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Abstract—HRI studies investigating human-robot interactions
in mixed initiative teams typically only look at macro-level
behaviors. Yet, an investigation of micro-level behaviors such as
eye gaze fixations, attentional shifts, communicative acts, and
others is often necessary in order to determine the exact influence
of robot behaviors on human cognitive processes. In this paper,
we report the first results from several novel analyses of micro-
level behaviors obtained from video and audio recordings from
previous HRI team studies. The analyses focus on the effects of
both robot embodiment and affect expression in the robot’s voice
on the human’s verbal behavior and allocation of attention. The
findings show complex relationships among all factors that have
to be better understood to improve team performance.

I. INTRODUCTION AND MOTIVATION

The prospect of employing autonomous robots in mixed-
initiative human-robot teams is increasingly becoming a reality
as bold applications of robot technology are envisioned, often
in high-risk environments: from search and rescue missions
in disaster zones, to bomb disposals in civilian and military
contexts, to mapping and exploration in wilderness zones, to
NASA’s ambitious ideas for robots working on space stations
and planetary outposts, and many others. Common to all these
scenarios is the hope that humans would be able to rely on
their robotic teammate in much the same way that they rely on
their human teammates. Yet, enabling human-like interactions
in autonomous robots is a major research challenge because
many modulating factors can have an influence on team-
based interactions, even in human teams (including the team
structure and the familiarity of the team members, the specific
interaction environment and task, the training levels, back-
ground knowledge, and many more. Moreover, in the context
of mixed-initiative human-robot teams, additional factors such
as the robots’ appearance and embodiment, known capabilities
and behaviors, and levels of human trust can all have an impact
on the kinds of possible interactions and their effectiveness.

An increasing number of HRI studies have attempted to
investigate the different modulating aspects of human-robot
interactions in team tasks. For example, [1] compared a co-
located robot to a video feed of the same robot, and found
that the co-located robot was treated in a much more human-
like manner (e.g., giving the robot more personal space). [12]
carried out a human-robot teaming task which investigated
the effect of robots’ affect expressions on task performance
and found that utilizing affect expressions at key points in

the task led to better performance. Moreover, [7] found that
such affect expressions, when paired with a co-located robot,
lead to higher task performance than when paired with a
remote third-person view of the same robot. Similarly, [6],
utilizing a human-robot interview scenario, showed that human
interviewees were simultaneously more engaged and guarded
in their disclosures with a physical compared to simulated
robot. [4] tasked participants with investigating a pseudo-bomb
threat with either a human or robot teammate and found that
participants rated their workload as lower when they worked
with a robot teammate as opposed to a human. In a similar
vein, [2] investigated how multitasking affected a human
teammate’s reliance on the automation of a robot teammate in a
target recognition task and found that participants’ attentional
control (ability to shift attention flexibly) was a significant
factor in task success.

Most of the studies investigating human-robot team inter-
action, however, look only at macro-level behaviors and the
evaluations are thus usually based on subjective measures such
as post-experimental surveys (e.g., “How would you rate the
robot as teammate?”) or overall objective task performance
measures (e.g., “Did subjects in condition X have a higher
task performance than subjects in condition Y”). However, to
understand in detail the temporal dynamics of human-robot
interaction and the exact influence of robot behaviors on hu-
man cognitive processes (which often occurs at a subconscious
level), we need to focus on micro-level behaviors such as
the dynamics of human attentional shifts over time [14]. We
address this problem by applying a methodological paradigm
to data from a set of human-robot interaction experiments that
allows us to investigate several micro-level aspects of team-
based human-robot interactions, including: (1) the allocation
of attention and attentional shifts based on interactions, and
(2) various aspects of natural language exchanges (e.g., when
they occur and how frequent they are, how long they are
and how many words they contain, etc.). These aspects of
interactions have been used extensively in psycholinguistic
and developmental research in psychology to understand the
dynamics of human-human interactions (e.g., [16]) and we will
demonstrate that they can be equally applied to human-robot
interaction, yielding insights about the different modulatory
effects robot appearance, embodiment, and natural language
behaviors can have on human cognitive processes such atten-
tion allocation and natural language communication. Under-



standing these effects is critical, for, as we will show, applying
the wrong modulators in the wrong way at the wrong time can
have dismal consequences for human cognition, causing high
workload and frustration in humans that can ultimately lead to
the human resentment of the robotic teammate.

