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Abstract

In this paper we present the agent archi-
tecture development environment ADE, in-
tended for the design, implementation, and
testing of distributed agent architectures. Af-
ter a short review of architecture develop-
ment tools, we discuss ADE’s unique fea-
tures that place it in the intersection of multi-
agent systems and development kits for sin-
gle agent architectures. A detailed discussion
of the general properties of ADE, its imple-
mentation philosophy, and its user interface
is followed by examples from virtual and
robotic domains that illustrate how ADE can
be used for designing, implementing, testing,
and running agent architectures.

1 Introduction
In recent years, several agent toolkits and frameworks
have been proposed that are intended to support ei-
ther the design of multi-agent systems (e.g., JADE
[Bellifemine et al.2000], RETSINA [Sycara and oth-
ers2003], AGENTBASE [AgentBase], ZEUS [Nwana
et al.1997]), or the design of agent architectures for
single agents [Sloman1999, Konolige2002]. Currently,
there are no systems available that combine and inte-
grate these two realms. To bridge the gap between
multi-agent system frameworks and agent architecture
toolkits for single virtual and robotic agents, we pro-
pose the agent architecture development environment
ADE, which provides a homogeneous, user-friendly
environment for the development of architectures for
virtual and robotic agents in single and multi-agent set-
tings.

In the following, we first give a brief overview of the
agent architecture framework underlying ADE, which
is at the heart of ADE’s flexibility. We follow with a
description of the user interface and the supporting en-
vironment. An example of agent design for a robotic
agent, in the context of ADE then illustrates the use of
the toolkit. We conclude with by placing ADE in the

context of other single-agent and multi-agent develop-
ment tools and frameworks and summarizing current
and planned ADE features.

2 ADE
We start with a brief overview of the theoretical foun-
dation ADE, the APOC architecture framework.

2.1 The APOC Architecture Framework
ADE stands for “APOC Development Environment”,
where APOC is a general, universal agent architecture
framework [Scheutz and Andronache2003a, Scheutz
and Andronache2003b], in which any agent architec-
ture can be expressed and defined.

APOC is an acronym for “Activating-Processing-
Observing-Components”, which summarizes the func-
tionality on which the ADE agent architecture toolkit is
built: heterogeneous computational units called “com-
ponents” which can be connected via four link types to
define an agent architecture. 1

The four link types defined in APOC are intended
to cover important interaction types among compo-
nents in an agent architecture: the “activation link” (A-
link) allows components to send messages to and re-
ceive messages from other components; the “observa-
tion link” (O-link) allows components to observe the
state of other components; the “process control link”
(P-link) enables components to influence the computa-
tion taking place in other components, and finally the
“component link” (C-link) allows a component to in-
stantiate other components and connect to them via A-,
P-, and O-links.

Components can vary with respect to their complex-
ity and the level of abstraction at which they are de-
fined. They could be as simple as a connectionist unit
(e.g., a perceptron [Minsky and Papert1969]) and as
complex as a full-fledged condition-action rule inter-
preter (e.g., SOAR [Laird et al.1987, Rosenbloom et
al.1993]). Computational components of an agent’s ar-
chitecture can be created and destroyed during the life-
time of an agent by other architectural components.

1APOC components are based on the “behavior nodes”
described by Scheutz. [Scheutz2001]



Since user-defined algorithms (e.g., search algo-
rithms that browse the web for information) are in gen-
eral implemented as part of APOC components, ADE
allows for distributing computations in terms of asyn-
chronous computational units and communication links
among them (see the example in section 8). It is also
possible to run different algorithms in different parts of
the architecture and to change them over the lifetime of
the agent. Thus, it is possible to express and study dif-
ferent designs of various mechanisms within the ADE
framework (e.g., how to do behavior arbitration). Fur-
thermore, the resource requirements and computational
costs of an architecture can be determined and com-
pared to other architectures implementing different al-
gorithms for the same task in ADE [Scheutz and An-
dronache2003a].

