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Abstract— We propose RAPid-Learn (Learning to Recover
and Plan Again), a hybrid planning and learning method,
to tackle the problem of adapting to sudden and unexpected
changes in an agent’s environment (i.e., novelties). RAPid-Learn
is designed to formulate and solve modifications to a task’s
Markov Decision Process (MDPs) on-the-fly. It is capable of
exploiting the domain knowledge to learn action executors
which can be further used to resolve execution impasses, leading
to a successful plan execution. We demonstrate its efficacy
by introducing a wide variety of novelties in a gridworld
environment inspired by Minecraft, and compare our algorithm
with transfer learning baselines from the literature. Our method
is (1) effective even in the presence of multiple novelties, (2)
more sample efficient than transfer learning RL baselines, and
(3) robust to incomplete model information, as opposed to pure
symbolic planning approaches.

I. INTRODUCTION

AI systems have shown exceptional performance in many
“closed worlds” domains such as games [1] where the action
space, state space, and the transition dynamics are fixed for
duration of the task. Even minor changes to the environment,
however, can lead to catastrophic results for closed-world
agents [2]. To develop AI systems that can function effi-
ciently in the real world and thus in “open-world” settings
where sudden and unexpected changes (i.e., novelties) can
occur [3], we need to relax closed-world assumptions and
make agents robust to novel, unseen situations [4].

The need to adapt to unexpected environmental changes
has prompted some to employ Reinforcement Learning (RL)
techniques where learning is lifelong [5], [6] and non-
stationary [7]. However, these approaches assume a contin-
uous evolution of the environment and are less effective in
open-world settings where changes can be abrupt and lead to
catastrophic forgetting, thus requiring the agent to potentially
re-learn the entire task. Symbolic planning approaches, on
the other hand, involve an agent reasoning about sequences
of predefined operators and optimizing the resultant action
sequence that reaches a goal with high probability [8]. These
approaches effectively plan over long horizons, and work
well when the domain knowledge and planning operators are
available and defined. However, these approaches are labori-
ous to design and assume an accurate and complete model of
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Fig. 1: Left: Pre-novelty domain showing an agent which can craft
items by breaking trees. Right: Novelty induces an impasse which
requires the agent to use the axe (shown in red) to break the trees.

the environment. They are often ineffective in evolving, non-
stationary, and open-world environments, when the known
model is incomplete.

In this paper we demonstrate that a symbiotic combination
of RL-based and planning-based approaches can overcome
the shortcomings of either approach and is thus desirable
for changing environments (Figure 1 shows an example
of a changing environment). However, integrating these
paradigms is challenging, because the RL policies need to be
abstracted in a way that is beneficial for symbolic planners.
The challenges are best illustrated by recent approaches
aimed at integrating learning and planning which have a
limited set of state and action spaces, or are computation-
ally expensive [9]. While employing RL to learn low-level
policies for high-level plan operators can help to address
the agent’s incomplete knowledge in open worlds [10], [11],
recent hybrid approaches are either not evaluated in open-
world settings where plan failures are typical, or assume a
fixed environmental configuration and a custom planner [12],
making them applicable only to a subset of novelties.

Our proposed solution is RAPid-Learn, a method for re-
covering from fatal plan failures caused by novelties (sudden
and unexpected changes that can result in an execution
impasse) (refer Figure 1) by exploiting symbolic knowl-
edge to perform sample-efficient explorations of novelties.
To demonstrate its effectiveness, we compare the novelty
adaptation success with state-of-the-art RL methods spanning
hierarchical and transfer-learning approaches. A thorough
evaluation of our agent in a Minecraft-inspired domain
demonstrates the superiority of the proposed methods com-
pared to RL agents.

II. RELATED WORK

The problem we address has been referred to as “open-
world novelty accommodation” [3], [13]. Here, the aim is
to detect and accommodate the novelty, without any prior
information of its dynamics.



Fig. 2: Overview of the experimental setup.(a) Illustrates the NovelGridworlds domain in the pre-novelty scenario, showing an agent in a
walled arena surrounded by trees, and facing a crafting-table. (b) Shows the scenario when the environment introduces the rubber-tree-hard
novelty and the agent reaches an impasse.(c) Executor-Discovery phase when the agent accommodates the novelty using our approach
RAPid-KGE-UCB. (d) Agent successfully resolves the plan execution impasse. (e) Agent reaches the goal state of crafting a pogo-stick.

Symbolic planning approaches have shown progress in
adapting to unforeseen situations in the environment by
exploiting existing domain knowledge [14], [15], [16]. How-
ever, they fail to explicitly accommodate the dynamics of the
novelty, while focusing on open-world goals and instructions.
Symbolic knowledge representations have also been used
for plan recovery [17], with one key assumption of an
accurate knowledge model. Updating the pre-conditions and
effects of the agent’s operators is effective in open-world
settings [13], [18], [19], although the lack of model-free
learning limits novelty handling to only those novelties
that can be derived from the existing knowledge base. To
bridge this gap, we propose accommodating the novelty by
instantiating a model-free reinforcement learner.

