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In this paper we present the agent architecture development environment ADE, intended
for the design, implementation, and testing of distributed agent architectures. After a
short review of architecture development tools, we discuss ADE’s unique features that
place it in the intersection of multi-agent systems and development kits for single agent
architectures. A detailed discussion of the general properties of ADE, its implementa-
tion philosophy, and its user interface is followed by examples from virtual and robotic
domains that illustrate how ADE can be used for designing, implementing, testing, and
running agent architectures.

1. Introduction

In recent years, several agent toolkits and frameworks have been proposed that
are intended to support either the design of multi-agent systems (e.g., JADE,!2
RETSINA,?” AGENTBASE,®> ZEUS??), or the design of agent architectures for single
agents.?* 36 Currently, there are no systems available that combine and integrate
these two realms. To bridge the gap between multi-agent system frameworks and
agent architecture toolkits for single virtual and robotic agents, we propose the agent
architecture development environment ADE, which provides a homogeneous, user-
friendly environment for the development of architectures for virtual and robotic
agents in single and multi-agent settings.

Multi-agent systems typically provide the distributed infrastructure that allows
agents to reside on different hosting computers and/or move from host to host in
a way that is transparent to the user. Furthermore, some of the toolkits also sup-
port distributed agents (i.e., agents residing on multiple hosts at the same time?").
These systems are typically implemented as middleware that provides APIs for the
agent designer. Yet, because these systems are intended as a framework in which to



develop the multiagent system they typically do not provide tools required for the
development of the architecture of an agent.

Single-agent systems, on the other, focus on support for the development of the
agent’s architecture, typically by providing libraries for common agent functional-
ity (e.g., condition-action rule interpreters®® or basic components of a particular
architecture such as the BDI architecture'”). They may also provide additional
functionality for running multiple virtual agents (as in SIM-Agent®® or Swarm?")
or for operating robots (e.g., Saphira?!). These systems are usually either designed
for virtual agents or for robotic agents, and in the latter case typically only for sin-
gle agents. Furthermore, they do not provide tools to implement and run multiple,
distributed agent architectures (as would be possible in a multi-agent system).

Most importantly for our purposes, most architecture development toolkits ei-
ther provide libraries that designers of agent architectures need to integrate into
their code or they are based on a particular architecture design. While the former
setup is very flexible and allows for a variety of architecture types to be specified,
the agent architecture designer will have to acquire detailed knowledge of the li-
braries and the underlying assumptions to be able to use the libraries effectively.
Furthermore, a significant amount of programming is required to design even simple
agents. Although the latter alleviates this problem by providing a specific architec-
ture paradigm, in which new architectures can be designed with more ease, it makes
it impossible to implement other architecture types that are not based on the given
paradigm.

We believe that versatile agent architecture design tools should be open with
respect to the employed architecture paradigm, and should furthermore allow for
a design environment for architectures that is appealing to users and easy to use,
rather than requiring designers to understand (possibly very complicated) library
calls. Furthermore, tools should also allow for distributing the architecture over
multiple hosts in a user-transparent way to make it possible to run complex, com-
putationally demanding architectures in parallel, thus reducing the overall compu-
tation time. Finally, tools should allow for the design of virtual and robotic agents
alike, as well as single and multi-agent systems, where the same architecture could
control a robot or a virtual agent in a multi-agent simulation environment without
having to restructure the architecture or recompile the control code.

Based on these desiderata, we propose a novel tool, called ADE, which meets the
above requirements. ADE is an integrated architecture development tool for both
virtual and robotic single and multi-agent systems. It provides a fully graphical,
distributed development environment that allows for interactive design of possibly
distributed single and multi-agent architectures.

In the following, we first give a brief overview of the ADE toolkit and place
ADE in the context of other single-agent and multi-agent development tools and
frameworks. We then present details about the agent architecture framework under-
lying ADE, which is at the heart of ADE’s flexibility, followed by a description of
the user interface and the supporting environment. We also provide two extensive,



practical examples of agent design in ADE, one for a group of virtual agents and
one for a robot, which are intended to demonstrate the utility, flexibility, and user-
friendliness of the tool. We then conclude with a summary of the ADE features and
an outlook at possible future developments that are currently in the planning.

2. Background

We start with a brief overview of the main characteristics of ADE, which we then
compare to the features of several other agent architecture environments.

2.1. The Basic Characteristics of ADE

ADE stands for “APOC Development Environment”, where APOC is a general,
universal agent architecture framework,”-3%34 in which any agent architecture can
be expressed and defined.

APOC is an acronym for “Activating-Processing-Observing-Components”,
which summarizes the functionality on which the ADE agent architecture toolkit
is built: heterogeneous computational units called “components” which can be con-
nected via four link types to define an agent architecture. *

The four link types defined in APOC are intended to cover important interaction
types among components in an agent architecture: the “activation link” (A-link)
allows components to send messages to and receive messages from other components;
the “observation link” (O-link) allows components to observe the state of other
components; the “process control link” (P-link) enables components to influence
the computation taking place in other components, and finally the “component
link” (C-link) allows a component to instantiate other components and connect to
them via A-, P-, and O-links.

Components can vary with respect to their complexity and the level of abstrac-
tion at which they are defined. They could be as simple as a connectionist unit (e.g.,
a perceptron?®) and as complex as a full-fledged condition-action rule interpreter
(e.g., SOAR?>30). The implementation of the APOC framework is at the heart of
ADE in order to guarantee the independence of ADE from specific architecture
paradigms and to allow architecture designers to work in their preferred paradigm.

Computational components of an agent’s architecture can be created and de-
stroyed during the life-time of an agent by other architectural components. Hence,
agent developers can specify agents that use minimal resources for task completion,
develop specialized subsystems, or are adaptive (e.g., become more deliberative over
their life-span).

Since user-defined algorithms (e.g., search algorithms that browse the web for
information) are in general implemented as part of APOC components, ADE allows
for distributing computations in terms of asynchronous computational units and
communication links among them (see the example in section 8). It is also possible

* APOC components are based on the “behavior nodes” described by Scheutz.3!



to run different algorithms in different parts of the architecture and to change them
over the lifetime of the agent. Hence, as a design tool, ADE allows for the definition
of a large variety of different mechanisms even within the same agent architecture.
Concepts from one formalism can often be transferred to another by virtue of a
unified representation in (e.g., semantic nets, neural nets, conditions-action rules,
or conceptual hierarchies can all be defined in a unified way with ADE). It is thus
possible to express and study different designs of various mechanisms within the
ADE framework (e.g., how to do behavior arbitration, or how to actively manage
finite resources at the architecture level). Furthermore, the resource requirements
and computational costs of an architecture can be determined and compared to
other architectures implementing different algorithms for the same task in ADE.33

In addition to expressing and implementing existing architectures, ADE can be
also used to define new concepts and implement new architectures. For example, we
recently introduced “dynamic architectures” that are capable of modifying them-
selves over time by altering their own description (e.g., as part of a learning process)
and demonstrated their implementation in ADE.3*

ADE provides functionality for implementing agent architectures for simulated
and robotic agents. An integrated server-client subsystem allows components of the
architecture to connect directly to robots (see the example in section 9) or remote
agents in a simulated environment in order to control them (e.g., a single distributed
architecture could control multiple agents or devices). ADE was particularly struc-
tured with the goal of designing complex agents in mind. Hence, there is support
for (1) building more complex components out of simpler ones using a “grouping
mechanism” for components, (2) “online inspection and modification” of all parts
of the architecture (components and links can be removed and new ones can be
added in the running virtual machine), and (3) distribution of the architecture over
multiple hosts in a platform independent way (as real parallelism is required for
fast, real-time processing in complex agents).