We start with a brief overview of the data annotation and
analysis methods together with a summary of the HRI study
that generated the dataset we used for applying the framework.
We then present five analyses of a subset of the data that
demonstrate the complex interactions among human subject
gender, robot affect expression, and robot embodiment. The
subsequent discussion and conclusion sections highlight the
implications of our findings and also briefly discuss future di-
rections for further studies and applications of the framework.

II. EXPERIMENTAL DATA AND METHODS

A critical prerequisite for investigating micro-level be-
haviors and analyzing their effects on a human interactant’s
cognitive processes is the availability of a richly annotated
data set. For team tasks this includes at the very least time-
synchronized audio and video recordings of some interac-
tions and activities of some team members during the task,
although complete recordings for all team members from
multiple perspectives would be better, with additional state-
based information directly recorded by the robot (e.g., log-
ging information from various robot sensors, state information
from architectural components such as speech recognizers and
parsers, planners, working memory, etc.). Even more useful
are eye gaze recordings from eye-trackers (e.g., [15]) as they
allow for a fine-grained tracking of eye gaze fixations, which,
in turn, are often triggered by attentional shifts and can
thus be used to measure a person’s allocation of attention.
Additional recordings from wearable brain sensors (such as
EEG or fNIRs) as well as physiological sensors measuring
basic bodily parameters (e.g., skin conductance, heart rate, etc.)
can be used to make informed inferences about the moment-
to-moment state of the human interactants. However, such
complex complete data sets are not often available yet, thus
necessitating the development of methods that can maximally
utilize the currently typical audio and video recordings of
experimental trials.

We will use, for all analyses in this paper, such a typical
data set from human-robot interaction experiments where only
time-synchronized video and audio recordings are available
from an indoor human-robot team task. We will first sum-
marize the task and the various conditions, and then describe
how we transcribed and annotated the audio and video data to
obtain a multi-modal corpus that can be datamined for patterns.
We then describe the particular micro-level behaviors we were
looking for in the corpus that could be affected by interaction
modulators. A full description of the experimental design and
overall results based on macro-level analyses procedures can
be found in [10], [9].

a) The Team Task: The team task places the human-
robot team in a hypothetical space exploration scenario which
takes place on a remote planet with the goal of exploring the
planetary surface. Exploration of the surface entails measuring
rock formations in the environment and transmitting that
information back to an orbiting spacecraft which can only be

reached in a location in the environment where the signal is
strong enough. Measuring a rock formation requires subjects
to complete a set of 2-digit by 2-digit multiplication problems
(instead of actually measuring rocks and determining their
volume). The role of the multiplication was primarily to add
cognitive load to the subject. There were 5 of these sets per
trial, however subjects only needed to complete and transmit
one of these sets to be successful. Finding a location with a
strong enough signal for transmission required the subject to
direct the robot through a handful of natural language instruc-
tions. These instructions included: “Go straight,” “Turn left,”
“Turn right,” “Go back” and “Take a reading.” Transmission
lasted 15 seconds and could only be initiated during the final
minute of each 4 minute trial. Each subject completed two sets
of 3 trials (referred to as a block) and each block’s condition
was applied independent of the other.

b) Experimental Conditions: Here we focus (for space
reasons) on only two conditions of the original study, em-
bodiment and affect. Embodiment has two levels: a physical
robot and a simulated robot. Figure 1(a) shows the robot used
in the physical robot-embodiment condition, a MobileRobots
Pioneer P3AT, while Figure 1(b) shows the view of the
simulated robot-embodiment condition (both the robot and the
environment), utilizing the Stage simulator [3]. In order to limit
the differences between the levels of embodiment to physical
presence, the layout of the real and simulated environments
were identical relative to the robot. Furthermore, both the real
and simulated robots utilized the DIARC architecture [12]
for control, ensuring each responded identically to both the
commands of the subject and its environment.

