
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022 12523

A Framework for Robot Self-Assessment of
Expected Task Performance

Tyler Frasca and Matthias Scheutz

Abstract—We propose a self-assessment framework which en-
ables a robot to estimate how well it will be able to perform a
known or possibly novel task. The robot simulates the task to
generate a state distribution of possible outcomes and determines
(1) the likelihood of overall success, (2) the most probable failure
location, and (3) the expected time to task completion. We evaluate
the framework on the “FetchIt!” mobile manipulation challenge
which requires the robot to fetch a variety of parts around a
small enclosed arena. By comparing the simulated and actual task
resulting state distributions, we show that the robot can effectively
assess its expected performance which can be communicated to
humans.

Index Terms—Human-robot teaming, methods and tools for
robot system design, simulation and animation.

I. INTRODUCTION

UNDERSTANDING what robots can or cannot do is essen-
tial for fluid human-robot interactions as well as effective

robot task performance. Yet, it is often difficult if not impos-
sible for humans to make inferences about a robot’s expected
performance on a task they have not seen the robot perform
because they lack detailed information about the robot’s action
success and failure probabilities. A robot’s ability to engage with
a human in dialogues about its task performance would therefore
significantly improve human mental models of robot operation
and thus the likelihood of mission success (as robots would
then likely be deployed in ways that play to their strengths).
Prerequisite to having such dialogues is a robot’s ability to
self-assess, i.e., introspect its operation, monitor its progress,
and generate performance predictions.

Additionally, a robot with self-assessment capability can ulti-
mately improve its performance and human counterparts on cur-
rent and future tasks, because it will be able to predict and resolve
potential issues prior to failure. For example, the robot could
inform a human of potential problems and propose alternatives,
or simply ask for help. Past work on self-assessment has typically
focused on low-level sensorimotor error and fault detection [1],
[2], [3], [4]; less work however, has focused on self-assessment

Manuscript received 23 June 2022; accepted 15 October 2022. Date of
publication 2 November 2022; date of current version 14 November 2022.
This letter was recommended for publication by Associate Editor H. Mori and
Editor T. Ogata upon evaluation of the reviewers’ comments. This work was
supported by the U.S. Office of Naval Research under Grant N00014-18-1-2503
(Corresponding author: Tyler Frasca.)

Tyler Frasca is with the Department of Computer Science, Tufts University,
Boston, MA 02155 USA (e-mail: tyler.frasca@tufts.edu).

Matthias Scheutz is with the Faculty of Computer Science, Tufts University,
Boston, MA 02155 USA (e-mail: matthias.scheutz@tufts.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3219024, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3219024

for task performance which is critical for human-robot collab-
oration. Consider a robot tasked with fetching supplies for a
medical care unit in a disaster relief mission, or gathering a set
of tool to repair a broken component on a ship. To complete
these tasks, the robot needs to execute a combination of various
manipulation, perception, and navigation actions. Therefore, if
a robot wants to predict its expected overall performance, then
it needs to consider its performance across all action types. Un-
derstanding expected task performance, including probability of
success, time-to-completion, and failure locations, requires the
assessment of all parts of a task execution, not just a singular
sensorimotor component.

We thus present a comprehensive framework that will enable
more informed human-robot interactions by allowing humans to
ask questions about the robot’s task performance including: 1)
What is the likelihood of completing a task? 2) Which actions are
most likely to fail? 3) How long will it take to complete an action?
We evaluate the framework by comparing expected vs actual
performance measures in a challenging mobile manipulation
task. The proposed framework answers these questions by intro-
specting on the actions that need to be performed to accomplish
the task. It enables more sophisticated task executions where
robots proactively determine changes of their plans, based on
their self-assessment, which they can communicate and justify
to humans by pointing to higher success probabilities of the
alternatives.

II. RELATED WORK

Self-Assessment is a process for humans to know their capa-
bilities and predict expected performance from past experiences.
It can be beneficial during teaching, learning, planning, and exe-
cution. Developing robots with self-assessment capabilities will
provide them with the ability to know their own limits, predict
their expected performance on a task, and ultimately improve
human-robot interaction. Again, consider the robot tasked with
fetching medical supplies. It needs to execute several actions in
order to complete the overall task, so to assess its expected task
performance, the robot needs to consider its performance across
all actions.

Although there has not been much work on robot self-
assessment per se, related work has focused on predicting
failures for autonomous driving [4], [5], anomalous event de-
tection in manipulation [3] and navigation [6], human-robot
interaction to project a robot’s intention [7], and architectural
configurations [8]. However, most of these approaches focus
on lower-level sensorimotor information instead of higher-level
task information.