A graphical user interface allows for easy access to different parts of the ar-
chitecture to provide a closer level of control for the developer over the structure
of the agent as well as making this control as direct as possible. APOC compo-
nents can be “dropped into” a workspace where they are depicted as nodes in a
graph (whose edges are links, as described above). Relevant information about each
computational component can be viewed and modified by clicking on its graphical
representation. The presence of four types of links indicates that different modalities
of communication take place between components, which can be seen in the graph-
ical representation of the architecture. The actual data carried through each link
can also be displayed in the graphical interface. Most importantly, multiple design-
ers can work with ADE at the same time, allowing for a distributed, collaborative
design, test, and run-time environment.

It is also worth mentioning that ADE is not limited to architectures of single
agents. Rather, it is possible to define multi-agent systems at the level of individual
perceptions and actions in terms of the ADE tool: each individual agent is modelled



by a subset of APOC components, which in turn have O-links (modelling the per-
ceptions of the agent) and A-links (modelling the actions of the agent). To model
procreation in biological systems, C-links can be used to allow agents to instantiate
copies of themselves. In general, ADE could be used to model both centralized and
distributed control systems, providing additional evidence to the flexibility of the
tool and its potential usefulness.3?

In sum, ADE combines a broad range of existing and new features, from single-
agent toolkits to multi-agent frameworks (to be discussed in more detail in later sec-
tions describing the user-interface and supporting environment for the framework),
all of which are aimed at simplifying the process of architecture development for
virtual and robotic agents in single and multi-agent environments.

2.2. Other Agent Tools Compared to ADE

DACAT!% ! js an architecture design tool which provides the user with a set of
competencies from which the user can choose the ones relevant to her agent design.
The set of competencies can be augmented by the user to provide arbitrary func-
tionality. The user can then group the competencies and resources into modules
and produce a description of the agent architecture. Like ADE, it provides a fully
graphical environment, in which the relationship among architectural elements is vi-
sualized. However, DACAT stops at indicating the structure among components at
the level of the functionality of an agent, without actually implementing it, whereas
ADE allows for the implementation, running, and testing of any architecture spec-
ified within it.

IBM’s ABE! is a tool which provides some architecture design support, e.g., a
set of adapters (for agent-environment interaction), engines (forward chaining infer-
encing tools), and libraries (support for rule and fact authoring tools, to organize,
group, and control the inferencing materials that are used by the engine). However,
ABE imposes a rule-based design philosophy on its agents, in contrast to ADE,
which supports rule-based systems, but also allows for alternative architectures not
based on rule interpreters (e.g., subsumption architectures'4).

Many agent systems are concerned with mobile software agents, which can
roam the internet. These systems (AGENTBASE,> ADVENTNET AGENT TOOLKIT,2
AcLETS,* BDIM/TOMAS,'® RETSINA,?>" and others) focus on supporting effi-
cient and secure communication among agents as well as improving their mobility.
However, they do not provide support for the distribution of the components of an
architecture over multiple computers unless these components are implemented as
agents themselves (i.e., each component as a “complete agent architecture”, which
not only complicates the architectural design, but can also lead to reduced efficiency
due to communication overhead). Furthermore, only limited support is provided for
the design of an agent architecture beyond the communication APIs and virtually
no support is present for robotic agents in these systems. In contrast, ADE treats
robots and virtual agents the same from a designer’s perspective and allows design-



ers to implement any architecture methodology based on its implementation of the
universal architecture framework APOC.

The AGENT FACTORY system!”>!® is an environment for agents which use BDI
architectures.?? It is similar to ADE in that it provides support for an agent archi-
tecture design, from a high level specification of the architecture to its implementa-
tion and deployment and, furthermore, allows the definition of agents that are not
strictly based on the BDI framework. Still, the main focus of the AGENT FACTORY
system is on BDI-based software systems, and thus differs markedly from ADE.
Furthermore, it neither provides ADE’s seamless support for single and multi-robot
systems, nor ADE’s capability of distributing architecture components over multi-
ple computers in an OS-independent fashion.

SIMAGENT is a toolkit designed specifically for the exploration of agent archi-
tectures. Hence, like ADE it does not require or impose a particular architecture
paradigm. Rather, it supports the specification of architectures at various levels of
complexity (e.g., symbolic mechanisms can coexist and communicate with neural
networks). However, SIMAGENT only provides basic library functionality for the
design of agent architectures for single and multi-agent systems (e.g., a basic agent
class, a condition-action rule interpreter, etc.) and currently has no support for dis-
tributing agents over multiple hosts or for controlling robots, both of which are core
features in ADE.

Saphira?®24 is a hierarchical robot control system designed for the ActivMedia
Amigobot and Pioneer Operating System. Functionalities provided by the Saphira
system are access to robot sensors and predefined routines for tasks such as gradient-
based navigation. ADE provides facilities for accessing a multitude of robots, with
code already available for the Pioneer and Peoplebot robots. ADE also allows for
the definition of reusable routine. Various navigation and visual processing routines
have been implemented and are available with the ADE distribution.

The Player/Stage!'® 20 system uses devices to represent various sensors and ef-
fectors. A robotic agent is a collection of devices, although Player/Stage does not
require the sensors and effectors to be located on a single robot. Devices operate in-
dependently of one another and communicate through sockets, making Player /Stage
a distributed environment. ADE uses a similar approach: a JAVA interface is defined
for each sensor type. A specific robot is accessed by defining a class which imple-
ments the interfaces corresponding to that robot’s sensors and effectors. Through
the use of the JAVA remote method invocation (RMI) mechanism, ADE also pro-
vides a distributed environment.

The Java Agent Development (JADE) framework (JADE)!% '3 provides similar
distributed-environment functionality to RETSINA.3” However, its internal orga-
nization deserves a closer look. JADE uses agent containers, which use RMI for
communication. These containers are used to create, start, and suspend agents.
ADE uses a similar approach, through the use of APOC servers, as described in
Section 5.

In sum, ADE integrates desirable features from different agent systems such



as a general architecture framework APOC for the definition of agent architec-
tures, support for distributed architectures which can change dynamically, support
for communications among agent and agent mobility. None of the above discussed
agent systems combines all of these features within one system. Additionally, ADE
provides seamless support for single and multi-agent architectures for virtual and
robotic agents and a user-friendly, multi-user graphical interface that allows mul-
tiple designers to work collaboratively on agent architectures. In the following, we
will first present details about the implementation of the APOC framework, which
gives ADE agents their architectural flexibility, and then describe the graphical
user interface and the supporting environment.