(a) Real robot (b) Simulated Robot

Fig. 1. Comparison of real and simulated conditions

The affect condition is composed of three levels: no affect,
medium affect and high affect. Affect is expressed through
the modulation of the robot’s speech production. Unlike the
embodiment condition, the expression of affect is related to the
progression of the trial. When the trial is the final 2 minutes,
the medium level of affect begins, causing the robot’s speech
to be modulated to express increased urgency/stress. In the
final minute, the modulation of the robot’s speech changes to
express an even more urgent/stressed state. Importantly, the
expression of affect is limited purely to the speech production
and has no effect on content or the robot’s behavior.

c) Participants: Participants in the experiment were
primarily comprised of students from Indiana University. In-



dividuals in the analysis are limited to 2 conditions from the
original 8 of the study. We selected only participants from
conditions which had no experimental manipulation applied
to block 1, in order to limit any ordering effects from the
analyses. Fifty-five individuals (32 female, 23 male) were
present in all but one analysis (see Section III-E), which was
comprised of 31 individuals (17 female, 14 male).

A. Annotations and Corpus Development

In order to get at the attentional and natural language
effects as a result of affect and embodiment, each subject
trial was transcribed and annotated across a number of factors
which centered around: the robot, the human subject, and the
task. For the robot, both the robot’s speech (i.e., what it said)
and the tone (i.e., presence of affect) were recorded. For human
subjects, everything they say during the trial (including both
commands to the robot and miscellaneous speech), where they
are looking (e.g., at the robot or their clipboard), what they are
doing (e.g., a calculation) as well as any changes in tone or
the presence of gestures are annotated. For the annotation data
from two video recordings was used: from the main camera
(which was mounted in a corner at the ceiling, providing a view
of the entire experimental space) and from a head-mounted
camera on the subjects’ heads (which provided a better view
of the subject’s current viewpoint).

The software used to create the annotations was the open-
source EXMARaLDA Score Editor [13]. In order to ensure
the validity of the annotations, each subject was annotated
once and then independently verified by another experimenter.
The same experimenter verified each annotation in order to
maintain consistency and validity across the annotations.

B. Micro-Level Behaviors and Measures

Attention allocation is determined a variety of cognitive
and non-cognitive factors. Here we are specifically interested
in visual attention as determined by eye gaze and shifts in
visual attention that are manifested in eye saccades, or gaze
shifts. For example, if a subject were working on a calculation
while looking at the clipboard and then changes the gaze
to the robot, this would count as an attentional switch and
marked as such in the annotation. Attentional switches are
categorized by the catalyst of the switch (cp. to [15]). A
catalyst categorizes what was happening around the time of
the attentional switch (e.g., was the robot speaking when
the switch occurred?). We isolated six catalyst categories:
Preceding Human Speech, in which the attentional switch
occurs immediately prior to human speech beginning; During
Human Speech, in which the attentional switch occurs as the
human is speaking; Following Human Speech, in which the
attentional switch occurs immediately after human speech has
finished; During Robot Speech and Following Robot Speech,
both of which are identical to their human counterpart and
No Catalyst. Catalyst categorizations are made based on the
proximity of the onset of the change in attention to another
event. For every attentional switch, all possible catalysts within
a second of the onset of the switch are compiled and whichever
catalyst is closest to the switch within that window is chosen.
If no catalyst is found within the onset window, the attentional
switch is categorized as having no catalyst.

The natural language effects we consider for these study
are more straightforward. During the trial, each command to
the robot is characterized by its duration and the number
of words that compose the command. Given the nature of
the task, the speech productions are often filled with aborted
words and disfluencies. In terms of the word count of a
communication, disfluencies were not counted, while aborted
words were. Further, though the commands available to the
subject are limited, it was common for subjects to modify the
commands with extraneous speech (e.g., “Would you... uh...
take a reading”). Additionally, the number of commands given
to the robot overall, across each trial.

C. Hypotheses

Based on our expectations of how attentional switches and
instructions should interact with the autonomy and embodi-
ment conditions, we formulated five main hypotheses:

H1: Total attentional switches should be higher overall in
the physical-embodiment condition than in the simulated-
embodiment condition. We expect that the physical nature of
the robot in the room will draw more gaze with its movement.
Furthermore, we expect participants will view the physical
robot as a more credible teammate, which will translate to
more human-like treatment and regard in terms of attention
allocation.

