Takes-It-All
Arbitration

The above four links provide a very generalframework, in
which severalactionselectiormechanismandbehaior ar
bitration schemeganbe analyzed.“Competitive clusters”,
for example which aresetsof nodesn which only thenode
with the highestactivationcanexecuteits associatedction,
canstraightforvardly be implementedisingan “arbitration
node” with O-links and C-links to all nodesof the cluster:
thearbitrationnodeis active all thetime andits correspond-
ing actionimplementsthe “winner-takes-it-all” arbitration
mechanisnof a competitive cluster where,via C-links, (1)
theactionassociatedavith the currentlyactive nodeis inter-
ruptedassoonasanothemodehasa higheractiationlevel,
and(2) theactionof thatnodess initiated.

SubsumptionAr chitecturesor Priority-Based
Arbitration

Similarly, subsumption-stylbehaior arbitrationcanbeim-
plementedvia P- and C-links, wherethe priorities of the
nodescorrespondo the layerin the subsumptiorarchitec-
tureandP-linksfrom upperlevel nodego lowerlevel nodes
will ensurethat highernodes(with higher priorities) have
precedenceverlowernodes.The C-links areusedto either
pasgparameterso lower nodeqthe“inhibition andsuppres-
sion links” in subsumptionarchitecturespr to deactvate
nodegthe “resetandsuppressiotinks”).



Componentsand Links in APOC

Similarto thesubsumptiomparadigmthe APOCframenork

per se doesnot definefunctional specificationdor nodes.
In contrastto the subsumptiordesignmethodology how-

ever, wherebasiccomponentare “augmentedinite states
machines” APOC doesnot specifyimplementatiorproper

ties of basiccomponentsither exceptfor allowing them
(1) to have an activation valueanda priority, and(2) to be
connectedoy ary of the four links to other components.
Henceactionsandprocesseassociategvith nodescouldbe
realizedasAFSMs (asin subsumptiorarchitectures)}JAVA

programscondition-actiorrules,fuzzyrules,etc. andnodes
may implementdirect motor actions,motor schemasper

ceptualor memoryprocesseggeasoningnethodsgtc. Fur-

thermore no particulararrangemenf nodeds specifiedas
thiswill essentiallydependonthe componentemployedat
therespectie nodesn thearchitecture.

A Brief Overview of Contention Scheduling
BasicStructure

The contentionschedulingschemeasa mechanisnfor ac-
tion selectionformsthemiddle layerin athreelayerarchi-
tecturejn whichthebottomlayeris responsibléor carrying
out“actions”andthetop layerconsistof asupervisorysys-
temthatmonitorstheprogressandpossiblycorrectshepro-
cesse thelayersbelon. Themiddlelayer, isitself divided
into threeparts:a schemanetwork, anobjectnetwork anda
resourcenetwork, eachof whichis hierarchicallylayered.

The SchemaNetwork The schemanetwork consistsof

goal directedschemasndgoals. Eachschemas madeup
of a setof several partially orderedgoals,all of which have
to be satisfiedbeforethe overall goal of the schemds con-
sideredto be achieved. Eachgoal, in turn is composedf

one or more schemasary one of which may be usedto

achieve the goal. A numericactivation is associatedvith

eachschema.This activation variesover time asa resultof

severalinfluencesthat are exertedon the schema.lt is the
activation of eachschemahatultimatelyleadsto the selec-
tion of anaction.If theactivationof aschemas greatethan
agiventhresholdthentheschemas allowedto passactiva-
tion down to its componenschemagtop-dovn influence).
Othertypesof influencein contentiorschedulinggomefrom

the ervironment,from the schematself, lateralfrom other
schemasand from randomnoise, all of which contritute
to the activation of a schema.The ervironmentalinfluence
actsasa setof triggeringconditions- a schemads only al-

lowedto beactive if the currentconditionsallow its action
to proceed An additionalrequiremenfor schemaactivation
is thatits goalhasnot beenachieved prior to thetime when
it becomesligible for activation.