Reinforcement learning approaches typically adapt to
continuously evolving and non-stationary environments [20],
[6], [21], [7]. Meta-RL attempts at adapting to multiple
MDPs, and solving an unseen task drawn from the same
distribution as the training tasks [22]. However, these ap-
proaches either consider gradually evolving environments
or are suited for tasks drawn from the same distribution,
and fail to adapt to sudden changes in the environment
dynamics [23]. Unlike prior work, we propose a sample-
efficient hybrid learner and planner, aimed at detecting and
accommodating novelties, when plan execution fails.

Hybrid Planning and Learning approaches take advan-
tage of a sub-symbolic reinforcement learning agent to aid a
symbolic planner to address non-stationarity in open-world
settings [12], [24]. RL sub-goal learner provides a robust sub-
symbolic policy for each operator of a symbolic planner [10],
[25], [26]. However, they assume an accurate knowledge
representation and are not discussed in open-world settings.
Other approaches that utilize an RL agent to accommodate
the novelty [12] assume a stationary configuration of the
initial state, require a custom planner, do not exploit existing
domain knowledge for RL exploration, and do not work with
function approximators, rendering a sample inefficient hybrid
agent catering to only a subset of open-world novelties. To

the best of our knowledge, our approach is the first that
adapts to the sudden, unknown changes by instantiating a
deep reinforcement learner and exploits domain knowledge
to speed-up learning.

III. PRELIMINARIES

A. Symbolic Planning

We assume that the agent starts with a domain knowledge,
grounded using PDDL [27], defined as Σ = ⟨E ,F ,S,O⟩,
where E =

{
ε1, . . . ε|E|

}
is a finite set of known entities

within the environment. F =
{
f1(⊙), . . . f|F|(⊙)

}
,⊙ ⊂ E

is a finite set of known predicates with their negations.
Each predicate fi (⊙), along with its negation ¬fi(⊙), is
contained in F . S =

{
s1 . . . s|S|

}
is the set of symbolic

states in the environment. O denotes the set of known action
operators such that O =

{
o1, . . . o|O|

}
. Each operator oi

is defined with a set of preconditions and effects, denoted
ψi, ωi ∈ F . The preconditions ψi and effects ωi of oi
indicate the predicates that must hold true (or false) before
and after executing oi, respectively. We define a planning
task as T = (E ,F ,O, s0, sg), in which s0 ⊂ S, is the set
of starting states and sg ⊂ S is the set of goal states. The
solution to the planning task T is an ordered list of operators,
given by plan P =

[
o1, . . . o|P]

]
.

B. Reinforcement Learning & Sub-Symbolic Executors

An episodic Markov Decision Process (MDP) M̃ is de-
fined as a tuple ⟨S̃,Ã,p̃,r̃,γ̃⟩, where S̃ is the set of sub-
symbolic states, Ã is the set of actions, p̃(s̃t+1|s̃t, ãt) is
the transition function, r̃(s̃t+1, ãt, s̃t) is the reward function
and γ̃ ∈ [0, 1] is the discount factor. For each timestep
t, the agent observes a state s̃ and performs an action ã
given by its policy function πθ(ã|s̃), with parameters θ. The
agent’s goal is to learn an optimal policy π∗, maximizing its
discounted return G0 =

∑K
k=0γ̃

kr̃(s̃′k, ãk, s̃k) until the end
of the episode at timestep K.

At the sub-symbolic level, we define a set of action
executors X = {x1, x2, x3, . . .}. Inspired by the options



framework in RL [28], an action executor xi consists of
⟨Ixi , πxi , βxi⟩, where Ixi ⊆ S̃ is the initiation set, denoting
the set of states when the action executor xi is available for
execution, and it follows a policy πxi

: S̃ × Ã → [0, 1].
βxi

(s̃0, s̃) ∈ {0, 1} is the indicator variable with value 1 if
xi can be terminated at s̃ given it was initialised at s̃0, and
0 otherwise.

C. Novelty

We define novelty as a completely new encounter for the
agent, where the agent can neither derive the dynamics of the
novelty using its cognitive abilities, nor through its previous
experiences (given domain knowledge Σ) [13]. Formally, we
define novelty as a tuple N = ⟨E ′,F ′,S ′,O′⟩, where E ′

represents the set of novel entities in the environment such
that E ′ ∩ E = ∅. S ′ represents the set of novel states such
that S ′ ∩ S = ∅, and O′ denotes the set of novel operators
such that O′ ∩O = ∅, F ′ is a set of novel predicates which
are unknown to the agent. We assume that N transforms
the domain knowledge from Σ to Σ′ by including novelties
which results in an execution impasse. The new domain Σ′

can generate a planning solution, but the plan execution will
result in a failure due to incomplete domain knowledge.

