
A Humanoid-Robotic Replica in USARSim for HRI Experiments

Kyle Carter and Matthias Scheutz and Paul Schermerhorn
Human-Robot Interaction Laboratory

Cognitive Science Program
Indiana University

Bloomington, IN 47406, USA
{kylcarte,mscheutz,pscherme}@indiana.edu

Abstract— An important set of open questions in human-
robot interaction research, and to some extent cognitive science,
is centered around the difference in interactions humans have
with real versus simulated robots or agents. The goal of this
research is to understand the effects of the agent’s embodiment
on human perception and cognition.

In this paper, we present our work on providing computa-
tional tools to facilitate research in embodied situated cogni-
tion and human-robot interaction. Specifically, we introduce a
simulation model of our humanoid robot CRAMER which we
developed in the UNREAL game engine using the USARSim
control interface. We provide details on its development and
the implementation of the control interface that allows it to
work seamlessly with our existing robot control architectures.
We also discus potential applications of the simulation model
as well as future plan to extend it.

I. INTRODUCTION

Simulated environments like USARSim [1] have become
important tools for the development, testing and debugging
of robot control architectures in a variety of areas, including
single and multi-robot setups with and without human-
robot interaction (HRI). In addition to rapid prototyping of
control software, however, simulated robots can also serve
an important role in psychological research: they can be
used for the study of important psychological phenomena
related to embodiment and situatedness of agents, which are
of critical importance for human-computer and human-robot
interaction. Specifically, sufficiently accurate simulations of
real robots will allow us to study any possible differences
in how humans interact with real versus virtual agents.
These differences, then, will have significant implications
for the design, testing, and deployment of robots and robotic
architectures. For example, we have demonstrated that the
expression of affect in a robot’s voice can motivate people
to perform better at a joint task when the robot is physically
co-present in the same environment as opposed to just shown
on a video screen [6], [7], [8]. Similarly, a warning message
from a virtual character might be less believable than that
from a physical robot [3]. Hence, one important implication
for the design of robotic architectures in simulation is that
HRI mechanisms that work well with simulated robots might
not work well or work at all with physical robots and vice
versa.

In this paper, we describe our work developing a simulated
replica of our physical robot that can be used for HRI studies,

specifically to explore the effects of physical embodiment.
We will describe the details of the simulated robot, how it
was developed, how it can be controlled, and how it can be
used for future psychological experiments.

II. BACKGROUND

Multiple simulation packages are available that can be
used for the development of simulated robotic replicas
(including USARSim, Gazebo, ODE, etc.). Some of the
packages already come with robot models and APIs for
software control architectures (e.g., USARSim or Gazebo),
while others provide only a core physics engine within which
both simulated robot models as well as software interfaces
will have to be developed. Our selection of USARSim was
based on the fact that there is a fairly substantial user
community with increasing support for robot models and
environments.

USARSim is a collection of modifications made to
UNREAL Tournament (a commercial “first-person shooter”
game) for the purpose of allowing a robotics control ar-
chitecture to interface the game engine. UNREAL Tourna-
ment is a physics-based simulation, which supports rigid-
body physics and interactions. The USARSim modifications
remove all game-related elements of UNREAL, leaving only
the physics engine and some client software. USARSim also
includes GameBots, freeware from a 3rd party developer,
which provides mechanisms for communication over a TCP
socket. This means of communication forms the basis for
the creation and control of agents within the simulated
environment at runtime. Because GameBots uses sockets for
communication, developers can construct their own client
software to connect to USARSim. It is through this client
that one can place agents in (or remove agents from) the
simulation environment. And the client also allows robotic
control architectures to send commands to the simulated
robots (e.g., to control a robot’s wheels or actuators).