The bottom of the hierarchy is composedof basic
schemaswhich correspondo simpleactions suchas”pick-
up-object”. In the caseof the basicschemasan activation
thatis greatethanthethresholdeadsto theexecutionof the

1Componentsvith no activation value are automaticallytaken
to beactive all thetime. Componentsvith no priority aretakento
have O priority.

associatedction. Completionof this actionleadsto the sat-
isfactionof the goalimmediatelysuperiorto the scheman
the schema/godhierarchy The goalsfor eachhigherlevel
schemaare storedaspartof alist in the respectie schema
andchecled-of aseachgoalis achieved.

In relationto the APOCframawork, ageneraldescription
of theschemanetwork is obtainedhroughthe decisionse-
low:

1. APOC nodesare divided into two cateyories: schemas
and goals. Goals are boolean nodes that indicate
achieved/unachieedstatus. Schemasre setsof actions
thatleadto the achiezementof goals.

2. Within eachbasicnoderepresentinga schemaA-links
from the ervironment form a special class of inputs.
Theselinks passa non-zeroactivation to the schemabe-
foreit canbecomeactie.

3. Eachgoalnodehasanactivationthresholdof zero.Since
in contentionschedulingnodesdo not have activations,
this allows a goal nodeto simply passthe activation re-
ceivedthroughA-links to its componenschemas.

4. Only A- andO-linksareusedn thenetwork, asthey most
closelyparallelthelinks describedn contentiorschedul-
ing. TheA-link performsby definitionthefunctionof ac-
tivationpassinglescribedn contentiorschedulingwhile
O-links provide a corvenientmechanismfor signaling
that a condition hasbeenachiezed. As a resultof this
implementatiordecision,the priority of eachbasicunit
doesnot affect computation.

5. Thestructureof thearchitecturavith respecto A-links is
hierarchicalj.e. no activationloopscanbe presenin the
schemanetwork.

6. Thebasicnodegepresentingchemasn thebottomlayer
of the A-link hierarchyimplementbasicactions.

7. Uponcompletionof its actiona schemaiodesendsa sig-
nalto thecorrespondingioal nodevia an O-link, causing
thegoalto switchstatefrom unachi&edto achieved.

It is worth noting that in contentionschedulingsub-
schemasrenot treatedassubcomponentdnstead the re-
lationamongschemass governedthroughlateralinhibitory
links. Thefollowing scenarias thereforeeasiblen thecon-
tentionschedulingramework.

A high level schemds active andpassesctivationdown
to its subschemasHowever, at the motorschemdevel, a
schemaunrelatedto the high level schemais highly acti-
vatedby the ervironmentandis thereforewins the compe-
tition atthe motorschemdevel andbegins executing. This
activation is a possibleexplanationfor a numberof errors
exhibited by peoplein daily actvities. In orderto support
this type of behaior, C-links arenot usedin the APOC de-
scriptionof contentionscheduling The useof C-linksleads
to directactivation of sub-behgiors, andwould thuselimi-
natea characteristiof the contentiorschedulingscheme.

The Object Network Another subsystenof contention
schedulings theobjectnetwork. This network parallelsthe
schemanetwork in mary respects.Eachobjecthasan as-
sociatedactivationvalueusedin determiningervironmental



influenceon schemasandin decidingwhich objectto use
to achieve a taskwhenmorethanone applicableobjectis
available.A differentactivationvalueis storedfor eachpos-
sibleuseof theobject.In theobjectnetwork, activationsare
affectedby lateralinfluence,self influence,influencefrom
schemasand randomnoise. The lateral, self, and schema
influencesaresummarizedn two assumptions:

The influenceof a schemas activation on that of an
objectrepresentatiorffor a particularfunction)is de-
pendenton the extent to which the objectrepresenta-
tionis employed,servingthatfunction,in thetriggering
conditionsof the schema.(PA 10, (Cooper& Shallice
2000)p.312)

Objectrepresentationsompetewithin functional do-
mains. This competitionis effectedby a lateralinflu-
enceontheactivationsof competingobjectrepresenta-
tions,andaselfinfluenceon all objectrepresentations.
(PA11, (Cooper& Shallice2000)p.312)

The APOCdescriptiorof theobjectnetwork is evenmore
concisethanthat of the schemanetwork. It consistsof the
itemsbelow:

1. Basic nodesare nodeswhoserelevant information con-
sistsof a setof numericvaluesdenotingthe activation of
the objectrepresentedby the nodewith respectto each
possibleuseof thatobject.