ADE provides functionality for implementing agent
architectures for simulated and robotic agents. An in-
tegrated server-client subsystem allows components of
the architecture to connect directly to robots (see the
example in section 3) or remote agents in a simulated
environment in order to control them. ADE was par-
ticularly structured with the goal of designing complex
agents in mind. Hence, there is support for (1) building
more complex components out of simpler ones using
a “grouping mechanism” for components, (2) “online
inspection and modification” of all parts of the archi-
tecture (components and links can be removed and new
ones can be added in the running virtual machine), and
(3) distribution of the architecture over multiple hosts
in a platform independent way.

2.2 ADE: The User Interface
The ADE environment was designed to allow users to
access, inspect, and modify an architecture at any time
during its development process: from the original de-
sign of the architecture, to the testing of components,
to the execution of the complete architecture. For this,
the system is divided into an architecture layout section
and a virtual machine section. In the former, the com-
ponents of the architecture are specified and the con-
nectivity among them is established, thus defining the
overall architecture layout. In the latter, the running ar-
chitecture is maintained, which is updated dynamically
and subject to runtime modifications.

Figure 1 shows a screen shot of the basic run-time
environment: the left half shows the architecture layout
of the system, while the right half shows the run-time
virtual machine. Of note in Figure1 is the Network Set-
up menu item, which provides a variety of functions re-
lated to the distributed nature of the environment, such
as viewing and modifying the structure of the network
on which ADE is running.

In the following, we describe the functionality of
each subspace individually.

Architecture View
In the architecture view, boxes represent the types of
components that can be present in the run-time virtual

machine (i.e., the instantiated architecture). Users can
add customized components and display their informa-
tion.

Links in ADE are created and configured through
a link creation tool. In the graphical interface, edges
indicate (by the direction of the arrow) the direction of
the links in the architecture. Link information can be
obtained by clicking on the arrow.

Virtual Machine View
In the running virtual machine, boxes indicate actual
computational components present in the instantiated
architecture and edges represent instantiated APOC
links. Multiple arrows can be present along each edge,
indicating each type of instantiated link.

Users can insert components directly into the run-
ning virtual machine if the insertion operation does not
violate the architectural restriction on the number of
components which can be simultaneously present in the
instantiated architecture. If a violation is detected, the
instantiation operation fails. Links can also be inserted
in the running virtual machines. If a link is not avail-
able in the description of the architecture then the in-
sertion operation fails.

Operating Modes
ADE has three operating modes: an editing mode, a
synchronous agent update mode, and an asynchronous
agent update mode.

In edit mode, a user can modify both the architec-
ture layout and the architecture present in the run-time
virtual machine. Supported architecture layout opera-
tions are: adding/deleting a type of component, modi-
fying the maximum number of allowable components
of a type in the running virtual machine, adding a link
between two component types, and deleting a link be-
tween two component types. In the running virtual ma-
chine, a user can add a component, delete a component,
add a link between two existing components, and delete
an existing link within the constraints imposed by the
architecture layout.

The synchronous mode provides the means for a syn-
chronous update of the agent architecture. In this mode,
each component in the running virtual machine com-
pletes one update cycle and waits for the other compo-
nents to complete their cycle.

In asynchronous mode, all components (and all
links) update asynchronously based on their internal
timing without synchronizing their state with other
components. This is particularly interesting for dis-
tributed applications, where synchronization is not re-
quired and would result in a severe performance bot-
tleneck. In some architectures (e.g., subsumption
[Brooks1986, Brooks1991]) asynchronous update is
even part of the architecture specification, and thus
forces the agent designer to make no assumptions about
the timely update of states and delivery of information.
Note, however, that each node will still attempt to up-
date at its update frequency if permitted by the operat-