IV. PROBLEM FORMULATION

We build upon our prior work [12] and formulate a
framework for integrating planning and learning, where an
integrated planning task enables us to ground operators
in an MDP, specify goals symbolically, and realize action
hierarchies. We define an executor for a given MDP M̃xi =
(S̃xi

, Ãxi
, p̃xi

, r̃xi
, γ̃xi

) as a triplet xi = ⟨Ixi
, πxi

, βxi
⟩

where Ixi
⊆ S̃xi

is an initiation set, πxi
(ã|s̃) is the probabil-

ity of performing ã, given current state s̃, and βxi
(s̃0, s̃) ∈

{0, 1} is the indicator variable with value 1 if xi can be
terminated at s̃ given it was initialized at s̃0, and 0 otherwise.
An executor is an operator where the policy and termination
condition depend on where it was initialized. We define X as
the set of all executors for the set of MDP M.(Section III-B).

Definition 1. [12] (Integrated Planning Task) Formally, an
Integrated Planning Task (IPT) is T = ⟨T,M, d, e⟩ where
T = ⟨E ,F ,O, so, sg⟩ is a STRIPS task, M is the set of
MDPs. A detector function d : S̃ 7→ S determines a symbolic
state for a given sub-symbolic MDP state, and an executor
function e : O 7→ X maps an operator to an executor.

As described in Sec. III-A, let P be the solution of a
planning task T (E ,F ,O, s0, sg). We assume that for each
operator o ∈ O, its executor e(o) accurately maps to o; that
is, for every o ∈ O, Ie(o) ⊇ {s̃0 ∈ S̃e(o) : d(s̃0) ⊇ ψo} and

βe(o)(s̃0, s̃) =


1 if (d(s̃) ⊇ ωo ∨ ((d(s̃) ⊇ ωô)∀ô ∈ Ô)

∧ ∃P̂
0 otherwise.

(1)

The executor e(o) reaches a termination state s̃ when it
satisfies the effects of the operator o (d(s̃) ⊇ ωo), or if it
satisfies the effects of all subsequent operators ô ∈ Ô in
the plan P ((d(s̃) ⊇ ωô)∀ô ∈ Ô), where the preconditions

of ô contain the effects of o (ψô ⊇ ωo). Also, ensuring
a planning solution P̂ to the task T̂ = (E ,F ,O, d(s̃), sg)
exists. A solution to the IPT T is an ordered list of executors[
x1, . . . x|X ]

]
∈ X having the above mentioned properties. A

planning solution to an IPT T is the ordered list of operators
given by the P =

[
o1, . . . o|P]

]
. Executing the ordered list of

executors in the sub-symbolic space will yield a final state
s̃ such that d(s̃) ⊇ sg , thus reaching the goal state sg . T is
solvable if a solution exists and plannable if a plan exists.

A. The Executor Discovery Problem

We define a stretch-Integrated Planning Task (Stretch-
IPT), that captures difficult but achievable goals – those for
which missing executors must be discovered.

Definition 2. (Stretch-IPT). A Stretch-IPT T̃ is an IPT T
for which a solution exists, but a planning solution does not.

A novelty introduced by the environment results in in-
complete domain knowledge (Section III-C), causing an
execution impasse due to operator failure. We are interested
in finding a solution to the stretch-IPT, specifically study
how to automatically generate executors on-the-fly to solve
the execution impasse.

Definition 3. (Executor Discovery Problem). Given a
stretch-IPT T̃ = ⟨T ′,M′, d′, e′⟩ with T ′ = ⟨E ∪
E ′,F ∪ F ′,O ∪ O′, s′o, sg⟩, construct a set of execu-
tors {x′1, . . . , x′m} ∈ X for the set of failed operators
{o1, . . . , om} ∈ O such that the stretch-IPT T̃ is solvable,
with the executor function:

e′(oi) = x′i, oi /∈ O (2)

i.e., we find an executor whose operator does not exist in O.

V. RAPID-LEARN

Below we describe a running example followed by a
detailed description of our approach.

A. Description of the domain

Figure 2a shows a gridworld representation of a Minecraft
inspired domain. An agent is shown enclosed in a walled
arena that contains trees and a crafting-table where more
complex items can be crafted. The agent can obtain tree-log
by breaking trees. Tree-logs can be crafted into planks, which
in turn can be crafted into sticks. A combination of planks
and sticks can be crafted into a tree-tap when facing the
crafting-table. When the tree-tap is selected next to a tree,
rubber can be extracted. Finally, a combination of sticks,
planks and rubber crafts a pogostick.