3. ADE Building Blocks I: The APOC Framework

The APOC agent architecture framework consists of components and links among
them. In this section, we describe the basic functionality of components and links in
APOC. In particular, we discuss how components can be extended and connected
to form an agent architecture (more details about APOC can be found in.” 32734

3.1. APOC Components

APOC components are very general autonomous control units that are capable
of (1) updating their own state, (2) influencing each other, and (3) controlling
an associated physical or computational process. The process associated with an
APOC component can be used for such functions as sending motor commands to
a robot or running a parsing algorithm in a virtual agent that checks web pages for
particular content. For physical processes, an APOC component can be viewed as
a controller (in the sense of control theory) and for computational processes as a
process manager (in the sense of operating systems).

APOC components have input and output ports, which can be connected to
output and input ports of other components, respectively, via APOC links. A set
of connected components, then, forms a network of components, i.e., an architecture.

Once components are running (i.e., they are instantiated in a virtual machine),
they are self-sufficient entities that behave according to their specification as deter-
mined by their initial state, their associated process, and their update function. The
state of an APOC component can be defined as

{act, pri, pro,inst, F,in, out)

where act is the activation level, pri is a pair containing the current and the max-
imum priority level, pro is a triple containing the process state and the process
associated with node as well as the operation performed on that process, inst is a
pair containing the current instantiation number and the maximum number of in-
stances of a node of that type, F' is the update function, in and out are respectively
sets of input and output links of the node.



The basic functionality of APOC components is implemented in the
APOCNode class, from which all user-defined components are derived. A user-
defined subclass can redefine several predefined functions to deal with the states
of links and the state of the associated process. While the state transition of the
associated process is determined by its current state—RUNNING, INTERRUPTED, or
STOPPED-and the incoming information on the P-links according to the APOC
specification (e.g., a running process that receives the SUSPEND signal will be
interrupted), user-defined classes can redefine the methods that will be called after
each state transition is complete. Furthermore, methods for processing incoming
A-links and O-links, as well as outgoing A-links, P-links, and C-links can be defined
by subclasses of APOCNode. Incoming C-links and outgoing O-links are again
processed automatically according to the APOC specification.

The basic template of a user-defined class derived from APOCNode is given
below:

import apoc.APOCNode

import apoc.ActivationLinkInterface;
import apoc.PriorityLinkInterface;
import apoc.ObserverLinkInterface;
import apoc.ComponentLinkInterface;

public class UserNode extends APOCNode
implements Serializable, Runnable, Remote {

/* functions to control the associated process */

public void processNoop() { ... }
public void processResume() { ... }
public void processStart() { ... }
public void processSuspend() { ... }
public void processReset() { ... }

/* functions to process information on incoming links */
public void inputProcessingA() { ... }
public void inputProcessing0() { ... }

/* functions to send information to outgoing links */

public void outputProcessingA() { ... }
public void outputProcessingP() { ... }
public void outputProcessingC() { ... }

/* additional update of the state of the node */
public void selfUpdate() { ... }

/* list of graphical entities to be displayed for this component */
public Vector extendComponent() throws RemoteException { ... }

Each node also provides the user with the function extendComponent, which
specifies the data of the component that can be observed, displayed, and subse-



quently modified through the ADE graphical interface.

3.2. APOC Links

APOC components are connected to other components through one of four APOC
links: activation link (A-link), priority link (P-link), observer link (O-link), and
component link (C-link).

Since each component needs to keep track of its incoming and outgo-
ing links, ADE provides eight JAVA wectors to that end (four for each link
type): inActivations, outActivations, inPriorities, outPriorities, inObservers,
outObservers, inComponents, and outComponents. Fach vector has as elements
other vectors, which in turn contain individual links.

In the following, we briefly describe the functionality of each link type.

3.2.1. A-links

Activation links are the most general means by which nodes can exchange informa-
tion. The state of an A-link is given by the tuple

(S, R, act, F,t)

where S is the node providing the data to the link, R is the node receiving the
output, act the data transmitted through the link, F' the operation performed on
that data, and ¢ is the time it takes for data to traverse the link. The purpose of an
A-link is to connect two APOC nodes and serve as a transducer.

A-links can be used in a variety of different ways. In the simplest case, they
function as mere connections between input and output ports of APOC nodes (i.e.,
inputs to links are identical to their outputs). Furthermore, an A-link can be used
transform the input, e.g., in case of numerical values it could “scale” the input by
a particular factor (analogous to the “weights” on connections in neural networks).

A-links provide two functions: setData to place data on an element of the
outActivations Vector, and getData to retrieve data from a link. Data passed along
links must implement the APOCQObservable interface.

[43

3.2.2. P-links

Priority links are intended to explicate the capacity of components to control other
components’ associated processes. They are the only means by which APOC nodes
can control processes of other nodes (since no link has a process associated with it
and nodes can only be connected to other nodes via links, APOC nodes could not
control any process otherwise). The state of a P-link is given by the tuple

(S, R, pri,op,t)

where S is the node attempting to take control of the process associated with
R, pri is the priority of S, op the operation that S attempts to effect on the
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process associated with R, and ¢ is the time it takes for data to traverse the
link. ADE provides five operations to be performed on processes, using the con-
stants: PriorityLink.RESET, PriorityLink.START, PriorityLink.SUSPEND,
PriorityLink. RESUME, and PriorityLink.NO_OP.

A P-link effectively passes the process control request of an ADE node on to the
node it is connected to through the P-link. Priorities can be used to implement all
kinds of control mechanisms, in particular, hierarchical preemptive process control.
ADE handles priority signals by computing the maximum of the priorities received
on incoming P-links. If the maximum priority is greater than the priority of the
component itself, then the request received from the node of greatest priority is
honored. If there is a tie in nodes of maximum priority and their requests conflict,
PriorityLink.NO_OP is performed.

In embodied agents, such as robots, P-links could be used to implement emer-
gency behaviors: the node with the associated emergency process would have the
highest priority in the network and be connected to all the other nodes controlling
the agents behavior, which it could suppress in case of emergency (thus implement-
ing a “global alarm mechanism” as described by Sloman??).

Analogous to A-links, P-links provide setData and getData functions to place
on and retrieve data from a P-link.

3.2.3. The O-link

Observer links are intended to allow components to observe other components’ inner
states without affecting them. The state of an O-link is given by the tuple

(S,R,D,t)

where S is the node observed by R, D is the information passed from S to R, and
t is the time it takes for data to traverse the link.

The O-link operates independently of the update function in components; it
retrieves information by observing a component, not by having data placed on the
link. Thus, the only operation available on the O-link is the getData.

3.2.4. The C-link

Component links are used to instantiate and remove instances of APOC nodes at
run-time (they are the only type of component that can instantiate or terminate an
APOC node), and are themselves only instantiated by APOC nodes. The state of
a C-link is given by the tuple

<SJ R7 D7 L7 t)

where R is the node instantiated by S, D is information about the links which
can be instantiated through this C-link, L is the set of links already instantiated
through the C-link, and ¢ is the time between the activation of the link and the
creation of the component.
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A C-link contains information about the type of component it can instantiate
and the kinds of links it can create to that component (in addition to itself). A
component can create and trigger the function of a C-link by issuing a createC Link
command. This command creates a new C-link, triggers the link to create a new
component and automatically adds the newly created link to the outComponents
vector of the component.