H2: Total attentional switches should decrease with affect as
the trial progresses (i.e., from phase to phase). We expect this
result due to affect serving as a reminder that time is running
out and that the participant needs to focus on their primary
task.

H3: Attentional switches occurring During Robot Speech
should be higher overall in the physical robot condition than
in the simulated robot condition. We expect the physical robot
to cause more switches because it will talk from different
locations in the environment and robot speech can serve as a
reminder for subjects to track the robot’s position (which they
need to do in order to give it instructions). This is different in
the simulated condition where the robot can always be seen in
the same location (i.e., on the monitor) and sound also always
originates from the same location.

H4: Attentional switches During Robot Speech when affect is
present should be higher in the physical robot condition than
in the simulated robot condition. We expect that the lack of
physical presence in the simulated robot condition will lead to
participants taking the expression of affect less seriously.

H5: Utterances should get shorter, by both word count and
duration, as affect increases. We expect that the expression of
affect will serve as a reminder for subjects that time is running
out and that they need to focus more on the primary task.

III. RESULTS AND ANALYSES

A mixed-design type-2 ANOVA was conducted on all
attentional and natural language data with between-subjects
factors Gender (male and female), Embodiment (real and
simulated) and Affect (with and without) and, when affect
was present, within-subjects factors Phase (with three levels



corresponding to the time cut-offs – 1/no affect, 2/medium
affect, and 3/high affect) and Trial (1, 2 and 3). All post-hoc
analyses were computed using pairwise t-tests without correc-
tion. All dependent measures are normalized by phase length
(i.e., Phase 1 is longer than Phases 2 and 3, which are the same
length). Of the six attentional switch catalysts described in
Section II-A, our analysis was focused on those which occurred
During Robot Speech (DRS) as well as the Total number of
attentional switches overall, as these two measures give the
most concise perspective into the role of attention. Moreover,
all three of the natural language features were used in our
analysis, i.e., the total number of communications with the
robot (NC), average communication length (CL), and average
word count (WC) (as described in Section II-A).

A. Analysis 1

Collapsing over factors Phase and Trial, Analysis 1 focuses
on the overall trends. For attentional measures, there was a
significant interaction of Gender and Affect on DRS attentional
switches (F (1, 47) = 4.40, p < .05). Post-hoc analysis
revealed significant differences between the Affect/Male (M =
0.84, SD = 0.81) interaction and both the Affect/Female
(M = 1.45, SD = 0.82) and No-Affect/Male (M =
1.37, SD = 0.55) interactions. Further, the difference between
Affect/Female and No-Affect/Female (M = 1.16, SD = 0.70)
was nearly significant (p = .059).

In terms of the natural language measures, there was a sig-
nificant interaction of Affect and Embodiment on the average
word count per communication (F (1, 47) = 6.77, p < .05).
Post-hoc analyses revealed significant differences between:
Affect/Simulated interaction (M = 1.79, SD = 0.50) and
the No-Affect/Simulated (M = 2.14, SD = 0.19), No-
Affect/Physical (M = 1.98, SD = 0.34) and Affect/Physical
(M = 2.10, SD = 0.24) interactions; No-Affect/Physical
interaction and No-Affect/Simulated.

Discussion. The significant interaction of Embodiment and
Affect on average word count per communication shows a
stark contrast between real and simulated robots in terms of the
effects of affect. When affect is present, participants use signif-
icantly more words per communication with a physical robot
than a simulated robot. For simulated robots, the presence of
affect significantly negatively affects communication, in terms
of word count per communication with the robot, while affect
has the opposite effect on physical robots. We predicted in
(H5) that utterances would decrease in word count as affect
increases, regardless of embodiment, because it would serve as
a reminder to focus on the task. This result suggests that affect
has a more complex role than merely as a reminder that time
is running out, and that the embodiment of the robot plays a
key role in how human-teammates communicate.