2. Only A- andO-links areusedin the network. As aresult,
thepriority of eachbasicunit doesnotaffectcomputation.

The ResourceNetwork Theresourcenetwork andtheob-
ject network sene similar functions. The sameway actions
requireobjectsin the ervironmentto which to be applied,
they alsorequireeffectorsin orderto be completed.A re-
sourceanda schemanfluenceeachotherif theresourcecan
be utilized by the schema.Whenan actionis executedthe
mostactive appropriateresourcesreallocatedto it. Basic
level schemaspecifyrestrictionson objectsandresources
to whichthey maybeapplied;objectsandresourcesake the
role of agumentswhich arefilled in for eachbasicschema
asit becomesactive in accordanceo the specifiedrestric-
tions.

Thedescriptionof the schemanetwork in APOC s anal-
ogousto thatof the objectnetwork.

Basic Parameters

In contentionschedulinghe activation of the variouscom-
ponentds governedby thefollowing severalparameters:

1. rest level activation: the activation of a schemawithout
input
2. persistence (decay function): thefunctionthatgovernsthe

return of schemaactivationsto a restlevel after the net
inputbecomezero

3. random noise: a randomvalue addedat every updateto
the activation to help breakties if nodeshave the same
activationlevel

4. the balance parameters self:lateral, internal:external,
and competitive: non-competitive: specifythe proportions

of totalactivationfrom varioussourcegself-excitationvs.
later inhibition, internal contribution vs. externalcontri-
bution,competitive contributionvs. non-competitrecon-
tributions)

5. activation threshold: the numberwhich, whenexceeded
by a schemaactiation, allows the schemato be eligible
to executeits associatedctionsor actionsequence

By definition, rest level activation, persistence,
competitive: non-competitive ratio, and self:lateral ra-
tio arethesamein all threenetworks.

A Critical Analysisof Contention Scheduling
asAction SelectionMechanismfor Complex
Robotic Agents

In this sectionwe analyzesomeof the problemsthat may
appearin the constructionof complex robotic agentsusing
the contentionschedulingscheme. First we discussthree
generaproblemclasses(1) problemsarisingfrom interrup-
tions andfailuresof schemas(2) problemsresultingfrom
modificationsof the architectureand (3) problemsthatre-
sult of interactionswith the ervironment. Thenwe focus
onimplementation-specifissuesn the designof complex
agentslt shouldbenotedthatsomeof theseproblemqsuch
asinterrupthandling)are commonto Al plannersandnot
necessarilyestrictedo contentionscheduling

ThreeGeneral Problem Ar easof Contention
Scheduling

Contentionschedulingas action selectionmechanismhas
variousstrengthsincludingtheability to usedifferentmeth-
odsfor the accomplishmenbf the samegoal. The poten-
tial of CS as illustrated by Normanand Shallice through
their coffee making example, however, is givenin a very
restricted,simple context, in which the amountof activity
interferenceof differentschemass small. By looking at a
larger, morerealisticsystemsgseveralissuescometo light,
whichwe will discussn this section.

Interrupted Actions and Failur esof Actions to Complete
A coreassumptiomf contentiorschedulingstateghatinflu-
enceson a schemaactivation comefrom five sources:top-
down influence environmentainfluence selfinfluence Jat-
eralinfluence andrandomnoise.This assumptiorexcludes
bottom-upfeedbackfrom componentschemago their su-
perordinateschema.Suchfeedbackhowever, may be very
practical,if not requiredto be ableto copewith interrupted
actionsand/orfailure of actionsto completeat the basic
schemdevel.

First note that while a basicschemanodewhoseaction
hasa direct effect on the environmentcanuseproperly di-
rectedenvironmentalqueuedo infer the failure and or in-
terruptionof its associatedction, nodesfurther up in the
schemanetwork can at bestreceve information aboutthe
failure from the supervisorylayer (in termsof excitation
and/orinhibition of theiractivation!). This mechanisnis by
itself both slow andproneto failure. Considerthe example
in Figurel (takenfrom NormanandShallice).
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Figurel: Coffeemakingexample

Two problemsconnectedo potentialfailuresof actions
canbeseerfromthis structure First,the“Close” goalis un-
connectedo ary othernode,hencerecoveryif the“Scren”
actionfails (i.e., the goal is marked “achieved” regardless
of whetherthelid is really on afterfinishing the action,for
example)dependwon the succesof operationdurther re-
moved from the actionitself. Hence,the likelihood of not
detectingthe failure of the“Screw” action(e.g.,by the su-
pervisorysystem)is increased.The secondproblemarises
whena“Pour” actionfails (e.g.,becaus¢hemilk is spilled).
Suchafailurewould,underthecurrentdesignallow therest
of thecoffeepreparatiorprocesgo proceedceventhoughthe
overallgoalis nolongerfeasible.