Two operations are available on a C-link: activation and deactivation. On ac-
tivation it can create a component and/or create a link to the component created
by a previous activation command to that link. To separate functionality, several
functions are provided for C-link activation and deactivation, some of which are
illustrated below:

((ComponentLinkInterface)outcomponents.elementAt (0)).activateNode() ;

((ComponentLinkInterface)outcomponents.elementAt(0)).
activateLink (ComponentLink.PLink) ;

((ComponentLinkInterface)outcomponents.elementAt(0)).activateAll();

The first example creates a component and connects the controlling component
to the new one via a C-link. The second example presupposes an existing component
created through the C-link. Thus the C-link simply creates a P-link to the created
component. If such a component does not exist, the function call fails. Finally, the
third example creates a new component and all the links defined as being available
for instantiation through the C-link.

Since C-links are the only mechanism through which architectural changes are
effected, they play an important part in resource allocation and arbitration. If A-
links or P-links are used in conjunction with a C-link, activation and priority based
mechanisms can be used to trigger the action of the newly instantiated component.

To “undo” the action of a C-link, several options are again available.
deactivateNode deletes the component instantiated through the C-link if the only
incoming link remaining to that component is the current C-link, otherwise the
operation fails. The second deactivation example deletes a link created through
the C-link, while the final example deletes all components—components and links
instantiated through the C-link whose deactivate All method is called.

((ComponentLinkInterface)outcomponents.elementAt (0)) .deactivateNode();

((ComponentLinkInterface)outcomponents.elementAt (0)).
deactivateLink(ComponentLink.PLink) ;

((ComponentLinkInterface)outcomponents.elementAt(0)) .deactivateAll();

4. ADE Building Blocks II: The User Interface

The ADE environment was designed to allow users to access, inspect, and modify
an architecture at any time during its development process: from the original design
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of the architecture, to the testing of components, to the execution of the complete
architecture. For this, the system is divided into an architecture layout section and
a virtual machine section. In the former, the components of the architecture are
specified and the connectivity among them is established, thus defining the overall
architecture layout. In the latter, the running architecture is maintained, which is
updated dynamically and subject to runtime modifications.

To reflect this conceptual division into architecture layout and running virtual
machine, the workspace of the graphical user interface is divided into two subspaces,
which can be manipulated and viewed independently: the left half shows the archi-
tecture layout of the system, while the right half shows the run-time virtual machine.
Figure 1 shows a screen shot of the basic run-time environment.

% APOC Development Environment - 1.0 @ Matthias Scheutz
File Edit View Mode NetworkSet-up Groups Help

e]2[mw] [a]e]+] B/ x| (= e

Architecture Wiew: Yirtual Machine Yiew

(L1 [] Compound Task

(0,5)

(0,59

Arrov tool selected

Fig. 1. ADE Interface

In the following, we describe the functionality of each subspace individually.

4.1. Architecture View

In the architecture view, boxes represent the types of components that can be
present in the run-time virtual machine (i.e., the instantiated architecture). Users
can add components with a “component tool” and display their information by
double-clicking on them. For each component, ADE shows at least three parame-
ters which need to be specified by the user: the type that the component represents,
the number of components of that type present when the architecture is first instan-
tiated, and the maximum number of components of that type which can be present
simultaneously in the running virtual machine (see Figure 2). For user-defined com-
ponents, which are extensions of the basic component (as defined by APOC), ADE
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can display additional information about the component (e.g., the image taken by
a robot’s camera, see section 9).

Links in ADE are created through a link creation tool that allows users to
specify links of each of the four available types simultaneously. Each link can be
configured individually as specified below. In the graphical interface, edges indicate
(by the direction of the arrow) the direction of the links in the architecture, which
is the same as the direction of information flow (except for O-link edges, where
the information flow is contrary to the direction of the arrow). By clicking on the
arrow, information can be obtained about the types of links (e.g., A-link) that can
be instantiated between the connecting components as well as the link parameters
(e.g., delay, operator type for an A-link, etc.) in the run-time virtual machine.

Instance Information Box ]

Node type |auuLuni(s.T1 ‘ V‘ Default instances |0 Max instances |1 Close J

Fig. 2. APOC Component Specification Prompt. The three fields indicate the component class,
the number of components present in the initial virtual machine and the maximum number of
components simultaneously present in the virtual machine

All APOC links share the characteristics below:

o A time delay. The delay slot is always available for editing and it is used to
specify the number of update cycles that are performed on a link between
the time a piece of information enters the link to the time it is available at
the other end. The default duration of an update cycle is 100ms and can be
modified by the user. All links created simultaneously have the same delay.

o Input and output ports. Port specifications are provided through the X and
Y input and output slots at the bottom of the panel. The X value specifies
the set of inputs (outputs) that the link connects to. An UNASSIGNED
Y value indicates that the link can connect to any port within the respective
set, while other values uniquely identify the port to which the link is to be
connected.

Each link type also requires a specific setup, which is activated once the partic-
ular link type is selected.

The A-link definition requires the selection (and, perhaps, set-up) of an operator,
which will act on the information passed through the link as specified in ADE.
The operator can be specified by choosing from a list of available operators, both
standard and user-defined. By default, the “identity operation” is selected.

P-link definition consists of choosing a default signal. The default signal is trans-
mitted along the link upon link activation (if the controlling component does not
specify its own signal). Typically, this is set to “no operation”.

The O-link allows users to specify what elements of a component should be
sent across an O-link observing that component. The elements which are eligible
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Fig. 3. ADE Link Specification Prompt

for observation in ADE have to be declared as being instances of a particular
ADE-defined observable type by extending the APOCObserwvable interface. A menu
presents the user with the available options. By declaring a variable as being of the
observable type, it will automatically be included in the menu.

The C-link, in addition to delay and input and output port specifications, con-
tains the following data:

e an identifier for the type of component which can be instantiated through
the link

e one or more definitions for the types of links which can be instantiated
through the C-link

4.2. Virtual Machine View

In the running virtual machine, boxes indicate actual computational components
present in the instantiated architecture and edges represent instantiated APOC
links. Multiple arrows can be present along each edge, indicating each type of in-
stantiated link. The arrows are color coded to differentiate among the four link
types: A-links are represented by a blue arrow, P-links by a cyan one, O-links by
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red, and C-links by yellow.

Users can insert components directly into the running virtual machine if the
insertion operation does not violate the architectural restriction on the number of
components which can be simultaneously present in the instantiated architecture.
If a violation is detected, the instantiation operation fails.

Links can also be inserted in the running virtual machines. If a link is not
available in the description of the architecture then the insertion operation fails.

In both cases, the idea is to permit users to modify the instantiated architecture
in the running virtual machine only in line with the architecture layout to prevent
inconsistencies. If new links need to be added that are not part of the architecture
specification, then the architecture needs to be modified in the architecture layout
space first, before it can be reinstantiated.

4.3. Other Functionality

In addition to the architecture construction facilities described above, ADE also
provides tools which aid in visualizing and understanding the relationship between
various parts of the architecture. Thus, an “architecture analysis mechanism” which
aids in understanding structures that form as a result of interaction between the
agent and its environment can be accessed by clicking on the “Abstraction” button
in Figure 1 (for details about this function see®®). Another tool provided through
the “Graph” button allows for the visualization of variations of observable variables
within a component over time (e.g., activation level and priority, see Section 7).