B. Running Example

Let us consider a novelty scenario in which a rubber-
tree (ε1 ∈ E ′) appears in the environment (Figure 2b). The
novel environment also provides a new action place-tree-
tap, and a novel action executor approach-rubber-tree. The
agent can only extract rubber by placing a tree-tap in front
of the rubber-tree. This results in the failure of operator
extract-rubber (oi). To overcome this execution impasse, an



Algorithm 1 RAPid-Learn( T̃ )
1: T̃ = ⟨T ′,M′, d′, e′⟩: Stretch Integrated Planning Task
2: T ′ = ⟨E ∪ E ′,F ∪ F ′,O ∪O′, s′o, sg⟩
3: P = Planner(T̃ ) {P = {o1, o2, ..., o|P|}}
4: for oi ∈ P do
5: X ← X ∪ e(oi)
6: end for
7: for oi ∈ P do
8: Success = Execute (oi)
9: if ¬Success then

10: if x′
i ∈ X then

11: Execute(x′
i)

12: else
13: x′

i ← Discover-Executor(oi,P, T̃ , k) ; X ← X∪{x′
i}

14: Execute(x′
i)

15: end if
16: end if
17: end for

MDP M̃xi (Figure 2(c)) is instantiated, whose solution is the
learned executor x′i which is mapped to the failed operator oi
for future use. Action executor x′i’s policy πx′

i
will consists

of steps that involve the agent to stand one block away from
the rubber-tree, place the tree-tap next to the rubber-tree and
then use the failed operator extract-rubber. After the agent
successfully executes x′i (Figure 2 (d)), it switches back to
original plan to craft a pogostick (Figure 2(e)).

C. Running in an impasse

As shown in Algorithm 1, the agent starts with a stretch
integrated planning task T̃ as an input. Using the domain
knowledge grounded through PDDL [27], the agent uses
MetricFF [29] planner to generate a planning solution (plan
P) to the Stretch-IPT T̃ (line 3). The agent then executes
this plan (line 4-8) in a novel environment. We assume
that one of the operators will fail in the novel environment,
resulting in an execution impasse. The impasse occurs if the
known effects of the operator are not true after the execution
of the operator in the environment. Once the agent detects
an execution impasse, it checks if it has a corresponding
sub-symbolic action executor x′i for the failed operator oi
(line 10-12). If the executor does not exist, the agent enters
executor-discovery mode (line 13). We now describe how the
agent instantiates and solves an executor discovery problem
to succeed in the execution impasse induced by the novelty.

D. Executor-Discovery

To find a solution to the stretch-IPT T̃ , the agent needs
to discover an executor x′i that will succeed through the
impasse caused by the novelty. The executor discovery
process is described in Algorithm 2. The agent instantiates an
online reinforcement learner over the episodic MDP M̃x′

i
=

(S̃ ′
x′
i
, Ã′

x′
i
, p̃′x′

i
, r̃x′

i
, γ̃x′

i
) the first time it encounters the failed

operator. This MDP consists of the set of sub-symbolic
states S̃ ′

x′
i

and actions Ã′
x′
i

(sub-symbolic pre-novelty actions,
sub-symbolic novel actions, and all the symbolic operators
mapped to action executors). A sparse reward function is
generated on-the-fly to guide the agent to discover the set of
plannable states Sr from where it can reach the goal statesg .

Algorithm 2 Discover-Executor(oi, P , T̃ , k) → x′i

1: T̃ = ⟨T ′,M′, d′, e′⟩; T ′ = ⟨E ∪ E ′,F ∪ F ′,O ∪O′, s′o, sg⟩
2: Hyperparameters : ρ0, ϵ0, c, µ, emax

3: ˜S′
x′
i
: set of sub-symbolic states; Ã′

x′
i
: set of actions;

4: βx′
i
: indicator function for executor x′

i as defined in 1

5: S̃0 ∈ ˜S′
x′
i

set of initial states; ∆← ∅ : set of actions to bias

6: Enovel ← {E ′} \ {E}: set of novel entities
7: Ãnovel ← {Ã′

x′
i
} \ {Ã}: set of novel actions

8: ∆← ∆ ∪ {Ãnovel, oi}
9: StateList← [ ],ActList← [ ],DoneList← [ ],RewList← [ ]

10: Sr ← PlannableStateGenerator(Σ,P, oi)
11: e← 1 : episode number
12: while e < emax do
13: s̃′0 ←: ReachFailedOperator(T̃ ): initial state
14: done← false, t← 1
15: if k ̸= EG & uniformRandomNo(0, 1) < ρ0 then
16: ε← random(Enovel) ; p← Planner(ε, s̃′0)
17: s̃′t ← execute(s̃′0, p)
18: end if
19: Ap ← {π(ã′i|s̃′t) ∀ ã′i ∈ Ã′

x′
i
}

20: while ¬done ∨ t < U do
21: if uniformRandomNo(0, 1) < ϵ0 then
22: if k = KGE-UCB then
23: for ã′ ∈ Ã′

x′
i

do

24: Ap[ã
′]← Ap[ã

′]


+c

√
ln t

Nt(ã′) if ã′∈∆

−c
√

ln t
Nt(ã′) if ã′ /∈∆

25: end for
26: else if k = KGE-UAB then
27: for ã′ ∈ Ã′

x′
i

do

28: Ap[ã
′]←

{
(µ−1+Σ∆)ã′

µΣ∆
if ã′ ∈ ∆

ã′/µ if ã′ /∈ ∆
29: end for
30: end if
31: end if
32: ã′t ← arg-max(Ap)
33: s̃′t+1 ← execute(ã′t)
34: done, r ← r(Sr, s̃′t, ãt, s̃′t+1)
35: DoneList.append(done), StateList.append(s̃′t)
36: RewList.append(r), ActList.append(Ap)
37: t← t+ 1, s̃′t+1 ← s̃′