While we are using a variety of robots in our HRI studies,
we are particularly interested in human-robot interactions
with human-like robots. For this purpose, we employ our
robot CRAMER (the “Cognitive, Reflective, Affective, Mo-
bile, Expressive Robot”), which consists of a humanoid
upper torso (manufactured by the now defunct company
RoboMotio) mounted on a mobile Pioneer P3DX platform.
CRAMER has two firewire cameras mounted in its eyes



and a series of eight microphones mounted in its torso.
Moreover, it has movable eyes, eye brows and lips to produce
facial expressions. The challenge for the simulated robot in
USARSim was thus to replicate all of CRAMER’s effector
capabilities as closely as possible, including their timing and
their degrees of freedom. Our plan was for the replica to be
displayed on life-size 63in monitor so that the simulated and
real CRAMER, placed side-by-side, would exhibit (close to)
identical motions if controlled by the same architecture.

The development effort consisted of the integration of
three primary tasks. First, we created a simulation model for
CRAMER with the help of a number of 3rd party programs
and tools. Second, we produced the classfile structure and
configuration that UNREAL Tournament uses to recognize
CRAMER as a placeable agent. Finally, we wrote a client
for USARSim building upon the basic functionality already
provided by USARSim and GameBots, together with addi-
tional control software for our ADE control environment, to
allow us to connect our robotic architecture to the simulated
CRAMER in exactly the same way it is connected to the
physical robot. In the following, we will describe all three
parts in more detail.

III. SIMULATION MODELS OF HUMANOIDS IN
USARSIM

A fully functional simulacrum of a robot requires both
a model of the physical shape and behavior of the robot
as well as specifications of how some of the movable parts
can be controlled. Creating the physical model in USARSim
consists of “modeling the robot’s parts”, “adding texture to
the surfaces” to make it look like the original, “organizing
various configuration files” that UNREAL requires for the
parts to function as a whole, and “configuring the robot’s
joints to function properly”. Once the simulated robot is
assembled within UNREAL, software can be developed to
control it. Our lab’s USARSim client software currently
consists of three main components: the code that initializes
communication with USARSim, the parser which interprets
all of the incoming data, and a set of methods that implement
the translation of the platform-independent action commands
of our robotic control architecture into platform-specific
commands of USARSim.

A. Model Creation

The possible methods for creating the model of the sim-
ulated robot are varied, and the particular combination of
methods presented here is only one of many. As part of our
commitment to open-source operating systems and software,
our lab chose to work as much as possible with free and
open-source tools available for Linux, which turned out to
be more complicated and time-consuming than what model
development would have been otherwise using proprietary
Windows-based software. To construct the three-dimensional
models of CRAMER’s parts, we used the free modelling
program Blender. The texturing was originally accomplished
using the raster image editor the GIMP, but later we moved
to the scalable vector graphics image editor Inkscape. Using

Fig. 1. Split shot of the model and texture in Blender, showing
how the texture is mapped to the model.

Fig. 2. Wireframe view of the CRAMER head model.

these programs (after a significant learning phase), a smooth
workflow developed that proved quite efficient at producing
robot models.

The modelling software, Blender, handled both the form-
ing of the models, and their preparation for texturing, called
“wrapping” (see Fig. 1 and Fig. 2). The wrapping process
involves designating seams on the models in order to provide
a smooth, relatively distortion-free means of wrapping a
two-dimensional texture around a three-dimensional object.
There do exist other open source modelling tools that perhaps
could be used to create the 3D content for USARSim, but
none seemed to be as mature and effective as Blender, and
so their use was not considered further. Once the model

Fig. 3. The blank texture before it is filled in using Inkscape.