Moreover, the significant interaction of Gender and Affect
attentional switches made During Robot Speech suggest that
males and females respond to affect modulated speech in
robots in opposite ways. Female participants were significantly
more likely to switch their attention to the robot compared to
male participants in the affect condition, on par with males in
the no affect condition, where they were significantly more
likely to switch their attention to the robot than when no
affect was present. It is possible that this difference is due

to task-based differences, with males performing differently
in Phase 1 where no affect is present; however, the lack of
a significant interaction of Gender and Phase in Analysis 2
(see Section III-B) makes a task-based explanation unlikely,
lending support to more basic gender differences (see also [8],
[11]).

B. Analysis 2

To better understand the role of Affect across the trial,
Analysis 2 incorporated Phase as within subjects factor. In
terms of the attentional switch measures, there was a signifi-
cant 3-way interaction of Affect, Embodiment and Phase with
both DRS attentional switches (F (2, 94) = 5.11, p < .01) and
Total attentional switches overall (F (2, 94) = 7.37, p < .01).
Post-hoc pairwise analyses revealed an identical pattern of
significant interaction differences across both measures in
Phase 1. Affect/Simulated (DRS: M = 1.20, SD = 0.97;
Total: M = 4.02, SD = 2.61) was significantly different
from No-Affect/Simulated (DRS: M = 2.13, SD = 1.05;
Total: M = 6.93, SD = 2.75) and Affect/Physical (DRS:
M = 2.12, SD = 1.21; Total: M = 5.81, SD = 2.15),
while No-Affect/Physical (DRS: M = 1.25, SD = 0.94; Total:
M = 4.50, SD = 2.60) was significantly different from No-
Affect/Simulated and Affect/Physical. Additionally, there was
a significant difference in DRS attentional switches between
participants in the No-Affect/Physical (M = 0.87, SD = 0.89)
and No-Affect/Simulated (M = 1.54, SD = 0.86) conditions
in Phase 2.

On the natural language measures, a significant 3-way
interaction of Affect, Embodiment and Phase was found with
average word count per communication (F (2, 94) = 3.56, p <
.05) and number of communications overall (F (2, 94) =
3.59, p < .05). In Phase 1, across both measures, a signifi-
cant difference was found between Affect/Simulated (AWC:
M = 1.79, SD = 0.89; NC: M = 6.77, SD = 3.83) and
Affect/Physical (AWC: M = 2.32, SD = 0.25; NC: M =
9.41, SD = 2.29). Further significant pairwise differences
with word count per communication were Affect/Simulated
and No-Affect/Simulated (M = 2.37, SD = 0.31), as well
as a significant difference between No-Affect/Physical (M =
2.05, SD = 0.54) and No-Affect/Simulated. In Phase 2, sig-
nificant differences were found between No-Affect/Simulated
(M = 2.22, SD = 0.38) and both Affect/Simulated (M =
1.83, SD = 0.56) and No-Affect/Physical (M = 1.94, SD =
0.51). Finally, in Phase 3, significant differences were found
between Affect/Simulated (M = 1.74, SD = 0.32) and
Affect/Physical (M = 1.87, SD = 0.21).

Discussion. In Phase 1, No-Affect/Simulated and Af-
fect/Physical yield significantly more attentional switches over-
all and During Robot Speech than both Affect/Simulated and
No-Affect/Physical. A similar trend is seen in the natural
language measures, which echoes results found in Analysis 1.
In terms of (H4), this result is difficult to interpret. While the
results show that affect, when coupled with a physical robot,
yields significantly more attentional switches During Robot
Speech than a physical robot without affect, it does so in
Phase 1, where no affect manipulation is present. A possible
explanation of this may be that experiencing affect has lasting
effects on participants after the first trial, altering their behavior



on subsequent trials even when affect is not present (i.e., in
Phase 1) – we will investigate this further in Analyses 3 and
4 below.

We predicted in (H2) that Total attentional switches would
decrease with affect (from phase to phase) as the trial pro-
gressed and this prediction holds true. Analysis 1 yielded
a complex picture in terms of (H5). The results of this
analysis add to that complexity, with average word count per
communication following our prediction, but the number of
communications overall trending in the opposite direction. The
results in terms of both (H2) and (H5) suggest that more work
is necessary in determining affect’s ability to, in general, instill
focus/urgency in a human teammate, as well as it’s effect on
natural language.