Furthermoresomeactionsmay requirea certaintime in-
tenal for completion(becauseheir effects are otherwise
meaninglessrinappropriatee.g.,stirringthecoffeefor two
hours). However, thereseemdo be no mechanisn{evenat
thelevel of simple,motorschemasin contentiorscheduling
thatoverseesndpossiblyfacilitatesthe successfutomple-
tion of actionsandcancorrectfailuresby interrupting,reini-
tiating, or abortingthe sameor otheractions(exceptpossi-
bly for the supervisorysystem,but thenthe way in which
this systemcaninterveneneeddo be specified).

As mentionedabove, interruptionsof basicactionsmay
poseanothemroblemfor contentionscheduling.While the
unorderly statethe systemmay be in after a basicaction
has beeninterruptedis considereda virtue of contention
schedulinggua model of humanaction selection,suchan
undefinedstateis not necessarilya desirablefeaturefor ar-
tificial agents(e.qg.,if the agentis in control of an aircraft,
wherefailuresof basicmaneuerscanhave devastatingcon-
sequences notcounteredjuickly andappropriately).

Finally, anothemproblemcausedyy interruptionsmay be
connectedo “peripheralassumptior8”:

“ Whena schemas statechangedrom selectedo un-
selectedall subgoalon the schemas subgoallist are
marked as unachieed. ((Cooper& Shallice2000)p.
310)

If ahighlevel schemdik e “make coffee” losesits activa-
tion andgetsdeselectedhenall its goalswill bemarkedas
unachieed,including, for example,alreadyachieved goals
like “add sugar”. Whenthe schemagetsactivated again,
it will causesugarto be pouredin the mugagain,although
sugaiis alreadyin themug(assuminghis cannotbedirectly
obsened).Again,while this maybeappropriatdor amodel
of humanactionselection,its seemshat agentsshouldbe
able to remembercompletedactions,not only becausat
reducesoverhead but alsobecauseét canpreventundesir
ableresultsthatmayresultfrom performingthe sameaction
twice or moretimes.

Learning New Actions Contentionschedulingdoesnot
dealper se with modificationsof ary of the threesubnet-
works (e.g., the object, resource,and schemanetworks).
However, humans(as well as comple artificial agents)
needto be able to learn nev comple actions,i.e., ac-
tion sequencegin additionto learningthe low level mo-
tor control that may be requiredfor somehigherlevel ac-
tion, e.g., graspinga mug). Whatis unclearthenis how
sucha hierarchycould be learnedandhow an existing hi-
erarchyof schemascould be modified or augmented. It
seemsthat addingnew nodesto the schemanetwork, for
example,would impactthe relative timesit takesto acti-
vatetherespectie schemage.g.,by addinganotherschema
to a group of alreadycompetingschemas)ateral inhibi-
tion will be strongeron for the schemashanit waswithout
the addedschemajut this meansthatit could take longer
for schemado reachactiation threshold). The only way
to get aroundthis problemwould be to changethe global
“competitive:non-competitie” parameterBut thenit is not
clearexactly how it shouldbe adjusted.
Furtherproblemsareconnectedo questionf whethera
new schemacanbe executedin parallel. Supposehe sys-
temonly learnsoneway of performingthe high-level action
associatewvith a high-level schemés, which putsSin com-
petition with other schemassincethey all sharethe same
low-level action. Upon encounteringlternatves,however,



Swould nothaveto bein competitionwith otherschemasf
thesealternatve low-level actionscanbe performedn par
allel. Yet, it is notclearhow theschemanetwork would have
to berestructuredn this case.Similar problemsariseif the
resourceor objectnetworksneedto be modified.