For example, [2] propose a framework for introspecting on
an autonomous robot’s vision system to learn a model of the

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 07,2023 at 21:12:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7448-3074
https://orcid.org/0000-0002-0064-2789
mailto:tyler.frasca@tufts.edu
mailto:matthias.scheutz@tufts.edu
https://doi.org/10.1109/LRA.2022.3219024

12524 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

expected performance and determine its ability to rely on what
it detects. Similarly, [1] develop a self-evaluation vision system,
ALERT, to predict if it is likely to produce an unreliable response
to an input. If the system predicts an unreliable response, then
it can attempt to fail gracefully.

Similarly, [9] concentrate on acquiring object models and
when to extend the model through probabilistic measures in-
cluding, observed detection success, predicted detection suc-
cess, and model completeness. By knowing its limits, the robot
can improve performance in future tasks by gathering more
knowledge. [10] present an approach which allows a robot to
assess how good part recognition and pose estimation are. From
there the robot is able to determine if it should continue with
task execution or if it should ask for assistance from human. [6]
develop a model for self-assessment based on novelty detection
techniques. The author presents a neural architecture to learn
sensorimotor contingencies from two navigation strategies then
detect extraneous sensorimotor patterns in novel situations. [11]
extends this architecture to improve skills by asking humans for
help.

Though the aforementioned frameworks can assess aspects of
sensorimotor components, they are each limited to their specific
function and are unable to assess overall task proficiency when
a combination of different types actions are required, such as
is the case for fetching supplies. [12] and [13] propose initial
frameworks for reasoning about task proficiency. [12] focus on
detection of proficiency by assessing if a robot’s actions take
it closer to the desired goal during execution, whereas [13]
concentrate on human-robot dialogues about task performance
before, during, and after execution. Similar to both of these
works, our approach focuses on self-assessment for task per-
formance. However, our approach assesses the entire task by
simulating the task and generating detailed information about
how well the robot complete the task. Specifically, we present
a framework which simulates task execution and assesses the
resulting action traces and state distributions. The robot can then
determine the likelihood of success, where it foresees issues, and
the time-to-completion.

III. THE SELF-ASSESSMENT FRAMEWORK

The three goals of the self-assessment framework are to
allow robots to determine: 1) the likelihood of plans or action
sequences completing successfully, i.e., to reach a goal state
from a given initial state, 2) which action is most likely to fail
and why, 3) the expected time to completion. The challenge here
is that the system will typically not have sufficient knowledge
about the various states it can be in upon completing any one of
its actions, especially if the state space is large as is typically the
case with robots. Moreover, it will often not be possible for
the robot to explore particular actions in certain states (e.g.,
because the robot cannot easily get itself into the state or make
necessary environmental changes to bring about the state in
which it intends to execute an action). Rather, what the robot
can do is to keep track of the relevant pre-conditions of any
action it performs, i.e., the conditions that enable action exe-
cution (irrespective of other environmental factors, even ones
that might have modulatory influence on action execution). And
it can track the effects its action execution has on relevant
post-conditions (i.e., the outcomes the action should accomplish
with additional side effects that might negate pre-conditions),
recording the frequencies of ending up in these states as it

keeps executing the same action. Doing this every time an
action is executed will allow the robot to generate conditional
probability distributions that reflect action outcomes and directly
link pre- and post-conditions irrespective of other aspects of the
environment. From the robot’s perspective, these conditional
probabilities are the closest it can get to the true state transition
function of the environment and it is the best model it can use
to estimate its ability to successfully complete a plan or action
sequence. In the following, we will make these ideas formally
precise, starting with preliminaries, followed by the definition of
“success probability” and “success duration” for plans or action
sequences.

A. Preliminaries

Let L be a first-order language with a finite number of
individual constants, action symbols, and predicate symbols
defined over finite models which is used to formalize a robot’s
operating domain, i.e., the task environment in which the robot
operates with all of its objects and attributes, relevant relations,
and applicable actions with their parameters. We define Υ to
represent the set of atomic propositions in L (without action
expressions) describing all possible aspects of the environment,
including the physical states of the robot. We assume that the
robot has a repertoire of temporally extended “primitive actions”
that can be characterized by four formulas in L in disjunctive
normal form (DNF):1 pre-conditionsΠ that if met will enable the
execution of the action, operating conditionsΩ that are necessary
(but not necessarily sufficient) for the successful execution of the
action, success conditions Σ which will be true when the action
completes successfully, and failure conditions Φ which reflect
the different world states the system can be in when the action
fails.2 We can then use primitive actions to define action scripts
which are extensions of “programs” in quantifier-free first-order
dynamic logic with empty assignments, see [14]. Specifically,
consider the dynamic logic formula Πα → 〈α〉Ψα which states
that if Πα (the pre-conditions) are true, then one execution path
of the program α will make Ψα (the post- conditions) true. If
we consider all Ψα for which Πα → 〈α〉Ψα and single out the
one Ψα = Σ that represents the intended action outcome, the
remaining Ψα = Φ (with unintended outcomes) represent the
different failure conditions.