was prepared, the wrapping template was exported to an
image editor, where it was colored and smoothened (see
Fig. 3). One significant benefit that using Blender brought
to this process was its ability to export the unwrapped
texture directly to a file with which vector graphics software
could work. Similarly to our work with Blender, there were
other programs that could have been used to fill in the
textures, such as Xara Xtreme LX, which is released under
the Gnu Public License. Inkscape initially seemed to be
more developed and robust than the alternatives, and so
further exploration was deemed unnecessary. Both the model
and the texture image were then exported into formats that
the UNREAL Editor would accept (all content used by
USARSim must be of in one of a few particular formats,
according to type). In order for UNREAL to be able to use
the robot models, it had to first be packaged by the UNREAL
Editor. While we were able to use open-source software
for physical modelling and texturing, only the proprietary
UNREAL Editor can package up the collection of model,
texture, and configuration files and class files, the latter
of which define the robot as an entity and connect the
pieces into controllable groups of joints (for details on this
process, see the documentation in the USARSim manual).
Configuration files give joints their limits, including range
of motion, maximum speed, maximum torque, along with
other parameters. With everything in place, the robot can
now be initiated and manually controlled through GameBots
through a simple telnet connection. For autonomous robot
behavior, however, a robot control architecture is needed.

B. USARSim Client Software

In order to encapsulate USARSim’s simulation capabilities
for the purpose of using it with our robotic software environ-
ment ADE, we developed our own client software to provide
functionality from a pre-established API that other robot
interface components implement (when they interface phys-
ical robots). This functionality was achieved by wrapping
the low-level joint command provided by USARSim into
JAVA-based methods, such as moveArm or moveHead, that
accept a number of arguments and forward the appropriate
command together with the arguments to USARSim, which
then performs the appropriate action.

As with all physical robots, however, the communication is
two-way and sensory data needs to be received from the robot
as well. In USARSim, the sensory feedback is continuously
provided in special message packets, which need to be parsed
accordingly and translated into a format that the robotic
architecture can understand, another function performed by
our USARSim client. Finally, the client is able to establish
communication with USARSim and initialize the robot in the
environment in right location in a specified configuration.

C. Control Implementation

The procedures of control are all built around the USAR-
Sim defined protocol. All commands are issued to GameBots
over the established socket in raw line-based text format, des-
ignating which joint is to be moved as well as the magnitude

and order of the movements. This order defines what type of
command the message is, and can be a positional command,
velocity command, or torque command. The order, therefore,
determines the meaning of the magnitude, which is a number
whose units are either radians, radians per second, or in a
special unit used by UNREAL to measure torque, respective
to the order. A significant challenge in implementing the
control of the simulated robot is the inherent difference in
methods of control between the simulated and real version.
UNREAL Tournament accepts one of three orders of control
for any joint, allowing the user to specify a joint’s angle,
velocity, or torque. However, in some physical robots, servo
control allows for multiple orders to be issued simultaneously
(e.g., specifying that a joint move to a certain angle at a
particular velocity). Bridging this gap requires more sophis-
ticated control than is natively provided by USARSim. The
general solution to this problem is to have the server issue a
velocity command, wait for a bit, and then send a command
which sets the velocity to zero when the joint is at the correct
angle. Two potential methods of ensuring correct timing for
the stop command have been implemented to produce the
highest fidelity between the physical and simulated robots’
movements. While one method seems to be significantly
more reliable than the other, there may be uses for which
either is better suited.

The first method — “check to stop” — relies upon UN-
REAL Tournament’s incoming information about the joints.
Throughout the lifetime of a simulated robot, USARSim is
constantly sending information about all of its joints—their
respective positions, velocities, and torques. This method
then waits for a return value from the parser for the ap-
propriate joint that indicates that it is in the correct position,
and so should be stopped from moving further. The method
works reliably at lower velocities (0 to ∼ 1.2 rad per sec)
and on movements that involve longer movements (>∼ 1 to
1.5 rad). However, as the rotational velocity increases, this
method’s limitation begins to show. USARSim periodically
updates its joint information every ∼ 0.2 seconds. When the
velocity is too high, or the angle displacement is too small,
the number of updates received about the joint’s position
during the movement is reduced to zero, frequently causing
the joint to overshoot its intended angle. Ultimately, this
limitation prevents the “check to stop” method from being
the preferred method.