Finally, variationsin accomplishinga taskmay posean-
otherproblem giventhatcontentiorschedulingntrinsically
relieson afixedbreak-devn of actionsinto sequencewith-
out allowing to “parameterize’individual actions.The pro-
cessof coffee preparationfor example,is not always ex-
actly the same. The amountof addedsugarand milk, the
strengthand temperatureof the coffee, etc. may all vary
(e.g., dependingon mood, time of the day, etc.). With-
out the possibilityto parameterizéow-level actions differ-
ent schema-treesould have to be added,e.g., for “mak-
ing strongcoffee”, making“coffee with milk”, etc. and,of
course changeavould perpetuateip the scheméhierarchy
(e.g.,up the “make breakfst” hierarchy).In addition,new
inputswouldhaveto beallowedto theschemanetwork (e.g.,
inputsfrom a“mood” system)o beableto selectmeaning-
fully amongthedifferentalternatves.

Interactions with the Environment Oneof thestrengths
of contentiorschedulings its ability to integrateGibsonean
affordancegGibson1979)with actionselection,.e., what-
ever objectis presentn theernvironmentandperceved, will
feed activation to the schemathat represents&n actionin-
volving this object. However, theremay be problemswith
suchadirectcouplingof perceptiorandactionin thatanac-
tion could be triggeredby merepresenceof an abundance
of instanceof one andthe sameobjecttype without there
beingary additionalreasormasto why the actionshouldbe
perform(e.g.,suppose/ou areon a parkinglot andperceve
hundredof cars thenthe affordanceof “driving acar” may
be so strongasto make you actually drive it without any
furtherreason).

Anotherproblemwith perceved objectsis connectedo
the above-mentionedssueof variationsin routine actions:
someobjectsor toolscanbeswitchedfor othersf they agree
with respecto the functionality requiredfor anaction. For
example,it would be possibleto usea table spoonor the
tip of akitchenknife to scoopsugarin the “coffeemaking”-
task,if noteaspoonwerepresenbut oneor bothof theother
objectswere. However, whatactionan objectaffordsneeds
to be explicitly codedin the schemanetwork. Hence there
areproblemsof generalizatiomndof scaling,asit is almost
impossibleto addall the potentialapplicationg(i.e., “causal
functions”) of evensimpleobjectsthatmayberelevantto a
givenactionsequence.

Finally, theredoesnot seemto be arny provisionin con-
tentionschedulingo preventalow level schemdrom being
active (e.g., becauseof ervironmentalstimulation)even if
its sourceschemais not, which could leadto interference
amongvariousactions.

Designlssuesfor Complex Robotic Systems

While ary of the previously mentionedissuesmay present
aproblemfor the (comple) artificial (andpossiblynatural)
agents,in this sectionwe will focusin particularon prob-

lemsthatmayarisein the context of designingcomple ar-
tificial agents.

ComplexGoals Oneissuen thedesignof complecagents
is the representatiof overall goalsof the agent. In con-
tentionschedulinggoalsarebrokendown into subgoalghat
arespecificto eachschemawhich eachkeeptrack of their
own goallist. Theauthors

“ assume that, within contention scheduling, a
schemas goalsare“tickedoff” asthey areachievedby
thesystem.((Cooper& Shallice2000)p. 309)

In mary instanceshisis anefficientway of dealingwith
complex goal achievement. Yet, if the numberof goalsof
a schemais not fixed or given in adwance,this approach
could lead to severe implementationand scalability prob-
lems. Considera robotequippedwith sonarsensorswhich
is supposedo mapa room. It doesnot have ary prior in-
formationaboutthe layout, nor canit obtain(beinglimited
by the natureof its sensorshry generalinformationabout
theroom (suchasthenumberof walls). Figure2 depictsthe
schema-goadtructure.

For suchanagentijt is notclearhow acontentiorschedul-
ing action selectionschemecould be effectively imple-
mented ascontentionschedulingrequiresthatall subgoals
of a schemabe achieved beforea complex schemacanac-
complishits action.