A “grouping ” mechanism is also supported by ADE. Components can be se-
lected and grouped together. A group can then be collapsed and represented as a
single component in the architecture. Links drawn to and from the new component
thereafter connect to all components in the group.

4.4. Operating Modes

ADE has three operating modes: an editing mode, a synchronous agent update mode,
and an asynchronous agent update mode.

4.4.1. Edit Mode

In edit mode, a user can modify both the architecture layout and the architecture
present in the run-time virtual machine. Supported architecture layout operations
are: adding/deleting a type of component, modifying the maximum number of al-
lowable components of a type in the running virtual machine, adding a link between
two component types, and deleting a link between two component types. In the run-
ning virtual machine, a user can add a component, delete a component, add a link
between two existing components, and delete an existing link within the constraints
imposed by the architecture layout.
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4.4.2. Synchronous Mode

The synchronous mode provides the means for a synchronous update of the agent
architecture. In this mode, each component in the running virtual machine com-
pletes one update cycle and waits for the other components to complete their cycle.
Specifically, the updates are performed asynchronously and upon completion a wait
operation is performed on an external signal, which can be provided by the user or
by the system, before the next update cycle is performed.

4.4.3. Asynchronous Mode

In asynchronous mode, all components (and all links) update asynchronously based
on their internal timing without synchronizing their state with other components.
This is particularly interesting for distributed applications, where synchronization is
not required and would result in a severe performance bottleneck. In some architec-
tures (e.g., subsumption'# %) asynchronous update is even part of the architecture
specification, and thus forces the agent designer to make no assumptions about the
timely update of states and delivery of information. Note, however, that each node
will still attempt to update at its update frequency if permitted by the operating
system.!

5. ADE Building Blocks ITI: The Supporting Environment

ADE’s supporting environment provides the infrastructure to distribute agent ar-
chitectures and to operate virtual as well as robotic agents. It consists of a (global)
registry (which dynamically keeps track of the elements of the distributed environ-
ment) and four types of servers: system servers (such as APOC virtual machines
and graphical user interfaces), agent servers (which provide a “body description”
for virtual agents or the interface to robots), and wutility servers (which provide
additional distributed services that are not part of the agent architecture).

5.1. Registry

The registry is a repository of available services as provided by the various servers.
In particular, it provides updated information of the location of all participating
APOC, GUI, agent, and utility servers, and maps APOC components that request
a particular service to agent or utility servers, thus acting as a transaction broker
between a client requiring a resource and available resources.

In ADE, these transactions can be of the following types:

(1) an APOC servers requires another APOC server to instantiate a component

of a given type (which resides on that server)?

TOn realtime operating systems, this update frequency can be guaranteed.
tComponents are typically instantiated in the APOC virtual machine that keeps their JAVA class
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(2) agraphical user interface requires a server whose information it needs to display

(3) a server requires a graphical user interface on which to display its information

(4) an instance of an APOC component which directly controls agent sensors
and/or effectors requires an agent server on which to apply its function

(5) an instance of an APOC component which represents/uses the functionality of
a utility server requires a utility server from which to fetch its data

In each of the above cases, the client contacts the registry and requests the
desired resource either by specifying the type of resource required (if no specific
instance is required) or by identifying a specific resource (by virtue of its unique ID
or location within ADE).

5.2. Servers

A server in ADE is a computational unit that represents a resource of the ADE
system. Each ADE server is an independent computational resource that typically
runs in its own operating system process and can be started independently (hence,
each ADE server has a main method that sets up the service). After startup,
each server first contacts the registry and specifies the maximum number of client
connections that it can support (as well as any additional restrictions regarding the
connection, e.g., allowed domain names).

In the following sections we describe each of four server types—APOC server,
GUTI server, agent server, and utility server—and their functions within ADE.

5.2.1. APOC and GUI Servers

Each APOC server is an independent entity, with capabilities for instantiating and
deleting new components and links. APOC servers control their locally instantiated
components and maintain connections to other APOC servers as well as to all avail-
able GUI servers in the ADE system in order to be able to notify the GUI servers
whenever a new component is instantiated or an old one is deleted. Conversely, the
GUI servers need to pass on user actions (such as adding a node) to APOC servers.
Hence, each GUI server also maintain connections to all available APOC servers.

Upon start-up, an APOC server contacts the registry and requests connections
to all GUI servers currently registered. Upon successful completion of the connec-
tion requests, direct two-way communication channels are established between an
APOC server and each GUI server. This process is mirrored in the startup process
of a GUI server, thus allowing new GUI or APOC servers to be added dynamically
to an ADE system at runtime.

description. Multiple such descriptions in different virtual machines are possible, however, and
allow for the implementation of load balancing mechanisms at the agent architecture level.
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5.2.2. Agent Servers

Agent servers provide access to the body of a virtual or robotic agent by establish-
ing connections to its sensors and effectors. They are independent computational
resources and can, therefore, be started independently. After startup, they automat-
ically connect to the registry announcing their service and then wait for clients to
connect. Users can define their own agent servers by extending the AD EServerImpl
class provided with the ADE framework:

public class UserServerImpl extends ADEServerImpl implements
Serializable, ClientInterface {

public UserServerImpl (String registryHost, int registryPort,
String registryName, String myName) throws RemoteException {
super (registryIP,registryPort,registryName,myName) ;

It is worth noting that any server could be integrated into the ADE sys-
tem as long as it contacts the registry initially and provides a remote service,
called requestConnection, through which it can be contacted. By extending the
ADEServerImpl class, however, the registry connection is handled by the ADE
system automatically.

The default constructor of the ADFEServerImpl class takes four parameters:
the name of the computer on which the registry is running, the port on which the
registry can be contacted (by default 1099, the JAVA RMI port), the name under
which the ADE registry is known to the JAVA Naming service, and the name under
which the agent server will register with the ADE registry.

5.2.3. Utility Servers

Utility servers provide a service which may be needed by one or more APOC
components. Generally speaking these servers implement computationally expensive
operations and are implemented as separate components of ADE as an additional
aid to the distributed nature of the system. Utility servers follow the same startup
process as agent servers, but may require an additional connections to agent or
utility servers (established through the registry) in order to obtain the data they
are supposed to process.

5.3. Example: Generic ADE Set-up for a Robotic Agent

To illustrate the different relationships among the four server types and the registry,
we briefly sketch the generic setup for the control of a robotic agent in ADE.
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Fig. 4. The relationship among ADE components in a generic set-up for a robotic agent

Figure 4 shows the overall system configuration, where continuous lines repre-
sent components which are always present in an ADE environment, while dashed
lines are components used only in particular instances (such as the specific robot
environment). Thus, a minimal system consists of the registry, one APOC server
and one GUI server. Note that the GUI server is not strictly necessary. It is typically
used to load and start the agent architecture and it is possible to configure ADE
in such a way that no GUI servers are needed for its operation.