38: end while
39: e← e+ 1
40: π ← Update-Network(StateList,ActList,RewList)
41: if Converge(DoneList,RewList) > η then
42: πc

x′
i
←π, x′

i←⟨S̃′
0, π

c
x′
i
, βx′

i
⟩

43: return x′
i

44: end if
45: end while
46: x′

i ← ⟨S̃′
0, πx′

i
, βx′

i
⟩

47: return x′
i

1) Discovery of Plannable States: With the pre-novelty
domain knowledge, the agent accumulates the set of precon-
ditions Ψ and effects Ω of all known operators. The agent
then generates a set of plannable states Sr, which contains:
1) the states that satisfy the effects ωoi of the failed operator
oi and 2) the states that satisfy the effects of all subsequent
operators ô ∈ Ô in the plan P ((d(s̃) ⊇ ωô)∀ô ∈ Ô), where
the preconditions of ô contain the effects of o (ψô ⊇ ωo).1

In each episode, the agent computes a plan from the initial

1Further details of the PlannableStateGenerator algorithm in
https://github.com/goelshivam1210/RAPid-Learn/

https://github.com/goelshivam1210/RAPid-Learn/


environment configuration, and carries out this plan until it
reaches the failed operator (Algorithm 2 - line 13). The agent
is rewarded with a positive reward ϕ1, if it reaches a state
in Sr within a predetermined number of timesteps U , and a
plan from this state to the goal state sg exists. However,
in some cases the agent can reach a state in Sr but the
planning solution from this state to the goal state sg does
not exist (because of irreversible actions taken by the agent).
To prevent this failure, a negative reward ϕ2 is given, and
the episode terminates. The agent gets a unit negative reward
for all other steps. We define the reward function as:

r
(
Sr, s̃

′
t, ã

′
t, s̃

′
t+1

)
=

{
ϕ1 if d(s̃′t+1) ⊂ Sr ∧ ∃P̂
−ϕ2 if d(s̃′t+1) ⊂ Sr ∧ ∄P̂
−1 otherwise

2) Knowledge-guided-exploration: To guide the agent to
explore efficiently and utilize domain knowledge, we employ
knowledge-guided exploration. We describe two approaches:

Knowledge-guided curriculum learning: Learning to solve
complex problems may require extensive interactions with
the environment. Knowledge obtained through simpler sub-
tasks can be utilized to reduce the exploration of complex
tasks [30]. knowledge-guided curriculum learning enables
the agent to solve simpler sub-tasks, thereby increasing the
probability of the agent landing into a plannable state. With
a probability ρ, the agent is provided a curriculum to reach a
novel state (line 14-16, Alg. 2). Randomly selecting a novel
entity from the set of novel entities, the agent utilizes the
planner to reach this novel entity (line 15). This procedure
enables the agent to begin exploring from a promising
initial state [31]. The agent is given the state transitions
(s̃′t, ã

′
t, s̃

′
t+1) from its initial state to this promising state.

Knowledge-guided action biasing: here, during exploration
the agent biases a subset of actions through domain knowl-
edge. The subset of the actions to bias ∆ consists of; (1)
novel actions, and (2) failed operators in the form of execu-
tors (lines 6-7, Algorithm 2). With a probability ϵ0, the prob-
ability of selecting these actions is bumped up when the agent
explores the environment (lines 20-26). We develop two
methods of action probability bumping, Upper Confidence
Bounds (KGE-UCB), and Uniform Action Biasing (KGE-
UAB). In KGE-UCB, we bump up the probability of actions
in the set ∆ (Ap, line 18) inversely proportional to square
root of the number of times the action was executed prior to
the current timestep [32] (lines 21-24). This helps in selecting
those actions that were tried the least, enabling the agent to
visit new states and increasing the possibility of reaching the
plannable states in Sr. In KGE-UAB, we uniformly bump
up the selection probability of all the actions in the set ∆
(lines 25-29). Both these methods are an extension of the
ϵ-greedy exploration (EG) strategy. Contrary to EG, they
exploit domain knowledge, when deciding which action to
choose during exploration to perform efficient exploration.

The rationale behind using knowledge-guided-exploration
in such a way follows two assumptions: 1) The agent should
use domain knowledge to guide exploration; 2) The novelties
are the reason why the agent gets stuck in an impasse.

The agent continues updating its policy until it reaches
the maximum permitted episodes (emax) (lines 31-39) or if
it converges to a policy πc

x′
i

defined by a pre-determined
success rate convergence threshold η (lines 40-42). The agent
then exits the executor discovery mode and continues with
its original plan P .

E. Recovery

Once the agent learns a policy πc
x′
i

to succeed at the
impasse, it is added as an action executor x′i (Alg 2 lines
41,45) to the set of action executors X (line 10, Alg 1).
The agent executes x′i, whenever the operator oi fails. This
framework is effective even in multiple novelty settings,
where more than one operators fail.