C. Analysis 3

As a result of the significant interactions with Affect found
in Phase 1 (despite the absence of the Affect manipulation), we
now limit the analysis to Trial 1 data to control for changes in
experiencing affect. Across both attentional switch and natural
language measures, no significant interactions of Phase and Af-
fect were found. A significant main effect of Phase was found
on DRS attentional switches (F (2, 94) = 10.31, p < .001),
Total attentional switches (F (2, 94) = 14.48, p < .001) and
average word count per communication (F (2, 94) = 3.91, p <
.05). All results followed the trend seen in previous analyses
(i.e., attentional and language measures highest in Phase 1 and
tapering off).

Discussion. The results of Analysis 2 suggest that experiencing
affect has effects that carry on even when it is no longer being
directly experienced. Analysis 3 is limited to Trial 1, thus the
lack of any significant effect of affect in Phase 1 suggest the
effects of affect in Phase 1 seen in Analysis 2 are likely due to
lasting effects of affect. The results of Analysis 4 (see Section
III-D) corroborate this interpretation.

D. Analysis 4

Given the results of Analyses 2 and 3, Analysis 4 was
limited to Trials 2 and 3 in order to investigate the differences
by Phase after participants had experienced the affect manipu-
lation once (effectively treating Trial 1 as a practice). With at-
tentional switch measures, there was again a significant 3-way
interaction of Affect, Embodiment and Phase with both DRS
attentional switches (F (2, 94) = 4.74, p < .05) and Total at-
tentional switches overall (F (2, 94) = 7.37, p < .01). Post-hoc
analyses revealed an identical pattern of significant interaction
differences across both measures in Phase 1. Affect/Simulated
(DRS: M = 1.35, SD = 1.06; Total: M = 4.35, SD =
2.71) was significantly different from No-Affect/Simulated
(DRS: M = 2.25, SD = 1.09;Total :M=7.30, SD=2.94)
and Affect/Physical (DRS: M = 2.16, SD = 1.22; Total:
M = 5.96, SD = 2.24), while No-Affect/Physical (DRS:
M = 1.22, SD = 1.01; Total: M = 4.33, SD = 2.80)
was significantly different from No-Affect/Simulated and Af-
fect/Physical. In Phase 2, significant differences in both DRS
attentional switches and Total attentional switches between
No-Affect/Physical (DRS: M = 0.81, SD = 1.09; Total:
M = 2.54, SD = 1.69) and No-Affect/Simulated (DRS:
M = 1.67, SD = 0.95; Total: M = 3.97, SD = 2.18).

A significant 3-way interaction of Affect, Embodiment
and Phase was found on the natural language measures num-
ber of communications overall (F (2, 94) = 3.76, p < .05)
and average word count per communication (F (2, 94) =
5.88, p < .01). Post-hoc analyses revealed in Phase 1, for
both the number of communication overall and average word
count, significant differences between Affect/Simulated (NC:
M = 6.85, SD = 3.97; AWC: M = 1.78, SD = 0.89)
and both No-Affect/Simulated (NC: M = 8.97, SD = 1.88;
AWC: M = 2.46, SD = 0.16) and Affect/Physical (NC:
M = 9.51, SD = 2.25; AWC: M = 2.35, SD = 0.25). Also
in Phase 1, significant differences by average word count were
found between No-Affect/Physical (M = 1.89, SD = 0.79)
and both Affect/Physical and No-Affect/Simulated. In Phase
2, a significant difference in average word count was found
between No-Affect/Simulated (M = 2.24, SD = 0.51) and
No-Affect/Physical (M = 1.82, SD = 0.59). In Phase 3, a sig-
nificant difference in number of communications overall was
found between No-Affect/Simulated (M = 6.81, SD = 3.49)
and No-Affect/Physical (M = 9.62, SD = 5.96).