An action script α is thus a six-tuple
〈args, body,Πα,Ωα,Σα,Φα〉 consisting of a sequence of
action parameters args = (x1, x2, . . . , xn) and a sequence
body = α1(. . .);α2(. . .); . . . ;αn(. . .) of primitive actions or
action scriptsαi(. . .) (with any number of parameters, including
xi), or “conditional gotos”: IF φ GOTO n where n is the n-th
element in the sequence (with the meaning that execution is
resumed at the n-th entry in the script if φ is true). In addition,
the four formulas represent pre-conditions Πα, success Σα and
failure Φα conditions, and operating conditions Ωα.

Finally, we formalize the robot’s task environment as a
Markov Decision Process (MDP):M = 〈S, s0, A,A(s), T 〉

1The disjunctive normal form is more permissive than a simple conjunction
of proposition in that, by consisting of the disjunction of conjuncts, it allows for
the specification of alternative states.

2Note that operating conditions are different from pre-conditions which might
change as they action is being executed. For example, the pre-condition for
“pouring” might be filled(cup), the post-condition might be empty(cup),
and the operating condition might be holding(cup), and as soon as pouring
starts the cup will be no longer filled, even though it will not be immediately
empty either.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 07,2023 at 21:12:05 UTC from IEEE Xplore. Restrictions apply.

FRASCA AND SCHEUTZ: FRAMEWORK FOR ROBOT SELF-ASSESSMENT OF EXPECTED TASK PERFORMANCE 12525

where
� SM is a finite set of (consistent) states s ⊆ Υ (to make

it possible to track all true propositions which are needed
later to define pre- and post-conditions for a task).

� s0 ∈ SM is the initial state of before task execution.
� AM is a finite set of robot actions.
� A(s)M : SM → 2AM is mapping each state s ∈ SM to the

set of actions available to the agent at s (with all possible
argument bindings based on the objects in SM).

� TM : SM ×AM × SM → [0, 1] is the conditional proba-
bilityP (s′|s, a)of transitioning to s′when executing action
a in s.

We drop the subscriptM when there is no ambiguity about
the components of MDP referred to and drop the superscripts α
if the reference to the action script is clear from context.

B. Success Probability and Duration of Action Scripts

Given an action scriptα and a task environmentM, we would
like to determine the success probability distributionP(Σ|α,Π),
a central notion of performance self-assessment. We will de-
fine this distribution inductively, starting with primitive actions
a ∈ A (that cannot be decomposed into smaller actions) and
then defining it for action scripts. Π is in DNF, i.e., of the form
where each disjunct Πi represents an alternative pre-condition
for action execution and each conjunct πi,j represents aspects
of a state s ∈ S (not necessarily the full state) that s must
meet in order for a to be executable (in s), i.e., for any s such
that a ∈ A(s), {πi,1, πi,2, . . . , πi,ki

} ⊆ s must hold for a to be
executable. We will thus use disjuncts (of conditions) and sets of
conjuncts (of disjuncts) interchangeably (as the sets are always
finite).

We next split conjunctions of success conditions Σj into
conditionally independent subsets (conjunctions) Σj,cj of con-
ditions (this could result in as many sets as there are conjuncts, or
possibly keep the original formula if there are no conditionally
dependent conjuncts). For each Σj,cj ∈ Σj we then consider
P (σj,cj |a,Πi), i.e., the conditional probability that executing
a will make Σj,cj true given the particular pre-condition. Note
that each Σj,cj and Πi amounts to a partitioning of S with Π =
[s]Πi⊆s and Σj,cj = [s′]Σj,cj

⊆s′ . Hence, if T were available to
the robot, it could simply obtain the distribution P(Σj,cj |a,Πi)
from the individual probabilities T (s, a, s′) for all s and s′ such
that Πi ⊆ s and Σj,cj ⊆ s′, i.e., from the aspects of states s/s′

that are not determined by Πj /Σj,cj . However, as stated earlier,
T is likely not available, hence the robot needs to determine
P(Σj,cj |a,Πi) by tracking executions of a that make Σj,cj true
when Πi holds, for all Πi and Σj,cj of all actions a ∈ A, or at
least those actions that it will need to execute for the tasks under
consideration.

Note that since the success conditions are conditionally inde-
pendent, we obtain

P(Σj |a,Πi) =
∏

cj

P(Σj,cj |a,Πi)

i.e., the product of the probability distributions of the condition-
ally independent success conditions. Doing this for all combi-
nations of disjuncts Σj and Πi then yields P(Σ|a,Π) for a ∈ A.
Note that for actions a with multiple disjunct pre-conditions we
can get better success estimates by eliminating false disjuncts
Πf from the distribution P(Σ|α,Π−Πf) (because the robot

cannot be in those states). We can then also directly extend
this to action scripts α consisting only of action sequences
α1(. . .);α2(. . .); . . . ;αn(. . .):

P(Σα|α,Πα) =
∏

i

P(Σαi |αi,Π
αi)

since each action αi will need to succeed for the overall script
execution to succeed.