VI. EVALUATION AND RESULTS

A. NovelGridworlds Domain

We evaluate RAPid-Learn on a [12×12] NovelGridworlds
domain [33], a gridworld crafting problem inspired by
Minecraft (Target task described in Section V-A). A local
view of the environment represents the sub-symbolic state
of the RL learner, implemented as a LiDAR-like sensor that
emits beams for every entity in the environment at incremen-
tal angles of π

4 to determine the closest entity in the angle
of the beam, in other words, LiDAR-like sensor provides
observation of size 8× |E|, where E is the entire set of pos-
sible entities. Additional sensors observe the content of the
agent’s inventory and the currently selected item. The action
space is the sub-symbolic action space given by the environ-
ment (navigation actions- turn-left, turn-right, move-forward;
interaction actions - break, extract-rubber; crafting-actions
- craft-planks, craft-stick, craft-pogostick), augmented with
novel actions (according to the novelty, shown in Table I) and
hierarchical action operators (approach-entity, parameterized
by entity) implemented by the planner. The positive reward
constant ϕ1 = 1000, and the negative reward constant ϕ2 =
−350. The RL implemented in the RAPid-Learn architecture
uses the policy gradient [34] algorithm. The domain was
chosen for two key reasons: 1) it provides a complicated
task that involves a sequential set of actions to reach the goal
state. If the agent misuses its resources, it will not succeed in
the task; and 2) the domain is designed specifically for open-
world problem solving, enabling us to create and experiment
with a variety of novelties [33].

B. Experimental Setup

Our setup (Figure 2) is designed to evaluate: (1) Novelty
accommodation: The agent’s ability to solve the impasse,
regardless of the nature of novelty. For this, we evaluate
RAPid-Learn on a variety of novel scenarios (Table I). The
scenarios comprise of adding a novel entity, and/or, a novel
operator in the agent’s environment. In some cases, the
agent has to just learn to use the novel operator and the
entity, while in others, it has to explore the environment
through sub-symbolic actions to solve the impasse. This
comprehensive list, though non-exhaustive, captures many



Novelty
Name

Entity
(E ′)

Operator
(O′)

Dynamics

axe-to-
break
(ATB)

[easy/hard]

axe select-axe,
approach-
axe[hard]

break tree only if holding axe;
[easy] axe present in inventory;
[hard] axe present in environ-
ment

fire-
crafting-

table
(FCT)

[easy/hard]

fire,
water

select-
water;
spray,
approach-
water[hard]

crafting-table set on fire; need to
spray water to access crafting-
table; [easy] water present in
inventory [hard] water present
in the environment

rubber-tree
(RT)

[easy/hard]

rubber-
tree

place-
tree-tap,

approach-
rubber-

tree[hard]

[easy] rubber can only be ex-
tracted when facing rubber-tree;
[hard] need to place tree-tap in
front of a rubber-tree to extract
rubber.

scrape-
plank

- scrape-
plank

cannot obtain tree-log by break-
ing tree, can only scrape planks
from tree

TABLE I: Novelties Descriptions: A novelty changes the environ-
ment by adding new entities, operators, and dynamics.

aspects of different novelty attributes2(2) Sample Efficiency:
The number of interactions taken by the agent to solve
the impasse. To compare sample efficiency, we evaluate
RAPid-Learn’s three variations, namely, 1) RAPid-KGE-
UCB: RAPid-Learn with knowledge-guided-exploration us-
ing upper confidence bounds; 2) RAPid-KGE-UAB: RAPid-
Learn with knowledge-guided-exploration using uniform ac-
tion biasing; 3) RAPid-EG: RAPid-Learn with ϵ-greedy
exploration function, and compare these with two baselines.

1) Baselines: Existing methods in integrating planning
and learning are aimed at either generating policies for
the high-level operators [10] or formulating operators to
tackle the change in the environment [12]. Approaches that
generate policies for high-level operators are not discussed
in open-world novelty settings, and others that formulate
operators [12] are not robust to varying environment config-
urations and numeric predicates. We therefore compare our
architecture against policy reuse [35] and actor-critic transfer
learning [36]. For each transfer learning baseline, we pre-
train the agent (until convergence:>96% success rate for last
100 episodes) using dense reward shaping, where choosing
the right action at the right time is given intermediate reward.
During pre-novelty training, the observation and the action
spaces are extended with placeholder elements to accom-
modate the introduced novelties that can extend the shape of
these spaces. On the pre-trained expanded model, we perform
transfer learning using two approaches: Policy reuse [35]
transfers the learned policy and Actor-critic transfer [36]
transfers the policy and value function through PPO [37].

C. Results

We evaluate 3 versions of RAPid-Learn along with 2
baselines on 5 novel scenarios (shown in Table II). Time
to adapt is the number of time steps each agent takes to
adapt to a novelty (Policy convergence given by a pre-
defined convergence criteria3). Post-novelty performance is

2Further details of the implemented novelties are described
in https://github.com/goelshivam1210/RAPid-Learn/.