Utility servers may be added if computationally intensive functionality (e.g.,
image processing) is required by the agent. Some of the utility servers may require
other utility servers for their operation (e.g., a utility server performing 3D ob-
ject recognition might require a utility server that provides basic image analysis
services).

Additional agent servers may also be added to the system (before startup or
at runtime), e.g., to provide a simulation environment for the robot or to provide
a “simulated body model” for the robot if it is also part of a virtual environment
(e.g., a combined real-virtual environment?).

Note this example is only one of several possible configurations for robotic setups.
Different agent servers could be used, for example, for different sensors and effectors
of the robot, or for different robots in a multi-robot setting. Depending on the task
requirements, ADE can be dynamically adapted to work with any configuration of
servers.

5.4. Client-Server Communication

Once a client-server connection has been established (e.g., between an APOC vir-
tual machine and an agent server after mediation by the registry), the client is
responsible for the maintenance of that connection. Maintenance for client-server
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connections consists of the client calling a server function (updateConnection) at
regular time intervals to ensure that the connection is alive. The length of the in-
terval is set up at connection time, but can be modified at any point by the client.
This mechanism effectively ensures the integrity of the ADE system and allows it
to react to possible failures. It also supports interactions in real-time domains (such
as in the robot setup mentioned above).

5.5. ADE Configuration File

In order to simplify the startup of an ADE system, which may be quite complex
and involve numerous different hosts, on which services need to be started, ADE
uses a global configuration file. In a typical setting, this configuration file is run in
one GUI server (which needs to be started manually), which then bootstraps the
rest of the ADE system from a single host.® In the bootstrapping process, the GUI
server reads the configuration file and uses a secure shell to open connections to
each host in the “hosts list”. Once a connection is established to a remote host, the
“SSH_COMMAND?” is executed on the remote host to start an APOC server.
The following parameters can be set in the configuration file:

(1) REGISTRY - a tuple containing the name of the machine on which the ADE
registry is running and the name under which it is registered with the JAVA
Naming service.

(2) SSH - the secure shell program used to start remote servers.

(3) SSH.COMMAND - the command to be executed on the remote host in order
to start a remote server.

(4) HOSTS - the computers that are available to host services of the ADE system.

(5) COMPONENTDIRS - the directories containing APOC component definitions.
In addition to the default components included in ADE, users can add their
own component definitions, which can then be used within the whole ADE
system.

(6) OPERATORDIRS - the directories containing operator definitions for A-links.
In addition to the default operators included in ADE, users can add their own
operators, which can then be used within the whole ADE system.

(7) INPUTFILE - an agent definition file to be loaded at start-time.

Having described the building blocks of ADE, we now discuss in the facilities
provided by ADE for the design of agent architectures.

6. ADE as a Tool for Designing, Testing, and Running Agent
Architectures

ADE serves at three-fold role in the development process of agent architectures:
(1) as a design tool for developing agent architecture layouts and their implementa-

§The registry is started separately by the user, not through the bootstrapping process.
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tions, (2) as a platform for run-time control of agents, and (3) as a tool for testing
agent architectures. Although these three roles typically overlap in the practice of
developing agent systems, we address each role separately to emphasize different
characteristics of ADE.

6.1. ADE: a Design Tool

ADE is built on the premise that a graphical representation of an agent architecture
that can be viewed at different levels of detail is crucial in the design process of agent
architectures. The graphical interface allows users to add components and links,
specify and modify their properties, and arrange them in their preferred layout.
Since architecture descriptions are saved in XML format to a file, they can be also
viewed and edited using standard XML authoring tools. Furthermore, they can
be inserted into existing architectures, thus allowing for efficient reuse of common
subarchitectures.

The tight integration of ADE with Sun’s JAVA source development kit allows
for the definition and compilation of new components within ADE, which are then
immediately available for use in the architecture. Furthermore, by using JAVA as the
implementing language, ADE is platform independent, i.e., it runs on any operating
system for which JAVA virtual machines exist and thus, provides essentially the
same environment on different machines. More importantly, once components are
defined and compiled on a particular system, they are available on all systems with
JAVA support. This is particularly useful for distributed design setups that involve
multiple computers with different operating systems, all of which can seamlessly
interact in ADE.

As mentioned in the Introduction, one of ADE’s advantages over other agent de-
velopment environments is that it is not based on a particular architecture paradigm,
but rather that it is capable of implementing any agent architecture (e.g., cognitive
architectures such as SOAR,2% %% ACT-R,® and others, as well as behavior-based ar-
chitectures such as subsumption,'* motor schemas,® situated automata,?! etc.) in a
unified way. Therefore, it can be used for the design and comparison of agent archi-
tectures. For example, the action selection mechanism in Maes’ ANA architecture
requires global control despite some claims that it uses only local mechanisms.?8
It is also possible to compare the tradeoffs of different architectures with respect
to some particular task. For example, two different architectures implementing a
“target-finding task” for a robot can be compared with respect to the number of
components used or the total time required for achieving a goal.

ADE also allows for the display and design of agent architectures at different
levels of abstraction, depending on the complexity of the update functions in em-
ployed APOC components and the topology of the connections among them. It is,
for example, possible to use Boolean update functions in components to implement
logic circuits (such as gates, inverters, flip-flops, etc.). A network of such components
could then, for example, model the low-level architecture of an embedded processor
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or robot controller. By the same token, it is possible to use APOC components that
implement very high-level functionality such as condition-action rule-interpreter, a
planner, a reasoning engine, a search algorithm, etc. In that case, ADE will only
be able to display a high-level view of the architecture, while the details of how
the rule-interpreter, planner, etc. work are hidden in the associated process of the
component implementing them.

It is also possible to use the associated process of an APOC component to run
algorithms that are not defined and implemented within the ADE framework. Input
to and output from these processes is effected through A-links within ADE via their
input and output streams. Hence, other components can communicate with such
“external processes” in a transparent way (i.e., without having to know that they
are external to ADE). Again, the details of the implementation of such processes
is necessarily hidden and cannot be visualized in ADE.

6.2. ADE as Run-Time Tool

A “running architecture” (i.e., the architecture instantiated in the APOC virtual
machine) can be inspected and modified at any given time through the graphical user
interface. Double-clicking on a component, for example, reveals information about
the component (in particular, the information provided by the extendComponent
function, which is user-definable in classes derived from APOC Node).

The example in Figure 5 illustrates the information which can be viewed for a
component representing a robot body description. Clicking on any of the buttons
brings up additional windows displaying internal information of the robot (e.g.,
clicking the ” Camera” button will bring up a panel displaying the current image of
the camera and the processed image, as seen in Figure 6).

Similarly, general information about links can be obtained by double-clicking
on the link’s arrow. Figure 7(a), for example, shows the information displayed by
O-links. Clicking on the “Link Info” button, results in a display of more detailed
information about the actual data passed through the links. In Figure 7(b), the
fields being observed are displayed in the first line (act and pri), with the data
currently in the link displayed below. Specifically, an O-link of delay 2 is displayed
after two update cycles. Thus, there is information in the first two slots of the link,
but no information is available yet for retrieval from the link (the top slot is empty).
It can be seen that the activation value of the observed node changed from 0.27688
to 0.28092 in between updates of the O-link, while the priority remained constant.