Basically therearetwo possibleimplementationsvithin
the contentionschedulingparadigmfor dealingwith a vari-
able number of subgoals. The first, adding a different
schemdor eachpossiblenumberof goals,doesnot seem
feasible (it could lead to an explosion of the number of
schemadeyond whatis practicallyfeasible). The second
involvesimplementingthe procesf mappingthe roomas
a procesdhat continuesuntil a conditionis satisfied.How-
ever, thecontentiorschedulingarchitectureannotdealwell
with perpetuakconditionsor goalsthat consistin maintain-
ing a particularstate(possiblyuntil an interruptionis en-
counteredsuchas “maintaining the distanceto the carin
front of you on the highway"). Theproblemliesin theway
goalsarerepresente@nd checled for achiezement,which
doesnotwork easilyfor perpetuabr ongoinggoals.Rather
suchgoalsandtheirassociatedctionswould haveto berep-
resentedutsidethe schemanetwork. But thenseparating
actionsequencethatcanbe completedn atimely manner
from sequenceghat are in somesenserepetitve becomes
an issue,which leadsto all kinds of questionsabouthow
longertermgoalsshouldberepresentedstc.

A relatedissueis that of more abstractschemaswhich
may have goals that are either not well-defined or that
changewith time. A systemcould, for example,noticethat
attemptsto scoopcoffee out of a containerrepeatedlyfail
andstartexperimentingwith differentmethodof gettingthe
coffeeout (e.g.,turningthecontainemupsidedown), andde-
cide thatsincethis methodworks betterin generalto useit
from now on,wheretheamountof coffeeis now determined
in termsof pouringtime and pouring angleinsteadof the
numberof scoops.
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Figure2: Map makingexample

Reflexes Fast,reflex-like motoractions triggeredby var-
ious environmentalconditions,are of greatimportancein
robotic agents(e.g., to prevent damage,improve perfor
manceof subsequenactions,etc.). Hence,an action se-
lection schemeneedsto be ableto incorporatesuchreflex
mechanismshat caninterruptongoingbehaiors, perform
whatever actionis necessaryandreturncontrolto theinter-
ruptedbehavior.

In contentionscheduling,interruptionsof actionscan
only take place when a schema activation drops below
the predeterminedactivation threshold(e.g., becausean-
otherschemas activationis rising). Hence,reflexeswould
have to usethis activationpassingnechanisnto obtaincon-
trol to executetheir associatedctions. For example,they
couldbeimplementeasbottomlevel actionschemasvhose
only activationcomesfrom the ervironment.However, they
would haveto bein competitionwith everylow-level action
schemahatdealswith the sameeffectorsasthereflex, since
they needto be ableto interruptit if necessaryThis raises
a questionabouttheinhibitory influence:sinceinhibition is
the sameeverywherein the network, it maynot be possible
for thereflex schemeo becomeexcitedabove thethreshold
level for activation fastenoughif therearetoo mary other
schemagn competitionwith it. Yet, for it to beareflex and
sene that function, timely activation hasto be guaranteed,
especiallyin real-world domaingn which roboticagentop-
erate.

Furthermorepnceaschemas interrupteddy arefle it is
not clearwhetherthatschemawill becomeactive againand
cancontinueits actiononcethe reflex stops.For one,other
schemasnaybecomeactive, andit mayalsonotbepossible
to continuethe action. For example,interruptinga pouring
action (of sugarinto the mug) may lead to a statewhere
the systemdoesnot know how muchsugarhasbeenadded
to the coffee. If theright sugarcontentof the coffeeis of
greatimportancethe bestbetfor the systemis thento start
over again. However, thereis no mechanisnin contention
schedulingo recognizdailuresandinterruptionghatcould
provide this kind of feedback.

Discussion

Contentionschedulingis a very powerful action selection
mechanism.It hasgreatbiological plausibility asa model
of humanroutineactionselectionandexecutionandseems

to have greatpotentialfor applicationsn artificial agents>
Somehaveevenargued(e.g.,(GlasspooR000))thatthecon-
tentionschedulingnodelandotheraction-selectioomecha-
nismsfrom artificial intelligenceandrobotics(e.g., (Maes
1989)) are corverging, hencepointing to succesof such
a three-layeredarchitecturefor action-selection.We have,
however, discussedsereral issuesof contentionthat may
causeproblemswith suchathree-layeredrchitecturef ap-
pliedto artificial agentsjn particular roboticagents.