3Convergence criteria details in https://github.com/goelshivam1210/RAPid-
Learn/

Agent Time to adapt
(timesteps)

Post-novelty
performance
(success rate)

Mean±SD Mean±SD
Rubber Tree (RT) - Hard

RAPid-KGE-UCB (2.85± 2.15)× 104 0.95± 0.01
RAPid-KGE-UAB (3.28± 1.51)× 104 0.93± 0.03

RAPid-EG (3.73± 2.08)× 104 0.91± 0.04
Actor-Critic Transfer did not converge N.A

Policy-Reuse did not converge N.A
Axe to Break (ATB) + Fire Crafting Table (FCT) - Easy

RAPid-KGE-UCB (4.02± 1.82)× 103 0.97± 0.01
RAPid-KGE-UAB (4.56± 3.43)× 103 0.97± 0.02

RAPid-EG (6.93± 4.41)× 103 0.98± 0.01
Actor-Critic Transfer (17.6± 5.13)× 104 0.93± 0.02

Policy-Reuse (8.08± 2.38)× 105 0.92± 0.04
Axe To Break (ATB) - Hard

RAPid-KGE-UCB (2.35± 1.27)× 103 0.95± 0.01
RAPid-KGE-UAB (13.0± 4.89)× 102 0.85± 0.07

RAPid-EG (14.9± 8.65)× 102 0.84± 0.03
Actor-Critic Transfer (9.80± 4.75)× 104 0.90± 0.05

Policy-Reuse (5.57± 2.59)× 105 0.92± 0.04
Fire Crafting Table (FCT) - Hard

RAPid-KGE-UCB (8.61± 4.73)× 103 0.98± 0.00
RAPid-KGE-UAB (4.40± 1.96)× 103 0.99± 0.00

RAPid-EG (5.12± 2.84)× 103 0.98± 0.00
Actor-Critic Transfer (16.7± 3.99)× 104 0.90± 0.04

Policy-Reuse (7.90± 2.70)× 105 0.94± 0.03
Scrape Plank (SP)

RAPid-KGE-UCB (6.82± 3.83)× 103 0.86± 0.03
RAPid-KGE-UAB (2.01± 1.01)× 103 0.87± 0.03

RAPid-EG (17.2± 7.38)× 102 0.96± 0.01
Actor-Critic Transfer (6.86± 3.89)× 104 0.93± 0.03

Policy-Reuse (19.3± 9.76)× 104 0.94± 0.03

TABLE II: Results of each agent’s performance on 5 novel sce-
narios. In all the novelties, RAPid-Learn consistently outperforms
baseline approaches. (Best performing agent highlighted.)

the success rate achieved by evaluating each agent on 100
episodes in 10 independent trials. In each episode we set
a budget to the number of time steps the agent is given
to execute the learned executor (if the budget is used up,
we report an unsuccessful episode and assign 0 score to
that episode). A score of 1 is recorded for each successful
episode. After running 10 independent trials with different
random seeds, we report the mean and standard deviations.

Table II shows that our method is better at adapting to
the novel scenarios and time to adapt is significantly lower
than the baselines. In some of the cases, the baselines do not
even converge to find a solution. Fig 3 compares the learning
curves of the three different types of knowledge-guided-
exploration approaches described in this paper. From the
learning curves, it is evident that the number of interactions
taken to adapt to the novelty is directly dependent on the
difficulty of the novelty. In more complex novelties such
as rubber-tree hard, we show Knowledge-guided-exploration
increases sample efficiency by directing exploration for the
agent in these novelties, as evident from the learning curves.
The transfer learning baselines on these particular novelties
consistently take 2 (Table II) orders of magnitude more
interactions to adapt to the novelty.

1) Statistical Significance: To demonstrate that the aver-
age success rate of RAPid-Learn is consistently higher than
the baseline approaches, we perform an unpaired t-test [38].
For the experiment, we consider a confidence interval of

https://github.com/goelshivam1210/RAPid-Learn/
https://github.com/goelshivam1210/RAPid-Learn/
https://github.com/goelshivam1210/RAPid-Learn/


(a) Rubber Tree Hard (b) ATB+FCT Easy (c) Axe to Break Hard (d) Fire Crafting Table Hard

RAPid-KGE-UCB RAPid-EGRAPid-KGE-UAB

Fig. 3: These plots illustrate the performance of the proposed RAPid-Learn methods during the Executor-Discovery phase
of the associated novelty. The baseline methods take orders of magnitude more timesteps to converge, and are shown in
https://github.com/goelshivam1210/RAPid-Learn/.

95% and evaluate the p-value between the best performing
RAPid-Learn approach and the two transfer learning baseline
approaches (Actor-critic transfer, Policy reuse). Table III
shows the results of the unpaired t-test. Thus, through the
results, we see that our proposed approach, RAPid-Learn
has a consistent performance in the post-novelty success rate.
The results are always statistically significant, except in the
case of the Scrape Plank novelty. In all the novel scenarios,
RAPid-Learn has a much more sample efficient performance.
Thus, RAPid-Learn not only achieves a better success rate,
but also adapts to novel scenarios efficiently.