Users have the option of altering values displayed in text fields, and can thus
directly influence the behavior of the system to test various aspects of an architec-
ture. It is also possible to instantiate components and links or delete them in the
running architecture (as long as the operation does not conflict with the resource
limits in the architecture layout).
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6.3. ADE as Test Tool

The synchronized updating mode of components and links in ADE is particularly
useful for testing purposes, as an architecture can be “frozen” at any point in the
life-time of an agent and inspected. Users control when the next update occurs,
and can inspect and modify architectural parameters between updates. It is even
possible to change the architectural layout and continue the update process with a
modified architecture.

ADE provides several tools for tracking, displaying, and analyzing information
and information flow in the architecture. The “Graph” tool, for example, can be
used to track the values of any variable of type APOCObservable in a component
over time. Graphs of the temporal evolution of these variables can then be saved or
printed. Figure 8 shows an example of the graph tool, tracking the activation value
of an APOC component.

Other tools, such as the “Abstraction” tool, for example, allow users to auto-
matically group components according their level of abstraction as determined by
their C-link structure. This is intended to help users in isolating structures that
might have formed in a self-modifying architecture over time for later reuse (for
details see®?).

Most importantly, it is possible in ADE to insert “inspection components” into
an architecture without influencing the processing of existing components. These
inspection components can observe any part of the architecture via O-links and
report the data to the user, either through the graphical interface, or by saving the
data to a file.

Testing of architectures in ADE can also make use of the fact that communi-
cation among components is done exclusively through links. As already mentioned,
the same architecture can be run in both a robotic agent and a simulated virtual
agent as long as agent servers exist that allow the architecture to connect to the
respective “body representations” of the agents (i.e., to the physical robot or the
simulation environment). This has the advantage that an architecture can be tested
in a simulated environment before it is run on a physical robot. The concept can
be taken further by connecting a physical robot to the simulated environment and
observing any divergent actions between the robot and the simulated agent previ-
ously controlled by the same architecture (e.g., which may be due to time delays in
command execution, since effectors will not move instantaneously after a command
is issued).

Having looked at the threefold role of ADE in the agent architecture develop-
ment process, we now present two sample architectures that demonstrate ADE’s
versatility and effectiveness as a tool. The first is an example of a virtual multi-agent
setting, in which each agent is implemented as an APOC component. All agents
are distributed over multiple hosts and communicate via A-links. The second is an
example of a single robotic agent, in which various APOC components of the robot
architecture use distributed ADE servers (both agent servers and utility servers).
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7. Virtual Multi-Agent System

ADE can be used to implement multi-agent systems in various ways. Each agent
can be implemented by one or more APOC components, which themselves may
reside on one or more hosts. Agents can interact with other agents through APOC
links and, in the latter case, dynamically create, modify, and destroy parts of their
and other agents’ architectures. Which design is to be preferred will depend on
various factors, such as the task to be accomplished by the multi-agent system, the
available computational resources, etc.

In the following example, we first specify the task and lay out the architectures

of the multi-agents system. Then we show how the system can be implemented in
ADE.

7.1. Agent Task

The task for the multi-agent system is an information retrieval task, in which various
domains on the internet (e.g., ”.edu”, or ”.ac.at”) are to be searched for web pages
containing given keywords (e.g., “agent toolkits”). The results should be ranked
according to additional criteria (e.g., rate of occurrence of key expressions such as
“distributed architecture”).

7.2. Agent Architecture

The architecture layout of the multi-agent system and its initial state are shown
in the left and right halves of Figure 9(a), respectively. Three types of agent can
be present in the running virtual machine. The Start-up agent takes a string to
be searched for (e.g., “agent toolkit”), a set of relevant expressions for that search
(e.g., “virtual and robotic agents”, “distributed agent architecture”), and a set of
domains over which the search is to be performed (e.g., “.edu”, “.ac.it”). Once the
Start-up agent has received its data, it creates (within the resource limits specified
in the architecture layout) one Search agent for each of the given domains (if the
number of domains exceeds the instantiation limit of the search agents, then the
search is performed in part sequentially).

The Start-up agent passes the relevant data (i.e., the search string, the domain
name, and the relevant keywords) to the Search agent. Then the Search agent uses
one or more of a set of web-search engines (e.g., www.yahoo.com) to search for
the information given by the search string and collects the results. Once the search
is completed, the Search agent creates Evaluation agents, each of which receives
a document and the set of relevant keywords. The state of the system after all
Evaluation agents have been created is shown in Figure 9(b). Each Evaluation agent
then parses its document, rates it based on the occurrence of the relevant keywords,
and returns the rating to the Search agent. The Search agent, in turn, selects all
documents with a rating higher than a given threshold and returns them to the
Start-up agent. When all Search agents have returned their information, the multi-
agent system has completed its task.
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Note that the details of how the various agents achieve their tasks are not dis-
played in ADE because they have been implemented in the update function that
represents each agent (for the sake of simplicity). It is, however, possible to dis-
tribute the computations perform by each agent over multiple APOC components,
in which case the details of their implementation can be visualized and manipulated
graphically in ADE.

7.3. Setup in ADE
The set-up steps for the experiment are as follows:
(1) Start the Registry, in this case on airolab2.cse.nd.edu

java com/ADERegistry
(2) Start the GUI

java APOCstart

The GUI server then automatically starts the APOC Server(s) by connect-
ing to the remote host(s) specified in the configuration file (in this case airo-
lab4.cse.nd.edu and airolabb.cse.nd.edu) and running the following command
on each:

java com/apoc/APO0CServer <registry hostname>

The information display features of both components and links in ADE can be
used to supervise the progress of the agents in this task. Possible uses include

e inspection of the links between Search agents and Fvaluation agents for the
actual web address being evaluated

e inspection of the Evaluation agents for the current rating of the address being
evaluated

e inspection of the Search agents for the highest current evaluation of an address

If, as a result of an inspection, the user decides that a particular address is not
worth exploring, the corresponding Ewvaluation agent could be deleted, freeing up
resources for the system to evaluate another address.

8. Robotic Agent

Robotic agents pose a different challenge for agent designers, as they operate in
realtime and timely updating of components is crucial for the proper operation of
the architecture. As with virtual agents, there several ways of structuring robotic
architectures depending on how many utility and agent servers are involved. In
the simplest case, there is only one agent server that represents the robots sensors
and effectors and also runs the APOC virtual machine implementing the robotic
architecture.
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In the following example, we again first specify the task and lay out the archi-
tectures of the robot system, and then show how the system can be implemented
in ADE.

8.1. Agent Task

The task for the robot is a target localization task, in which a target (i.e., “orange
ball”) has to be located in an environment with obstacles (e.g., an office space with
boxes, chairs, etc.). The robot needs to locate the ball, and coordinate its position
with the position of the ball in such a way that a plan can be created to bring
the agent from its current location to the ball location, while avoiding obstacles.
A typical situation encountered by the robot during this task is shown in Figures
10(a) and 10(b).

In the schematic of Figure 10(a), the opening between the two obstacles is not
wide enough for the robot to pass through. Therefore, the robot needs to go around
one of the obstacles in order to reach its goal. As a result, the robot also needs to
be able to handle situations where it loses sight of the ball for a certain period of
time. The architecture for such an agent is described in the following section.