The second method relies instead on dead reckoning.
Given a joint’s current angle, the desired angle, and a
rotational velocity, one can simply compute the time nec-
essary between start and stop commands using the formula
dt = v/dx. During initial testing, this method was thought
to be flawed by complications in the physical simulation
entailed in UNREAL, but further development saw that these
errors were in fact being produced by limitations enforced
by the USARSim configuration of the robot’s joints. In
the configuration, certain parameters are set for each joint,
including limits on range of motion, as well as limits on
the joint’s velocity. Because these limitations are enforced
internally in UNREAL, it was not initially clear that they



were what was interfering with the calculations. If the client
were to order a movement that was faster than allowed by the
configured restrictions, the command would be sent without
any indication that it was being executed incorrectly except
for the updates from UNREAL, which include data about
the joint’s velocity. The client software would make the
calculation based on its anticipated velocity, which would
produce a significant error due to the discrepancy of velocity.
This problem was bypassed by increasing the maximum
velocity of the joint in question. It was found that if the joint
was permitted by USARSim to move at the correct velocity,
the accuracy of the calculation was restored, allowing this
dead-reckoning method to be used exclusively.

It should be noted that in the process of simulating
RoboMotio’s Reddy robot, we strove for realism of the mech-
anisms. The facial expressions were a particularly significant
point of interest to us, as the robot is intended for human
interaction purposes. On the physical robot, the eyebrows
consist of one degree-of-freedom (DOF) each, rotation in
the plane parallel to the face. Recreating the eyes, likewise,
was a relatively simple matter, as they consist of three
DOF: individual left-right pan, and a single up-down tilt,
linked to both eyes. A “dummy” object was used to link
the tilt DOF to both eyes. This object was a massless object
that was positioned inside of the head model, so as to be
invisible during normal simulation. The mouth, however,
presented a much more difficult problem. On the physical
robot, the mouth consists of two “lips”. Both lips were
lengths of flexible rubber hose, bent into any given shape by
two servos, one at each end. These four servos could then
produce simple facial expressions, such as smiling, frowning,
or a tilde-shaped “confused” look, by turning to particular
positions, bending the rubber. The problem presented to the
simulation is the difficulty of simulating flexible objects. We
were also limited by the topology of the mouth, as each
defined joint part in USARSim can have up to one parent
part. This directly conflicts with the concept of the rubber
hose mouth of the physical robot, as the shape of each lip
directly depends upon not one, but two joints. To solve this,
we broke each lip up into three visible components: Two end
sections and one middle section. The four end sections could
be rotated like normal joints, with the positions specified
by the method “moveMouth(a, b, c, d)”. The two middle
sections actually each consist of one normal rotational joint
and one prismatic joint, which has a linear up-down motion
instead of rotational. The positions of these “hidden” joints
could be calculated to provide the appearance of a seamless
curve. These mechanisms led to the ability to simulate the
robot’s facial expressions through exactly the same interface
of commands. For example, to frown, the robots both turn
their eyebrows to tilt downward in the center of the face, and
turn all four corners of the mouth upward, bending it into
the appropriate shape. The only difference between physical
and simulated expressions is that the physical mouth is made
out of rubber, and the simulated mouth is made of extra rigid
pieces which depend upon the hidden calculations to be put
in the correct positions. The commands which are sent to

the individual software components that control the physical
and the simulated robot are exactly the same.

D. Calibration

Once the simulation was set up, the remaining task re-
quired to complete the control functions was to adjust the
parameters in the simulated robot to match those on the
physical robot, specifically to map the numbers used for
velocity commands on the physical robot (using a PWM
signal) to the numbers that USARSim uses (radians per sec-
ond). The physical servos’ necessary use of torque precludes
a linear or simple calculation. Instead, measurements were
taken on each joint, at varying speeds, to match the speeds of
the physical and simulated robots, through visual similarity.
These points, then, provided the data for a polynomial fitting
function that can provide a smooth translation between the
PWM signal and the corresponding radians per second. One
problem with this strategy, of course, is that physical servos
will degrade as they are used over time, and so the fitted
function will become obsolete at some point in the future,
and the function fitting will have to be repeated.1