Tracking the effects of actions given certain pre-conditions
as compared to the classical state transitional model enables
focusing on the aspects of the states that are relevant for an
action, whereas the classical state transition model leads to
an explosion of conditional probabilities because of irrelevant
aspects of states. Consider an action α that is dependent on
only the pre-condition π and has only the success effect σ. The
traditional approach to learning a state transition model would
have to learn the conditional probabilitiesP (s′|s, α) for all pairs
of s and s′ and could not tell them apart, whereas our approach
only requires one value P (σ|π, α).

For scripts containing conditional “goto” instructions, we can
generate new scripts from execution traces, i.e., if a conditional
instruction fails, we simply skip it in the calculation, and if it
succeeds, we continue to factor in the actions from the “goto”
location. For example, if α3 = IF φ GOTO 5, then α4 is omitted
in the above calculation. If “goto” instructions lead to loops,
then the probability distribution of the action sequence within
the loop needs to be repeatedly factored in the above calculation.

Finally, we are also interested in defining the expected du-
ration E[Δ(α)] of α where Δ() is the duration distribution of
executions of α which is given by

∑
αi∈α E[Δ(αi)]], i.e., the

sum of the respective expected distributions of the actions αi in
α. To calculate these values, the robot again has to keep track of
its action executions, in this case execution times for all primitive
actions a ∈ A (or again, only those that are needed in the task),
from which it will get the distributionsΔ(a) needed for calculat-
ing the overall duration distribution and thus the expected execu-
tion time. Analogous to keeping track of the execution success
of a for eachΠi andΣj,cj we can refine time keeping by tracking
execution times separately for the specific pre-conditionsΠi and
success conditions Σj,cj , i.e., Δ(a,Πi,Σ(s)j,cj).

C. Simulating Action Scripts

We assume the robot learns through experience or is provided
P(Σa|a,Πa

i) for all task-relevant actions a ∈ A as well as
Δ(a,Πa) and can access these distributions. We do not assume
that the robot has the relevant failure distribution P(Φa|a,Πa

i)
even though the script can be used to update it, as we will show
below. We can then use the success and duration distributions
for primitive actions to sample from the overall distributions of
executions of action script α using simulations as follows:

Notice, in Algorithm 1, the recursive invocation of “Simulate”
in line 21 whenever an action α is not a primitive. Also note-
worthy is that after determining the applicable pre-conditions
(leaving out disjuncts that are not true in s) and sampling from the
respective success and duration distributions, the state “update”
in line 32 requires the robot to integrate the new state information
Σαk with its current simulation state s. This means removing
any proposition in s that is inconsistent with propositions Σαk

which can be accomplished in the implementation by explicitly
tracking which positions need to be removed (e.g., in the manner
of STRIPS operators).

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 07,2023 at 21:12:05 UTC from IEEE Xplore. Restrictions apply.

12526 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Algorithm 1: Simulate(α, s0).
1: input: α, the action script
2: so, the initial state of the environment
3: output: success, duration, final state, and action trace
4: s← s0, initialize the current state
5: d← 0, initialize the current duration
6: τ ← createTreeNode(α), action trace
7: outcome← success
8: c← Πα, get the current pre-condition
9: if c 	∈ s then

10: return failure,d, s, τ
11: end if
12: if primitive(α) then
13: dα ← sample from Δ(α,Πα)
14: d← d+ dα

15: pα ← sample from P(α,Πα)
16: if pα 	∈ Σα then
17: outcome← failure
18: end if
19: else
20: for all αk ∈ bodyα do
21: (outcome, dαk , s, ταk)← Simulate(αk, s)
22: d← d+ dαk

23: addNode(τ, ταk)
24: if outcome 	= success then
25: return outcome, d, s, τ
26: end if
27: end for
28: if outcome = success then
29: pα ← Σα

30: end if
31: end if
32: s← update s with pα

33: return outcome, d, s, τ

While the above simulation cannot account for unexpected
outcomes (errors due to aspects of environmental states that
are not modeled explicitly in the pre-, operating-, and success
conditions), it is able to generate different distributions of failure
states based on execution failures that occur at different places
in the script. Specifically, whenever the simulation of a script
α aborts due to (simulated) execution failures, the resultant
failure state s can be used to update P(Φα|α,Πα) (where the
initial distribution can be obtained from the failure distributions
of primitive actions to the extent that they are available). If
enough simulations of α are run, the robot will be able to collect
comprehensive data resulting in a distribution of possible failure
states of α which can be used for various types of analyses.