Figure 1: ADE Interface: The left side shows the types of components which can be present in the architecture
and their possible interconnections. The right side shows the components (boxes) and communication paths (lines)
in the running virtual machine

ing system.2

2.3 ADE: The Supporting Environment
ADE’s supporting environment provides the infras-
tructure to distribute agent architectures and to oper-
ate virtual as well as robotic agents. It consists of
a (global) registry (which dynamically keeps track of
the elements of the distributed environment) and four
types of servers: system servers (such as APOC virtual
machines and graphical user interfaces), agent servers
(which provide a “body description” for virtual agents
or the interface to robots), and utility servers (which
provide additional distributed services that are not part
of the agent architecture).

Registry
The registry is a repository of available services as pro-
vided by the various servers. In particular, it provides
updated information of the location of all participat-
ing APOC, GUI, agent, and utility servers, and maps
APOC components that request a particular service to
agent or utility servers, thus acting as a transaction bro-
ker between a client requiring a resource and available
resources. The client contacts the registry and requests
the desired resource either by specifying the type of
resource required (if no specific instance is required)
or by identifying a specific resource (by virtue of its
unique ID or location within ADE).

Servers
A server in ADE is a computational unit that represents
a resource of the ADE system. Each ADE server is an
independent computational resource that typically runs
in its own operating system process and can be started

2On realtime operating systems, this update frequency can
be guaranteed.

independently. After startup, each server first con-
tacts the registry and specifies the maximum number of
client connections that it can support (as well as any ad-
ditional restrictions regarding the connection, e.g., al-
lowed domain names). We describe below each of four
server types–APOC server, GUI server, agent server,
and utility server–and their functions within ADE.

Each APOC server is an independent entity, with
capabilities for instantiating and deleting new compo-
nents and links. APOC servers control their locally
instantiated components and maintain connections to
other APOC servers as well as to all available GUI
servers in the ADE system. In effect, APOC servers
are containers for individual ADE architectural com-
ponents and resource managers for the ADE system.

Gui servers are visual resources which allow the user
to view the architecture and its instantiated virtual ma-
chine. Each GUI server maintains connections to all
available APOC servers.

Agent servers provide access to the body of a virtual
or robotic agent by establishing connections to its sen-
sors and effectors. Upon startup, they automatically
connect to the registry announcing their service and
then wait for clients to connect.

Utility servers provide a service which may be
needed by one or more APOC components. Gener-
ally speaking these servers implement computationally
expensive operations. Utility servers may require ad-
ditional connections to agent or utility servers (estab-
lished through the registry) in order to obtain the data
they are supposed to process.

An example of the different relationships among the
server types and the registry is illustrated in Section 3.

ADE Configuration File
In order to simplify the startup of an ADE system,
ADE uses a global configuration file. In a typical set-



ting, this configuration file is run in one GUI server
(which needs to be started manually), which then auto-
matically starts the rest of the ADE system from a sin-
gle host.3 In the bootstrapping process, the GUI server
reads the configuration file and opens connections to
each host in the “hosts list”. Once a connection is es-
tablished to a remote host, an APOC server is started
there.

Having described the building blocks of ADE, we
now focus on the facilities provided by ADE for the
design of agent architectures.

3 Example of Using ADE for Robotic
Agents

Robotic agents pose a challenge for agent designers, as
they operate in realtime and timely updating of compo-
nents is crucial for the proper operation of the architec-
ture. In this section we show how a robotic agent can
be implemented in ADE.

3.1 Agent Task

The task for the robot is a target localization task, in
which a target (i.e., “orange ball”) has to be located
in an environment with obstacles (e.g., an office space
with boxes, chairs, etc.). The robot needs to locate the
ball, and coordinate its position with the position of the
ball in such a way that a plan can be created to bring
the agent from its current location to the ball location,
while avoiding obstacles.

The opening between two obstacles is sometimes not
wide enough for the robot to pass through. Therefore,
the robot needs to go around one of the obstacles in
order to reach its goal. As a result, the robot also needs
to be able to handle situations where it loses sight of
the ball for a certain period of time. One architecture
for such an agent is described in the following section.