8.2. Agent Architecture

The architecture development for a robotic agent takes place in two stages: designing
the underlying structure of servers and designing the actual agent architecture. The
server structure for the experiment is presented in Figure 11. Each box represents a
separate ADE server running independently, while links represent communication
pathways between servers (dashed links indicate wireless ethernet). The name of
the computer on which each component was run is specified below the component.

The robot architecture used for the experiment is presented in Figure 12(a)
(the run-time virtual machine side of the toolkit is shown). Information about the
contents of the architecture can be added to the GUIL. Thus, Figure 12(b) shows
the same architecture, with labels placed next to each component. It should also
be noted that in this image the links have been hidden so that the labels can be
properly read. ADE offers facilities for viewing/hiding components, links, and labels
through the “View” menu.

The Supervisor uses visual information from the VisionSensor to determine
if the robot is stuck in a situation where it is not making progress towards achiev-
ing its goal. In this experiment, the determination of progress was made using
the perceived size of the ball: progress is not made if the maximum perceived
size of the ball does not increase over a preset period of time. If such a deter-
mination is made, the Supervisor switches off C'ooperative Decision and turns on
CompetitiveDecision. Unlike CooperativeDecision, which combines all the direc-
tional information from the SonarProcessing nodes to produce an overall direc-
tional vector, CompetitiveDecision uses a competitive selection mechanism, dis-
carding all but the most relevant information for its task, in this case, wall following.
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Upon regaining sight of the target, the Supervisor shuts off Competitive Decision
and reactivates Cooperative Decision. Once the robot has reached the ball, its task
is complete. Details of the robot architecture can be found in.32

8.3. Setup in ADE

The setup steps for the experiment are as follows (first two steps are identical to
those in the virtual agent):

(1) Start the Registry,

(2) Start the GUI
(3) Start the RobotServer and the ImageAcquisitionServer. This step and the
previous one are interchangeable.

java com/pioneer/PioneerServerImpl <registry hostname>

java com/framegrabber/FramegrabberServerImpl <registry hostname>

(4) Start the ImageProcessingServer.

java com/camview/CamviewServerImpl <registry hostname>

(5) Define the robot architecture (using the graphical tool and predefined compo-
nents)
(6) Run the experiment by switching to Synchronous or Asynchronous Mode.

The entire set-up process can be completed by using a script, thus allowing the
user to issue a single command to initialize an ADE system.

Various components in the architecture require access to robot related resources,
such as its sensors and effectors, as well as other information gathered from utility
servers. In this experiment, one component requires visual information, a second
requires access to robot sonar and motor information, while a third requires access to
the robot motor effectors. Each of these components contacts the registry, requests
the server it requires and sets up direct communication channels with that server.
As a result the registry acts only as a resource manager, and will not become a
bottleneck for communication within the system.

For visual processing, a standard blob-detection algorithm was used to identify
the ball and run on a separate utility server, the ImageProcessingServer, to im-
prove the parallelism of processing and thus the performance of the system. Two of
the servers, the RobotServer and the I'mageAcquisitionServer, can only run on the
on-board computer of the robot used in the experiment, as they need direct access
to hardware components (robot sensor and effectors, as well as camera sensors and
effectors). The Registry was run on a Sun workstation, while the GUI server and
the APOCServer were run on PCs.

As with the virtual agents, ADE architecture inspection mechanisms can be
useful in several ways:
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e Inspecting the VisionNode allows the user to see what the agent “sees” (as
shown in Figure 6).

e Inspecting the CooperativeDecision and CompetitiveDecision nodes allows
the user to view the commands being sent to the motors and identify discrep-
ancies between expected and actual behavior.

e Inspecting the links between the VisionNode and the SupervisoryNode allows
the user to see the information available to the decision node and to ascertain
any delays in communication which may be present in the system.

The ability to stop and restart the robot can in this instance be coupled with
inspection mechanisms. The user can thus stop the robot and analyze its position
in the environment. Based on this analysis expectations about the contents of the
architectural components (e.g., sonar sensor values, ball location) the user can pin-
point design flaws in either individual components or the layout of the architecture.

The above example illustrates the “real-time” nature of ADE, as its distributed
nature enabled it to appropriately control a robotic agent. This feature separates
ADE from most existing agent toolkits, where robot control is external to the toolkit
itself. It should be noted that due to its distributed nature and its robot control
facilities, ADE could also be used to implement RCS-based systems.’

9. Discussion

We introduced the ADE environment as a first attempt to bridge the gap between
single and multi-agent frameworks and provide an architecture-neutral, multi-user
tool for the development of virtual and robotic agent architectures in single and
multi-agent settings. ADE is intended as very general, versatile tool for the imple-
mentation, development, testing, and deployment of agent architectures, providing
functionality for:

(1) the description and implementation of agent architectures

(2) graphical insertion and deletion of parts of the architecture (i.e., components
and links)

(3) the distribution of computations associated with an agent architecture over
several computers

(4) the development of single and multi-agent systems in a homogeneous environ-

ment

the modification of agent architectures throughout the life-time of the agent

analysis and visualization tools for architectures and their components

the use of “off-the-shelf” programs in agent architectures

the use of the same control code in simulated and robotic environments

~ A~~~
o 3 O Ut
T — D

ADE allows the agent developer to implement, at different levels of abstrac-
tion, several prima facie unrelated formalisms (such as neural networks, cellular
automata, and planning algorithms). Not only is it possible to compare the func-
tionality of these different formalisms in a unified framework, but it is is also possible
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to combine several such formalisms in the same architecture (e.g. using neural net-
works for image processing in an architecture that also uses a planner, and sending
the information obtained in processing the image to the planner).

We demonstrated ADE’s utility as design, implementation, test, and run-time
tool with two examples, a group of virtual agent and a robotic agent, respectively.
These examples were primarily intended to cover as much of a range of different
architectural designs and setups as possible within the given space restrictions to
show ADE versatility. Consequently, the tasks for which they were design were
kept simple. Several much more complex architectures have been implemented or
are currently under development for a variety of more complex tasks, especially in
robotic settings.”> 3334

Although ADE already provides a large number of features, the development
and improvement of such a toolkit is an ongoing process. Future work in ADE will
improve the rudimentary algorithm that extracts information about substructures
(such as modules) and their functional organization from architecture descriptions.
We will also include interfaces to allow ADE to work together with other agent
toolkits and agent simulation environments. Statistical tools will also be included
in the toolkit to provide direct access to measures such as the average and standard
deviation of the amount of information transferred through links per second. We
believe that ADE fills an important niche in the existing agent development tool
landscape and hope that it will become a valuable addition which, because of its
versatility, will appeal to a diverse group of agent architecture designers.
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Fig. 9. ADE Initial architecture for web search agents (top) and the final architecture of the

system (bottom)



34

ball

O

cardboard chair
box

robot

Fig. 10. Typical situation for the robotic agent: the path towards its target is obstructed, although
the target is still in sight. The actual situation is shown on the left and a schematic on the right
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Fig. 11. ADE Set-up for ball retrieval in the robot experiment
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ADE architecture for robotic experiment: virtual machine view with components and