Discussion. Analysis 4 is limited to Trials 2 and 3, thus the
reappearance of significant effects of affect in Phase 1 suggest
that experiencing affect does have lasting effects. Indeed, taken
together, the results of Analyses 2, 3 and 4 provide strong
evidence that once participants experience affect in Phases 2
and 3, it altered their behavior toward the robot later, in Phase
1, when affect was no longer present.

E. Analysis 5

Finally, to isolate effects of embodiment from affect,
Analysis 5 was limited to participants who never experienced
the affect manipulation. In terms of attentional switch mea-
sures, there was a significant main effect of embodiment
of those which occurred During Robot Speech (F (1, 27) =
8.90, p < .01) with significantly more attentional switches
with simulated embodiment (M = 1.50, SD = 0.57) than
physical embodiment (M = .91, SD = 0.58). Additionally,
there was significant interaction of Embodiment and Phase for
Total attention switches (F (2, 54) = 4.28, p < .05). Post-hoc
analyses revealed significant differences in Phase 1 between
physical embodiment (M = 4.50, SD = 2.60) and simulated
embodiment (M = 6.93, SD = 2.75).

Discussion. The results of Analysis 5 were perhaps the most
surprising. We predicted in (H1) and (H3) that attentional
switches would be higher overall, and more specifically During
Robot Speech, in the physical robot condition than in the
simulated robot condition. Analysis 5 directly investigated this
by removing all participants in the affect condition from the
analysis. Reviewing (H1) first, we see significantly more atten-
tional switches overall in the simulated embodiment condition
than in the physical embodiment condition in Phase 1 and
maintaining the general trend across trials. Moving to (H3),
attentional switches During Robot Speech were significantly
higher in the simulated embodiment condition overall. One
possible explanation of such differences may be that partic-
ipants viewed the simulated robot as less competent [5] and
thus felt they needed to check in with it more often (much
like they would with a less experienced human teammate).
Another explanation may be that it was easier to keep an eye



on the physical robot through their peripheral vision, while
they needed to avert their gaze to the computer screen to check
in with the simulated robot.

IV. GENERAL DISCUSSION

Analysis 1 showed that affect expressions, when paired
with simulated robots, negatively affect communication with
the robot, while they improve communication when paired
with physically embodied robots. Furthermore, it was shown
that female and male participants respond in opposite ways
to expression of affect, with females more likely to change
attention to the robot when its speech is modulated with affect.
In terms of future human-robot teaming scenarios, these results
make clear that affect expressions must not be applied in a
one-size-fits-all manner, but rather carefully utilized when the
aspects of the given scenario are a good fit.

Analyses 2, 3 and 4, taken together, suggest that expe-
riencing affect with a robot has lasting effects on future
behavior/interactions with the robot, even when affect is no
longer present. Further research into this result is necessary to
understand how these lasting effects may manifest themselves,
and for how long, in the human-robot team dynamics. This
result is especially important because much contemporary
work in HRI often modulates affect expressions without con-
sideration to such effects.

In Analysis 5, we found that simulated robot teammates
garner more attention than physically embodied teammates.
We suspect that the simulated embodiment condition resulted
in significantly more attentional switches than the physical
embodiment condition due to a lack of confidence in the
simulated robot (see [5]) or that the physical robot was easier
to keep track of in participant’s peripheral vision. Confirming
or disconfirming these alternatives is important to allow robots
to get the attention of human teammates, especially in high-
risk scenarios.

V. CONCLUSION

In this paper, we used audio and video recordings from a
previous human-robot interaction study to build an annotated
corpus that could be datamined for micro-level behaviors in
human-robot interactions. We specifically focused on affect
expression and robotic embodiment as modulators that can
affect human attention allocation toward, and natural language
dialogues with, a robot teammate. We found that affect and
simulated embodiment pairs are, in general, a detriment to
the team dynamic, and that affect is only a desirable trait in
physically embodied robots. In addition, we found affect to
be extremely polarizing in terms of attention allocation along
gender lines, drawing significantly more attention from female
participants. Finally, we found that simulated robot teammates
garner more attention than physically embodied teammates,
however, we suggest this may be the result of a lack of
confidence in simulated robots. Overall, our analysis reveals
the complex relationship affect and embodiment play on key
micro-level behaviors that are vital to attaining successful
human-robot team dynamics.
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