3.2 Agent Architecture

The server structure for the experiment is presented in
Figure 2. Each box represents a separate ADE server
running independently, while links represent communi-
cation pathways between servers (dashed links indicate
wireless ethernet). The name of the computer on which
each component was run is specified below the compo-
nent.

3The registry is started separately by the user, not through
the bootstrapping process.
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Figure 2: ADE Set-up for ball retrieval in the robot
experiment

In the robot architecture used for the experi-
ment a Supervisor uses visual information from the
VisionSensor to determine if the robot is stuck in
a situation where it is not making progress towards
achieving its goal. If such a determination is made,
the Supervisor switches off CooperativeDecision
and turns on CompetitiveDecision. Unlike
CooperativeDecision, which combines all the di-
rectional information from the SonarProcessing
nodes to produce an overall directional vector,
CompetitiveDecision uses a competitive selection
mechanism, discarding all but the most relevant
information for its task, in this case, wall fol-
lowing. Upon regaining sight of the target, the
Supervisor shuts off CompetitiveDecision and re-
activates CooperativeDecision. Once the robot has
reached the ball, its task is complete. Details of
the robot architecture can be found in [Scheutz and
Andronache].

3.3 Setup in ADE
The setup steps for the experiment are as follows:
(1) start the Registry, (2) start the GUI, (3) start
the RobotServer and the ImageAcquisitionServer (this
step and the previous one are interchangeable), (4)
start the ImageProcessingServer, (5) define the robot
architecture (using the graphical tool and predefined
components), (6) run the experiment by switching to
Synchronous or Asynchronous Mode.

The entire set-up process can be completed by using
a script, thus allowing the user to issue a single com-
mand to initialize an ADE system.

Various components in the architecture require ac-
cess to robot related resources, such as its sensors and
effectors, as well as other information gathered from
utility servers. In this experiment, one component re-
quires visual information, a second requires access to
robot sonar and motor information, while a third re-
quires access to the robot motor effectors. Each of
these components contacts the registry, requests the
server it requires and sets up direct communication
channels with that server. As a result the registry acts
only as a resource manager, and will not become a bot-
tleneck for communication within the system.



For visual processing, a standard blob-detection al-
gorithm was used to identify the ball and run on
a separate utility server, the ImageProcessingServer,
to improve the parallelism of processing and thus
the performance of the system. Two of the servers,
the RobotServer and the ImageAcquisitionServer, can
only run on the on-board computer of the robot used
in the experiment, as they need direct access to hard-
ware components (robot sensor and effectors, as well
as camera sensors and effectors). The Registry was run
on a Sun workstation, while the GUI server and the
APOCServer were run on PCs.

ADE architecture inspection mechanisms can be
useful in several ways: (1) inspecting the VisionNode
allows the user to see what the agent “sees,” (2) inspect-
ing the CooperativeDecision and CompetitiveDecision
nodes allows the user to view the commands being
sent to the motors and identify discrepancies between
expected and actual behavior, (3) inspecting the links
between the VisionNode and the SupervisoryNode al-
lows the user to see the information available to the
decision node and to ascertain any delays in communi-
cation which may be present in the system.

The user can also stop the robot and analyze its posi-
tion in the environment. Based on this analysis expec-
tations about the contents of the architectural compo-
nents (e.g., sonar sensor values, ball location) the user
can pinpoint design flaws in either individual compo-
nents or the layout of the architecture.

The above example illustrates the “real-time” nature
of ADE, as its distributed nature enabled it to appro-
priately control a robotic agent. This feature separates
ADE from most existing agent toolkits, where robot
control is external to the toolkit itself. It should be
noted that due to its distributed nature and its robot con-
trol facilities, ADE could also be used to implement
RCS-based systems. [Albus1992]

4 Discussion
Many agent software tools are targetted at the design
of agents and agent systems. We begin this section by
placing ADE in the context of these toolkits.