D. Refined Success and Failure Discovery Through Simulation

One argument against repeatedly running simulations on
action scripts would be to point out that one could simply
calculate the various probabilities of failures at different points
in the action sequenceα1;α2; . . . ;αk; . . . ;αn of a scriptα using
P(Φαk |αk,Π

αk) ·
∏k−1

i=1 P(Σαi |αi,Π
αi).

However, this method fails to account for the “long-term
effects” of action failures on actions later in the execution path,
which may or may not result in script failures. Script simulations,
on the other hand, can uncover such long-term effects and thus

result in much more refined estimates of success and failure
distributions.

For example, consider the following segment of an action
script which makes a robot pick up the caddy in one location
and then bringing it to another location where it needs to add
items into the caddy.

...
pre: empty(gripper),reachable(caddy)
pick-up(caddy)
post: holding(caddy),up(arm)

pre: not(at(assembly-location)) or
not(reachable(desk))

move-to(assembly-location)
post: at(assembly-location),

reachable(desk)
pre: holding(caddy),reachable(desk)
put-down(caddy,desk)
post: on(caddy,desk),down(arm)
...

Now suppose the caddy slipped when the robot grasped
it, so that the success condition of holding(caddy) for
“grasp(caddy)” is false. However, since holding(caddy) is not
needed for the subsequent “move-to(assembly-location)” ac-
tion, script execution can continue. Yet, when the subsequent
action “put-down(caddy,desk)” is attempted, the pre-condition
holding(caddy) is not met and execution fails at that point.
The returned failure state will thus contain ¬holding(caddy) ∧
at(assembly-location) and this state can be added to the
P(Φα|α,Πα). Note that, conversely, if up(arm) does not hold,
script execution can continue as up(arm) is not needed as a
pre-condition for any of the subsequent actions and that the
overall script might complete successfully, thus contributing to
the P(Σα|α,Πα) instead of P(Φα|α,Πα).3

E. How to Use the Framework

Fig. 1 provides an overview on how to use the proposed
framework. During the Setup Phase, the user defines and
implements primitive actions and action scripts for the robot
including pre-, post-, and operating-conditions. Then the robot
can be instructed to perform the actions to learn the associated
performances models, including the success/failure distribution
and the time-to-completion distribution. While this training step
is not strictly necessary because the system updates performance
models every time an action is executed (cp. to Section III-C),
thus getting more and more accurate estimates over time, it is
better to start with pre-trained models to be able to get reasonable
estimates right away (not surprisingly, with untrained models,
initial estimates can deviate significantly from actual perfor-
mance). After training, the models can be used for generating
performance estimates in the Assessment Phase. For example,
as shown in Fig. 1, the user might ask the robot about the
probability of successfully fetching a screw. The robot will then
simulate the fetch action down to all involved primitive actions,
sample their success distribution and the time-to-completion

3Of course, if ¬arm(up) would cause problems with navigation, then the
actual performance of the script would still be impacted, but the robot could not
know that because it has to rely on what is being explicitly modeled in its action
script. In this case, the operating condition arm(up) would have to be added
to the script.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 07,2023 at 21:12:05 UTC from IEEE Xplore. Restrictions apply.

FRASCA AND SCHEUTZ: FRAMEWORK FOR ROBOT SELF-ASSESSMENT OF EXPECTED TASK PERFORMANCE 12527

Fig. 1. A overview of how to use the proposed framework for assessing the robot performance (see text for details).

distribution until it has generated a performance estimate for
the overall action measures as shown on bottom right.

IV. EVALUATION

We evaluate the framework by integrating it into a robotic
architecture and demonstrating the robot provides accurate per-
formance information, when queried through natural language,
about two different real world tasks, explained below. Note,
we are using natural language instructions to demonstrate the
framework in a HRI context, but the details for the natural
language are not in the purview of this paper. There are several
architectural requirements for the performance assessment algo-
rithm, including a goal managing component. This component
accepts goals from other components, maintains current and past
goals, reasons about plan to accomplish the goal, and executes
the goal plan. Additionally, the system needs to maintain an
agent’s beliefs throughout execution, including internal and
external environmental states. It is critical the architecture can
independently maintain beliefs for each simulation so there is no
interference. For these reasons, we implement the assessment
algorithm in the DIARC cognitive robotic architecture [15]
which has a sophisticated goal managing system.