Methods p-value Statistical
Significance

Axe to Break (ATB) + Fire Crafting Table (FCT) - Easy
RAPid-KGE-UCB ↔ Actor-critic 0.0062 Yes

RAPid-KGE-UCB ↔ Policy Reuse 0.0012 Yes
Axe To Break (ATB) - Hard

RAPid-KGE-UCB ↔ Actor-critic 0.00336 Yes
RAPid-KGE-UCB ↔ Policy Reuse 0.0012 Yes

Fire Crafting Table (FCT) - Hard
RAPid-KGE-UAB ↔ Actor-critic < 0.0001 Yes

RAPid-KGE-UAB ↔ Policy Reuse < 0.0001 Yes
Scrape Plank (SP)

RAPid-KGE-EG ↔ Actor-critic 0.0077 Yes
RAPid-KGE-UCB ↔ Policy Reuse 0.0608 Yes

TABLE III: Results of unpaired t-test between best performing
RAPid-Learn and transfer learning baselines

D. Discussion

1) Dedicated Operator Failure: In these set of experi-
ments, we aim to find: Can the agent learn to succeed when
an operator failure occurs due to one novelty introduced by
the environment? The novel scenarios corresponding to this
are axe-to-break hard, fire-crafting-table hard, and scrape-
plank4 (see Table I). The results in Table II and the learning
curves in 3(c), 3(d) show that RAPid-KGE-UCB and RAPid-
KGE-UAB converge to a post-novelty performance of 96%,
beating the baselines by 2 orders of magnitude. The RAPid-
Learn agent achieves a high success rate in the post-novelty
performance in all the novel scenarios.

2) Explicit Multiple Operator Failures: In these set of
experiments, we aim to find out: Can the agent learn to suc-
ceed when multiple independent operator failures occur due

4Further details regarding the implemented novelties in
https://github.com/goelshivam1210/RAPid-Learn/

to multiple novelties introduced by the environment? The en-
vironment introduces two novelties simultaneously, namely,
fire-crafting-table easy and axe-to-break easy (ATB+FCT-
Easy). The effects of these novelties are independent in
nature, i.e. the agent’s performance over the fire-crafting-
table easy novelty does not depend on its performance
of solving the axe-to-break easy novelty. Thus, the agent
learns two independent executors, one for each novelty. The
results in Table II that RAPid-learn performs better than the
baselines, achieving a post-novelty success performance of
97%. Fig 3(b) compares different RAPid-Learn approaches.

3) Implicit Multiple Operator Failures: In these set of
experiments, we aim to find: Can the agent learn to succeed
when its learned action executor breaks another operator
in the plan? When the agent learns to adapt the rubber-
tree hard novelty by extracting rubber in its inventory, it
fails in executing the next operator in its original plan (it
can no longer break the novel unbreakable rubber-tree),
running into another impasse. The agent can complete the
task after it adapts to the multiple implicit novelties in the
environment. Table II shows that the baselines don’t even
converge, whereas RAPid-Learn adapts in about 28000 time
steps. Fig 3(a) compares different RAPid-Learn approaches.

In all the novel scenarios in our experiments, the agent
cannot succeed at the impasse by exploring the known pred-
icates and can only succeed when it explores the environment
at a sub-symbolic level. For example, in the rubber-tree-hard
novelty the agent’s domain knowledge does not have any
predicate for standing one block away from the tree entity
for performing the place operator. Sub-symbolic learning
materializes this notion through its sequence of actions in
its policy, and in turn, in its action executor.

VII. CONCLUSION & FUTURE WORK

We proposed a novel hybrid planning-deep RL based
approach for open-world tasks which handles unanticipated
changes to the task environment on-the-fly. Our proposed
method utilizes domain knowledge to perform knowledge-
guided-exploration in the novel environment and efficiently
learns a novelty-handling policy mapped onto an action
executor. A rigorous evaluation of our domain-independent
method in five novel scenarios demonstrated the significant
performance improvement compared to state-of-the-art trans-

https://github.com/goelshivam1210/RAPid-Learn/
https://github.com/goelshivam1210/RAPid-Learn/


fer learning approaches. We show novelty accommodation
even in scenarios where baselines fail to converge.

While our current implementation only handles cases
where novelties lead to plan execution failure, specifically,
execution impasses, we are working on extensions that can
also handle other types of open-world novelties (beneficial,
detrimental, irrelevant). Moreover, our approach assumes that
a plan always exists, and a future direction would be one in
which the agent needs to find a solution when the planning
itself fails. Furthermore, while we have demonstrated the
approach in a fully observable, deterministic environment,
nothing hinges on these assumptions and thus this approach
can be generalized to incorporate stochasticity and partial
observability. Another limitation of our approach is that it
assumes a fixed goal state. Finally, we are working on exten-
sions to abstract the learned executor to a symbolic operator,
which is non-trivial when using function approximators.
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