DACAT [Barber and Lam2002, Barber and
Lam2003] is an architecture design tool which pro-
vides the user with a customizable set of competencies
from which the user can choose the ones relevant
to her agent design. Like ADE, it provides a fully
graphical environment, in which the relationship
among architectural elements is visualized. However,
DACAT stops at indicating the structure among
components at the level of the functionality of an
agent, without actually implementing it, whereas ADE
allows for the implementation, running, and testing of
any architecture specified within it.

IBM’s ABE [ABE] is a tool which provides some
architecture design support, e.g., a set of adapters
(for agent-environment interaction), engines (forward
chaining inferencing tools), and libraries (support for

rule and fact authoring tools, to organize, group, and
control the inferencing materials that are used by the
engine). However, ABE imposes a rule-based design
philosophy on its agents, in contrast to ADE, which
supports rule-based systems, but also allows for alter-
native architectures not based on rule interpreters (e.g.,
subsumption architectures [Brooks1986]).

Many agent systems are concerned with mo-
bile software agents, which can roam the internet.
These systems (AGENTBASE [AgentBase], AGLETS
[Aglets], BDIM/TOMAS [Busetta and Kotagiri1998],
RETSINA [Sycara and others2003], and others) fo-
cus on supporting efficient and secure communica-
tion among agents as well as improving their mobil-
ity. However, only limited support is provided for the
design of an agent architecture beyond the communica-
tion APIs and virtually no support is present for robotic
agents in these systems. In contrast, ADE treats robots
and virtual agents the same from a designer’s perspec-
tive and allows designers to implement any architec-
ture methodology based on its implementation of the
universal architecture framework APOC.

The AGENT FACTORY system [Collier and
O’Hare1999, Collier et al.2003] is an environment
for agents which use BDI architectures. [Kinny et
al.1996] It is similar to ADE in that it provides support
for an agent architecture design, from a high level
specification of the architecture to its implementa-
tion and deployment and, furthermore, allows the
definition of agents that are not strictly based on the
BDI framework. Still, the main focus of the AGENT
FACTORY system is on BDI-based software systems,
and thus differs markedly from ADE. Furthermore, it
neither provides ADE’s seamless support for single
and multi-robot systems, nor ADE’s capability of
distributing architecture components over multiple
computers in an OS-independent fashion.

SIMAGENT is a toolkit designed specifically for the
exploration of agent architectures. Like ADE it sup-
ports the specification of architectures at various lev-
els of complexity (e.g., symbolic mechanisms can co-
exist and communicate with neural networks). How-
ever, SIMAGENT only provides basic library function-
ality for the design of agent architectures for single
and multi-agent systems (e.g., a basic agent class, a
condition-action rule interpreter, etc.) and currently has
no support for distributing agents over multiple hosts or
for controlling robots, both of which are core features
in ADE.

In sum, ADE integrates desirable features from dif-
ferent agent systems such as a general architecture
framework APOC for the definition of agent archi-
tectures, support for distributed architectures which
can change dynamically, support for communications
among agent and agent mobility. None of the above
discussed agent systems combines all of these features
within one system. Additionally, ADE provides seam-
less support for single and multi-agent architectures for
virtual and robotic agents and a user-friendly, multi-



user graphical interface that allows multiple designers
to work collaboratively on agent architectures.

We demonstrated ADE’s utility as design, imple-
mentation, test, and run-time tool with a robotic agent
The example was primarily intended to illustrate one
architectural design and setup within the given space
restrictions to show ADE flexibility. Consequently, the
robot task was kept simple. Several much more com-
plex architectures have been implemented or are cur-
rently under development for a variety of more com-
plex tasks, especially in robotic settings. [Scheutz and
Andronache2003a, Scheutz and Andronache2003b]
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