A. FetchIt! Mobile Manipulation Challenge

We use the well-defined FetchIt! Mobile Manipulation Chal-
lenge at ICRA 20194 as the testbed for our framework. The
competition has a diverse set of tasks focused on manipulation

4https://www.icra2019.org/competitions/fetch-it-mobile-manipulation-
challenge

Fig. 2. FetchIt mobile manipulation challenge arena layout.

and perception of small, varying shaped objects and navigation.
The core task is for the robot to assemble a caddy with five
objects (2 screws, 1 small gear, 1 large gear, 1 gearbox top, 1
gearbox bottom) located at stations around an arena and place
the caddy on the inspection station. The small 3 m x 3 m arena,
as seen in Fig. 2, has six tables around the perimeter effectively
making an operating area of 2 m x 2 m which makes it difficult
for the Fetch robot to navigate; since it has a base diameter
of. 559 m. To assemble the caddy, the robot must navigate to
each object station, pick up an object, carry it back to the caddy
station, and place the object in the correct caddy compartment.
Once the robot has placed the required objects in the caddy, the
robot must carry the caddy to the designated inspection station.

B. Assessing Performance and Results

We assume a static environment and the robot has predefined
domain knowledge including:
� map of the arena including object station locations

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 07,2023 at 21:12:05 UTC from IEEE Xplore. Restrictions apply.

https://www.icra2019.org/competitions/fetch-it-mobile-manipulation-challenge
https://www.icra2019.org/competitions/fetch-it-mobile-manipulation-challenge

12528 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

TABLE I
PRELIMINARY ACTIONS AND ASSOCIATED SUCCESS POST-CONDITIONS THE

ROBOT KNOWS HOW TO PERFORM. {AGENT, OBJECT, LOCATION, CADDY}
REPRESENT ACTION PARAMETERS. FOR EXAMPLE, ‘OBJECT’ MAY

CORRESPOND TO A SCREW

TABLE II
DETAILED VIEW OF THE ‘FETCH’ AND ‘ASSEMBLE’ ACTION SCRIPTS

INCLUDING THE PRE-CONDITIONS, POST-CONDITIONS, AND STEPS

� obstacle free arena
� adequate lighting conditions
� object shape, size, color
The robot has a set of primitive perception, manipulation,

and navigation actions and action scripts, presented in Table I.
Table II shows the ‘fetch’ and ‘assemble’ actions in detail.5

We use off the shelf ROS packages MoveIt! and AMCL for
manipulation and navigation motion planning and execution.

Although the robot knows how to execute the actions required
to assemble a caddy a priori, the robot learns the action transition
distributions online by attempting to fetch each object 25 times
and then assemble a caddy 25 times. The robot attempts to fetch
each object 25 times, because it may fail while assembling a
caddy and will have less experience fetching some of the objects.
For each attempt, the robot starts in front of and oriented toward
the caddy station with its arm raised as seen in Fig. 3. From
the starting pose, the robot executes the task and updates its
experiences as it finishes each action.

When the robot executes the fetch task and completes it
successfully, the robot will be back to where it started, ready
to execute the next task. However, if the robot fails to complete
the task, then we instructed it to reset its arm and navigate back to
the caddy station. After the robot attempts to assemble a caddy,
we command it to navigate back to the caddy and reset its arm,
because the task finishes with the robot delivering the caddy to
the inspection station.

With the learned transition distributions we query the perfor-
mance measures, through natural language, for both the fetch
and assemble tasks using the following schema:

5An example of the tasks and the performance assessment interactions can be
viewed at https://youtu.be/TOccnYz8r-s

Fig. 3. Fetch starts in front of the caddy station with its arm raised.

TABLE III
EXPECTED AND ACTUAL TASK PERFORMANCE MEASURES FOR

fetch(robot, Largegear, caddy)

Fig. 4. Locations in the fetch task which resulted in termination of execution
during simulation and actual execution; where L1 denotes a failure while picking
up the large gear, and L2 denotes successful execution.

� What are your expected performance measures for task t?
where t is the task the robot should assess. We evaluate both
actions to demonstrate how the algorithm accurately assesses its
own performance for two tasks of different complexities.

C. Fetch Task Assessment

We first instruct the robot to assess its expected performance
before executing the task to fetch a large gear:
� What are your expected performance measures for task

fetch a large gear?
Upon receiving the instruction, the robot simulated the task 15

times which generated the expected success probability, time-to-
completion, and most likely failure location shown in Table III.
Then, we commanded it to fetch a large gear 15 times to get the
actual performance measures. Fig. 4 shows the resulting states of
the simulated and actual executions. The assessment framework
accurately predicted the success probability and that the agent
was most likely to fail when trying to pick up the large gear.

Additionally, we calculated the Kullback-Leibler divergence
DKL(P ||Q) to measure the statistical distance, or information

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 07,2023 at 21:12:05 UTC from IEEE Xplore. Restrictions apply.

https://youtu.be/TOccnYz8r-s

FRASCA AND SCHEUTZ: FRAMEWORK FOR ROBOT SELF-ASSESSMENT OF EXPECTED TASK PERFORMANCE 12529

Fig. 5. The 15 simulated executions have a similar time-to-completion distri-
bution to that of 15 actual executions of the fetch task. The two distributions
have a Kullback-Leibler divergence value of 0.303.