E. Parsing Sensory and Joint Feedback

We implemented a simple parser to take the sensory output
from UNREAL and translate it into a format that the robotic
architecture can use. The parser runs in a separate thread
from the rest of the client’s operations, and primarily consists
of a loop that decodes the incoming messages and attempts to
ascertain which type of message it has received by checking
for distinguishing tokens. For instance, a message that carries
information from one of the robot’s sensors will start with the
token “SEN”, while a message with information about the
positional data of the robot’s joints will start with “MISSTA”.
The information gleaned from these messages can be used
for sensory processing, such as obstacle detection, or for
motion control, as discussed in the previous section.

IV. THE USARSIM DIARC/ADE INTEGRATION

The USARSim model described above has been integrated
into the Agent Development Environment (ADE), an infras-
tructure toolkit for constructing complex robotic architec-
tures developed in our lab [5]. ADE allows developers to
create modular components called ADE servers that can
subsequently execute on any host with appropriate hardware
resources. An ADE registry maintains information about all
servers currently running in the infrastructure; whenever a
new server starts, it checks in with the registry and provides
information about its resource needs and the functionality it
provides to the system. The registry is then able to provide a
reference to that server when another server requests a server
with that functionality. Some examples of other ADE servers
available to architecture developers are:

• Goal Manager/Action Sequencer
• Speech Recognition

1Note that it is unclear how to best address this problem without a
thorough model of motor degradation which is unlikely to be available to
owners of physical robots.



Fig. 4. Angry real CRAMER (Above), Angry virtual CRAMER
(Below).

• Speech Production
• Natural Language Processing
• Planning
• Robot Base (e.g., Pioneer, Segway)

Of particular interest here is the action manager, ADE’s goal
management and action sequencing component, as it is the
most frequent client of the USARSim server’s services. The
action manager uses the utility of goals along with informa-
tion about goal deadlines to determine how resources should
be allocated. This allows the system to pursue multiple goals
simultaneously, so long as there are no resource conflicts
(e.g., between a goal that requires the robot to remain
stationary and a movement goal). When conflicts arise, the
action manager gives precedence to the higher-priority goal.
The action manager stores procedural knowledge in the form
of action scripts that allow it to sequence multiple sub-actions
together to accomplish a goal. For cases in which the action
manager does not have a pre-defined script to achieve a goal,
a planner component (based on the SapaReplan planner [4])
can construct scripts to achieve them.

The CRAMER server and USARSim server both imple-
ment the HumanoidTorso interface, which includes several
methods for manipulating the arms, head, facial features, etc.

Fig. 5. Side-by-side view, as during the lab introduction described
in the text.

Some of the methods are low-level, for example:
• moveLeftArm/moveRightArm
• moveEyes
• moveHead
• moveEyeBrows

whereas others are complex, higher level actions that build
on the low-level interface, such as:

• lookAt
• pointTo
• Frown
• Scowl
• Smile.
Because the servers both implement the same interface,

other ADE servers (e.g., the action manager server) need
only request a reference to a HumanoidTorso server, and
it can use whichever implementing instance (i.e., a server
for the real or for the simulated robot) is returned. The
USARSim server, in addition, implements the PioneerServer
and SICKLaserServer interfaces, allowing access for ADE
servers to the Pioneer and SICK laser range finder models
included with USARSim.

V. REAL VERSUS VIRTUAL INTERACTIONS

The simulated version of the humanoid robot will allow
us to explore important questions in human-robot interaction
related to how people respond to simulated robots (see Sec-
tion VI below). However, the validity of those experiments
will depend, in part, on how closely the simulated robot
models the behaviors of the real robot. We have tested the
validity of the model in multiple contexts. Two of these
scenarios are described below: a “dialogue” with a simulated
and a real robot, and a “dance contest” in which the two
robots employ the same algorithm to react (i.e., dance) to
music. These scenarios allow us to evaluate the simulation
by having the real and simulated robots side-by-side in the
same environment; the simulated robot is displayed on a large



(63”) plasma monitor, and hence can be displayed full-size,
making it possible to eliminate the effect of size.