Thefirst setof potentialproblemsnvolvedinterruptedac-
tionsandfailureof actionsto completewhicharepartlydue
to theuni-directionaflow of informationin thearchitecture.
Extendingthearchitectureo includeafeedbacknechanism
from componenschemaso their parentschemasvould al-
low for the constructiorof a localizedfailure/interrupthan-
dling mechanism.The feedbackcould be implementedus-
ing either A- or O-links, and would compriseinformation
aboutthe executionstatusof the subschemé#hatthe parent
schemacanuseto determindn caseof interruptsor failures
whichactionto performnext. It is straightforvardto extend
the currentmodelby sucha mechanism.

Furthermoregiventhat a parametepassingmechanism
is alreadyimplementedwhich is usedto selectappropriate
resourceso applyto objectsfor a givenschemde.g.,“use
theright handto pick upthemug”), thismechanisntouldbe
easilygeneralizedo allow otherparameter$o be passedo
schemasThatway parentschemagould specifyvariations
in the executionof their componenschemasthus solving
thevariationproblem.

The problemsrelatedto goal representationshowever,
are more difficult to remedy as they involve the lists of
goalsthateachschemaneededo determinghe completion
of its actwvity. As it stands,this mechanisnfor checking
goalachiezementcannotbe easilymodifiedto overcomethe
problemsmentionedabove. Rather it would be betterto
implementa differentmechanismwhich signalsthe com-
pletion of the actionassociatedvith a schemaf a seriesof
conditionsaremet,which do not necessariljhave to besub-
schemagoals. For example,the map making schemacan

2(J. Garforth & McHale 2001) implemented contention
schedulingin a robotic agent. Unfortunately the architectures
not specifiedsufiiciently andthe resultsof the experimentsarenot
reportedin enoughdetail to be ableto assesshe succesf this
application.



requirethat at the endof the mappingprocesshe agentbe
within a tolerableerror from the point whereit startedthe
process.As long asthatconditionis not satisfied the “fol-
low wall” subschemé keptactive.

A secondproblemrelatedto goalrepresentatioandgoal
handlinginvolvespersistengoals.With persistengoalsthe
aim is to maintainone or more conditionsover a (possibly
long) period of time. Considerthe taskof driving alonga
highway. Oneof the goalsthat make up thattaskis that of
maintainingarelatively constanspeed assuminganormal
flow of traffic. This goal caninvolve pressingthe acceler
ator pedal(on an upward incline) or the breakpedal(on a
downwardincline). It is alsoa persistengoal,asit involves
the maintenancef a condition,ratherthanthe achiezement
of one.

Achievementof suchgoalsshouldhencebe measuredn
termsof thepresencer absencef theconditionghey main-
tain. Suchgoalscouldbe betterrealizedin animplementa-
tion, in which they cansignalfailure (e.g.,throughthe use
of O-links) to the schemammediatelysuperiorin the hi-
erarchy The executionof that schemawould thenproceed
normally aslong asthe necessargonditionsfor the persis-
tentgoalsaremet.

Interaction betweenthe ernvironmentand a contention
scheduling-basedrchitecturehasalsobeenshavn to have
severalpotentialproblems suchasexcessie excitationof a
schemgby virtue of “affordances”)jn theabsencef anac-
tivesuperschemaA possiblesolutionwouldbeto allow un-
selectedschemado exert a negative influenceon their suc-
cessorsn the architecturethusmakingit moredifficult for
themto becomeactive by environmentalconditionsalone.

In sum,we believethatcontentiorschedulings averyin-
terestingcandidateas actionselectionschemefor comple
agents. However, in its presentform thereare several is-
sues,crucial to the properfunctioning of artificial agents,
thatare not addressedvell or addressedt all by the con-
tentionschedulingarchitecturelt maybe possibleo extend
the contentionschedulingmodelin waysthatwe indicated
aboveto overcomesomeof thesdlifficulties,andwearecur-
rently in the processof implementingsuchan extensionon
arobotto testits viability andeffectivenessWe expectour
resultsto conformthe theoreticalanalysisabove, in which
caseextendedversionsof contentionschedulingmay prove
applicablein robots. As it standshowever, we take con-
tentionschedulingo be moreof a theoreticaimodelof ac-
tion selectionthana practicaldesignthatcanbe easilyand
reliably appliedin artificial agents.
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