TABLE IV
EXPECTED AND ACTUAL TASK PERFORMANCE MEASURES FOR

assemble(robot, caddy)

divergence, between the expected time-to-completion distribu-
tion Q and the actual time-to-completion distribution P , shown
in Fig. 5. The DKL(P ||Q) between the actual and expected
time-to-completion for the full fetch task is 0.305. The KL
divergence for continuous distributions range from 0 to∞where
values closer to 0 means that Q better models P .

D. Assemble Task Assessment

In addition, we evaluated the performance assessment frame-
work on the more complex ‘assemble’ task. We instructed the
robot to assess its expected performance:
� What are your expected performance measures for task

assemble a caddy?
As with the fetch assessment, the robot simulated the assemble

task 15 times to generate the expected success probability,
duration, and most likely failure location shown in Table IV.
Then, we commanded the robot to assemble a caddy 15 times to
get the actual performance measures. Fig. 6 shows the resulting
states of the simulated and actual executions. For the most part,
the simulations failed in similar ways. However, during the
evaluation, the robot unexpectedly failed to deliver the caddy
to the inspection table, because the motion planner failed to
calculate a trajectory for the arm to grasp and thus pick up
the caddy. More training data should provide the assessment
framework with more failure cases and thus be more accurate.

We obtained a statistical distance DKL of 4.904 between the
actual and expected time-to-completion for the ‘assemble’ task,
as shown in Fig. 7. This higher distance makes sense, because
the robot executed several more actions.

V. DISCUSSION

The evaluation in the Fetch task showed that the proposed
methods for performance assessment provides useful estimates
of success and failure of action sequences or plans, as well as
reasonable estimates of the overall duration. It is worth pointing

Fig. 6. Locations in the assemble task which resulted in termination of
execution during simulation and actual execution; where L1, L2, L3, L4,
L5, L6, and L7 denote failures when executing the following tasks re-
spectively: ‘fetch(screw),’ ‘fetch(screw),’ ‘fetch(smallgear),’ ‘fetch(largegear),
‘fetch(gearboxtop),’ ‘fetch(gearboxbottom),’ ‘deliver(caddy)’. L8 denotes suc-
cessful execution.

Fig. 7. The 15 simulated executions have a similar time-to-completion distri-
bution to that of 15 actual executions of the assemble task. The two distributions
have a Kullback-Leibler divergence value of 4.9.

out that the proposed methods are general and can be integrated
into any robotic architecture that provides representations of
executable actions in terms of pre-conditions (required for action
execution) and post-conditions that capture action success and
action failures. Given such representations, it is straightforward
to add bookkeeping mechanisms that every time an action is
executed track the conditional probabilities of post-conditions
for the given pre-conditions. Note that the proposed methods can
also be utilized by architectures that represent action sequences
in terms of policies that are learned (e.g., through reinforcement
learning) rather than action scripts or plans as long as the
architecture also learns an explicit (approximation) τ of the
MDP’sM state transition model TM. But note that because TM
is defined for (complete) states in SM, it is possible (and likely)
that the robot will not have encountered or gathered enough
statistics of some states S∗ (i.e., τ will likely be incomplete,
especially with larger state spaces). In that case, performance
estimates of executing actions in S∗ will be off, both in terms
of success/failure rates as well as duration estimates. The more
fine-grained representations of pre- and post-conditions in action
scripts utilized here allows robots to still adequately estimate the
performance of actions in novel states S∗ as long as the actions’

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 07,2023 at 21:12:05 UTC from IEEE Xplore. Restrictions apply.

12530 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

preconditions are contained in S∗. This works because consid-
ering only the subset of propositions in S∗ relevant for action
execution as the pre-condition restricts the learned conditional
probabilities to those aspects of the world affected by the action
(i.e., it effectively induces an equivalence class of all world states
that behave the same with respect to the execution of the action).
For example, in the Fetch task our proposed algorithms will still
be able to assess the robot’s performance of fetching a large gear
in an altered task environment that is missing all small gears. In
contrast, a transition model based on world states would have
to be trained on this (or any altered) environment in order to
represent conditional probabilities for action success and failure
as well as action durations.

VI. CONCLUSION

Robot self-assessment has the potential to drastically improve
robot performance as well as human-robot interaction, because
a robot can foresee issues and know when it is deviating from
a plan. Instead of blindly executing a plan that will fail, a self-
assessing robot can take precautions, stay vigilant on issues, and
update humans throughout execution.