A. The Dialogue

In this scenario, the two robots perform the task of
introducing the research done in the lab to visitors. The
dialogue is fully scripted (very much in the way Disney
animatorics work), so there is no geniune interaction with
the people watching the robot. However, the two robots
are programmed to respond to each other throughout their
interactions. The real CRAMER begins the introduction by
describing its own capabilities, explaining what its name
stands for, and how it can be used in experiments in the
lab. For example, because emotional expressions are very
important for human-human interactions, familiar “emotion”
expressions have been programmed for use by CRAMER; in
the course of the dialogue, many of these emotional expres-
sions are demonstrated. The robots behaviors are controlled
by simple action sripts that are being executed by the action
manager. A script for making the robot look “angry”, for
example, could look like this:

script lookAngry
moveLeftArm(5, 10, 90)
Scowl()
changeVoice(angry)
sayText(”For example, I can look angry!”)

Each of the script commands in this example invokes an
action in a corresponding ADE server (the CRAMER or US-
ARSim servers for the first two, the speech production server
for the last two), producing a behavior in which the robot
speaks in an angry voice while scowling and pointing angrily.
moveLeftArm is a simple action in the robot servers,
whereas Scowl is a compound action (also implemented in
the robot servers) that builds on multiple lower-level simple
actions to manipulate the robot’s eyebrows, lips, and eyes.

While real CRAMER is introducing itself and the lab,
virtual CRAMER “watches” it, nodding in (scripted) re-
sponse to important points. When real CRAMER turns to and
introduces virtual CRAMER, virtual CRAMER then takes
over the introduction, demonstrating its own capabilities and
elaborating on how having a virtual replica is useful for
exploring the kinds of questions described in Section VI. The
two robots then alternate back and forth for the remainder
of the dialogue.

Note that the design of the servers plays an important role
in the ease with which these behaviors can be scripted by the
action manager. Because the USARSim server implements
the same interface as the CRAMER server (as described in
Section IV), the action manager can use the same scripts
(such as lookAngry above) to evoke identical actions in the
virtual agent. Hence, there is no need for the action manager
to have any understanding of the difference between the two
(or that there even is a difference).

B. The Dancing Robots

Another scenario used to demonstrate the functionality of
the simulated version of CRAMER is the “dance contest.”
Once again, the robots are placed side-by-side (i.e., the large
monitor is placed beside the read robot). The robot servers
(CRAMER server and USARSim server) perform waveform
analysis on the audio output of the selected song (Kraftwerk’s
We Are the Robots, naturally) to detect peaks. These are taken
to approximate the beat of the music, and the servers generate
random movements of various body parts to coincide with
the peaks in the music. The effect is of two robots dancing
to the music.

VI. DISCUSSION

The above examples of simple dialogues or synchronized
behaviors between the real and the simulated robot are
intended only as a proof of the functionality of the current
interface, not as a demonstration of what its potential is
for empirical studies of humans interacting with robots.
Many empricial robot studies, particularly in the area of
human-robot interaction, employ an experimental method
that involves showing videos of real robots to subjects or
having subjects interact with simulated robots, rather than
having them interact directly with real robots. While there
are certainly substantial benefits to the use of simulations in
the development of complex robot architectures, it remains
an open question whether experimental results obtained using
simulations (or videos, images, etc.) are directly applicable
to “best practices” in the design of architectures for human-
robot interaction. In particular, the embodiment of the phys-
ically instantiated robot in the same physical space as the
human subject is likely to have some effect on how the
robot is perceived, how attention is allocated, where eye gaze
focuses, etc.