Our approach to self-assessment provides a robot with the
ability to quickly estimate its expected probability of success,
time-to-completion, and failure locations for a task. The robot
then has the opportunity to interact with a human, modify its
plan, or gain additional knowledge to improve task perfor-
mance. The evaluation showed that the robot effectively pre-
dicted its performance prior to executing two tasks of varying
complexity.

Though the robot could simulate its actions in advance to
learn probability distributions, this would require the robot to
update the distributions whenever it gained new experience.
Upon completing an action, the robot would need to locate the in-
stances of the action within other actions and then re-assess those
actions. By dynamically simulating the actions when needed, it
reduces the knowledge the robot needs to maintain. Moreover,
the robot may generate a plan it has no prior experience for and
will need to simulate the plan in order to assess its expected
performance.

Not only does self-assessment have implications on task
performance, but it can also play a critical role in human-robot
interaction, because humans won’t be able to fully comprehend
the robot’s abilities or limitations. We integrated the framework
into a cognitive architecture and demonstrated how a human

operator could instruct the robot to assess its expected perfor-
mance. Again, note that the natural language details are not in
the scope of this paper. Next steps will focus on how a robot
can have dialogues with humans about task performance and
provide explanations.

REFERENCES

[1] P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh, “Predicting
failures of vision systems,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2014, pp. 3566–3573.

[2] S. Daftry, S. Zeng, J. A. Bagnell, and M. Hebert, “Introspective perception:
Learning to predict failures in vision systems,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2016, pp. 1743–1750.

[3] H. Wu et al., “Learning robot introspection dynamics for error learning
and prevention,” 2017. [Online]. Available: http://130.243.105.49/Agora/
IROS2017_Introspection/papers/IMRA-2017_paper_5.pdf

[4] C. B. Kuhn, M. Hofbauer, G. Petrovic, and E. Steinbach, “Introspective
black box failure prediction for autonomous driving,” in Proc. IEEE Intell.
Veh. Symp., 2020, pp. 1907–1913.

[5] Q. Yang, H. Chen, Z. Chen, and J. Su, “Introspective false negative
prediction for black-box object detectors in autonomous driving,” Sensors,
vol. 21, no. 8, 2021, Art. no. 2819.

[6] A. Jauffret, C. Grand, N. Cuperlier, P. Gaussier, and P. Tarroux, “How can
a robot evaluate its own behavior? A neural model for self-assessment,” in
Proc. IEEE Int. Joint Conf. Neural Netw., 2013, pp. 1–8.

[7] R. S. Andersen, O. Madsen, T. B. Moeslund, and H. B. Amor, “Projecting
robot intentions into human environments,” in Proc. IEEE 25th Int. Symp.
Robot Hum. Interactive Commun., 2016, pp. 294–301.

[8] E. A. Krause, P. Schermerhorn, and M. Scheutz, “Crossing boundaries:
Multi-level introspection in a complex robotic architecture for automatic
performance improvements,” in Proc. 26th AAAI Conf. Artif. Intell., 2012,
pp. 214–220.

[9] M. Zillich, J. Prankl, T. Mörwald, and M. Vincze, “Knowing your limits-
self-evaluation and prediction in object recognition,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2011, pp. 813–820.

[10] K. N. Kaipa, A. S. Kankanhalli-Nagendra, and S. K. Gupta, “Toward
estimating task execution confidence for robotic bin-picking applications,”
in Proc. AAAI Fall Symp. Ser., 2015, pp. 4–9.

[11] A. Jauffret, N. Cuperlier, P. Gaussier, and P. Tarroux, “From self-
assessment to frustration, a small step toward autonomy in robotic navi-
gation,” Front. Neurorobot., vol. 7, 2013, Art. no. 16.

[12] A. Gautam, J. W. Crandall, and M. A. Goodrich, “Self-assessment of
proficiency of intelligent systems: Challenges and opportunities,” in Proc.
Int. Conf. Appl. Hum. Factors Ergonom., 2020, pp. 108–113.

[13] T. Frasca, E. Krause, R. Thielstrom, and M. Scheutz, ““Can you do this?”
Self-assessment dialogues with autonomous robots before, during, and
after a mission,” 2020, arXiv:2005.01544.

[14] D. Harel, First-Order Dynamic Logic. Berlin, Germany: Springer,1979.
[15] M. Scheutz, T. Williams, E. Krause, B. Oosterveld, V. Sarathy, and T.

Frasca, “An overview of the distributed integrated cognition affect and
reflection DIARC architecture,” in Cogn. Architectures. Berlin, Germany:
Springer, 2019, pp. 165–193.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 07,2023 at 21:12:05 UTC from IEEE Xplore. Restrictions apply.

http://130.243.105.49/Agora/IROS2017_Introspection/papers/IMRA-2017_paper_5.pdf
http://130.243.105.49/Agora/IROS2017_Introspection/papers/IMRA-2017_paper_5.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