For example, the simulated model of CRAMER will
allow us to replicate an experiment that we conducted with
CRAMER in a real environment, where the robot had to
follow human eye gaze in real-time during a word learning
task [2]. The interesting question then is whether the eye gaze
patterns observed in humans interacting with the real robot
will end up matching those to be observed in interacting
with the simulated robot. If they match up, then we have
learned something about eye gaze, namely that simulated
robots do not necessarily have a different effect on attentional
mechanisms in humans from real robots. If, however, they
differ, then this effect will trigger a detailed investigation into
the nature of attention and how it interacts with physical
embodiment. And, of course, this is only one, immediate
example of how the simulated version of CRAMER can be
an invaluable research tool for psychology and HRI.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a simulation model of our
humanoid robot CRAMER in the UNREAL simulation en-
gine using the USARSim interface. We demonstrated how
a completely actuated robotic simulation model can be
developed with open-source tools and how the model can



be connected to a robotic architecture in such a way that
from the architecture’s perspective there is no difference
between controlling a simulated versus a real robot. We also
briefly discussed how such a simulated replica of a physical
robot that attempts to be as faithful as possible to both the
visual appearance as well as the physical behavior of the
robot can be a very useful tool for human-robot experiments.
In particular, we believe that such a tool is necessary for
the systematic exploration of the effects that the physical
embodiment of a robot has on humans interacting with it,
compared to possibly different effects of a two-dimensional
version of the same robot on a video screen.

We plan to expand the current USARSim interface in the
future, in particular, the way in which the ADE USARSim
server manages the sockets and lines of communication. Cur-
rently, we can only initialize one robot inside the UNREAL
environment and control it through our ADE system. The
plan is to generalize the interface so that a single USARSim
client can handle multiple connections. We are also planning
on developing “dummy objects”, which are initialized in the
same way as the robot agent, but with limited actuating
capabilities. A dummy object may be a box with a single
hinge, for example, on which an agent may perform such
actions as “open” or “close”. While such interactive objects
are already possible within UNREAL, there is currently no
way for a remote client to manage and control them. Yet, we
believe that objects with limited behavioral and actuating
capabilities will be of great use (e.g., as props) in HRI
studies.

VIII. ACKNOWLEDGMENTS

This work was in part funded by ONR MURI grant
#N00014-07-1-1049 to second author.

REFERENCES

[1] Steven Balakirsky, Chris Scrapper, Stefano Carpin, and Michael Lewis.
Usarsim: Providing a framework for multi-robot performance evalua-
tion. In Proceedings of PerMIS, 2006.

[2] You-Wei Cheah, Matthias Scheutz, Chen Yu, Paul Schermerhorn, and
Ikhyun Park. A multi-modal real-time interaction framework and
platform for studying natural human-robot interactions. In Proceedings
of the International Conference on Multimodal Interfaces, 2009 (Under
Review).

[3] Robert Rose, Matthias Scheutz, and Paul Schermerhorn. Empirical
investigations into the believability of robot affect. In Proceedings of
the AAAI Spring Symposium. AAAI Press, 2008.

[4] Paul Schermerhorn, J. benton, Matthias Scheutz, Kartik Talamadupula,
and Subbarao Kambhampati. Finding and exploiting goal opportunities
in real-time during plan execution. In Proceedings of the 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2009.

[5] Matthias Scheutz. ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures. Applied
Artificial Intelligence, 20(4-5):275–304, 2006.

[6] Matthias Scheutz and Paul Schermerhorn. Affective goal and task
selection for social robots. In Jordi Vallverd and David Casacuberta,
editors, The Handbook of Research on Synthetic Emotions and Sociable
Robotics. IGI Global, 2009.

[7] Matthias Scheutz, Paul Schermerhorn, James Kramer, and David An-
derson. First steps toward natural human-like HRI. Autonomous Robots,
22(4):411–423, May 2007.

[8] Matthias Scheutz, Paul Schermerhorn, James Kramer, and Christopher
Middendorff. The utility of affect expression in natural language
interactions in joint human-robot tasks. In Proceedings of the 1st ACM
International Conference on Human-Robot Interaction, pages 226–233,
2006.


