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A B S T R A C T
"Open world" environments are those in which novel objects, agents, events, and more can
appear and contradict previous understandings of the environment. This contradicts the "closed
world" assumption used in most AI research, where the environment is assumed to be fully
understood and unchanging. The types of environments AI agents can be deployed in are
limited by the inability to handle the novelties that occur in open world environments. This
paper presents a novel cognitive architecture framework to handle open-world novelties. This
framework combines symbolic planning, counterfactual reasoning, reinforcement learning, and
deep computer vision to detect and accommodate novelties. We introduce general algorithms
for exploring open worlds using inference and machine learning methodologies to facilitate
novelty accommodation. The ability to detect and accommodate novelties allows agents built
on this framework to successfully complete tasks despite a variety of novel changes to the
world. Both the framework components and the entire system are evaluated in Minecraft-like
simulated environments. Our results indicate that agents are able to efficiently complete tasks
while accommodating "concealed novelties" not shared with the architecture development team.

1. Introduction
Traditionally, AI research has focused on agents operating in “closed worlds” where all task-relevant concepts are

assumed to be known in advance and designers can utilize this knowledge to construct specific algorithms based on this
information (Boult, Cruz, Dhamija, Gunther, Henrydoss and Scheirer, 2019; Hewitt and Jong, 1983). Agents might still
have to learn about instances of these concepts and their distributions, and maybe even cope with out-of-distribution
cases, but at least they can assume that no conceptual changes will occur to task-relevant aspects that they would have
to accommodate in order to complete their task (e.g., a self-driving car having to discover the concept of a car ferry
which it would have to take to cross the river in order to get to its goal location as the bridge was just closed for traffic).

The transition from closed to open worlds thus necessitates that artificial agents be able to handle task-relevant
novelties as they present themselves during task performance. While some of the unknown aspects of the environment
might not have any impact on the agent’s actions, others might be preventative in that without “accommodating” them,
the agent can no longer accomplish its task. While accommodation does not necessarily require that the agent be able
to detect the unknown aspect (e.g., a detour on the road leading directly onto the ferry), in general detection, and in
some cases explicit characterization, of the novelty will often be a critical component (e.g., no detour, only a road sign
suggesting to take the ferry).

The goal for the development of novelty-aware agents thus is to integrate methods into the agent architecture that
allow the agent to detect novelties and accommodate them. We propose a hybrid symbolic-subsymbolic inference-based
approach that at its core uses symbolic and subsymbolic statistical inferences to make predictions about possible and
likely world states. When these predictions fail, the agent assumes that its knowledge about the world is incomplete
and might have to be augmented. Depending on the impact of the prediction failure on its task performance, the
agent might decide to continue with its task and explore the novelty later, or it might immediately engage in a
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Figure 1: An example of the gridworld environment. The novel actor is highlighted in blue, while the rest of the environment
is known to the agent.

comprehensive exploration process during which it attempts to acquire additional knowledge to be able to handle
the novelty. Depending on the novelty, the agent might be able to generate an explicit symbolic characterization of the
novelty that will allow it to reason and plan with it, or it might only have an implicit classification that is sufficient for
triggering actions that utilize or avoid it.

Our contributions in this paper are: (1) An agent-centric categorization of novelties for goal-oriented planning
agents, (2) a hybrid architectural approach that combines symbolic planning and counterfactual reasoning with
reinforcement learning and deep computer-vision techniques to perform novelty detection and accommodation; (3)
domain-general algorithms for novelty handling and explorations using inference and reasoning methodologies that
include machine learning techniques; and (4) comprehensive evaluations of the agent architecture that range from
evaluations of individual components to system evaluations performed by a dedicated evaluation team on “concealed
novelties” that were not shared with the algorithm and architecture development team.

2. What is a novelty?
We depart from the assumption that novelty is a property of objects as it is sometimes treated in the recent literature

on open-world novelty (e.g., Boult et al. (2019)), and instead view novelty as an intrinsically agent-relative concept,
i.e., a relation between aspects of an environment and an agent’s cognitive system. This is easy to see because what is
a novel object or concept for one agent (e.g., like a mass spectrometer for a diabetes patient, say, because the agent has
not encountered it before or cannot derive any knowledge about it) might not be novel for another agent (e.g., the doctor
using it to determine the distribution of metabolites). Hence, when we talk about novelty in this paper, we always have
an epistemic agent in mind for whom something is novel because the agent has not experienced it and cannot derive
representations of it from its knowledge base (cp. Muhammad, Sarathy, Tatiya, Goel, Gyawali, Guaman, Sinapov and
Scheutz (2021)). To better illustrate what kinds of novelties an agent might encounter and when it should care about
them—when it ought be able to detect and handle them, and maybe characterize them to be able to utilize them for
their purposes in the future—we will use a simple gridworld environment, based on the popular Minecraft game (see
Fig. 1) where the agent’s task is to craft a pogostick. We will later use the very same environment for comprehensive
evaluations of the proposed novelty-aware agent architecture.

The environment contains any number of objects such as trees on which the task-performing agent (just called “the
agent”) can perform actions such as breaking them into logs, which, in turn, can be crafted into planks and sticks. There
is also a crafting-table that the agent can use to craft complex items such as a tree-tap and a pogostick using pre-defined
crafting recipes. The agent can also mine diamond from diamond ore. And the environment has a safe which can be
used to store items. In addition to objects, the environment can also have various actors, i.e., agent types such as traders
which can interact and trade items, or the pogoist, an adversary which competes with the agent in collecting resources
from the environment to craft a pogostick.
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Now consider an agent that has knowledge of all aspects of this environment, either through past experience or
through having been endowed with the knowledge a priori. In other words, nothing in the environment is novel for
the agent. Suppose a change is introduced while the agent is performing its task, e.g., in the form of new objects, new
environment dynamics, new relations, etc. In the environment in Fig. 1, a new actor, referred to as supplier (highlighted
in blue) was introduced and may have unknown effects on the agent’s ability to craft a pogostick.

Depending on the characteristics of the new actor and its relation to the agent, some aspects of it may be novel for
the agent. For instance, the supplier may relate to objects in the world in previously unknown ways, it may be visually
distinct from any actor known to the agent, or may behave differently than any other actor previously encountered by
the agent. Regardless of the aspect of the supplier that is novel to the agent, detecting the novelty can be useful or even
necessary if the supplier can affect the agent’s ability to achieve its task goals. For example, it may be that

• without interacting with this new actor, it is no longer possible to obtain the required ingredients to craft the
pogostick,

• crafting a pogostick is still possible without interacting with the supplier, but the supplier can still assist the agent
in crafting the pogostick more efficiently, or

• the supplier has no effect on the agent’s task and interaction with it offers no utility to the agent.
To determine which is the case, the agent needs to explore different interactions with the supplier.
In general, novelty-aware agents need to be able to identify situations that are unknown or inconsistent with their

knowledge of the environment, and have strategies to explore and incorporate new knowledge from those explorations
into their knowledge representations.
Novelty detection. Novelty detection is the process of identifying representations inconsistent with the agent’s prior
knowledge. Depending on the knowledge representations that the agent maintains, the process of detecting novelty
can vary. For instance, the agent encountering the supplier may recognize it as a novel agent by its appearance, which
differs from other agents it has encountered in the past.
Novelty accommodation. Novelty accommodation, then, is the process of gaining and incorporating new knowledge
related to the novel aspect into an agent’s knowledge representation. Accommodation might be imperative when the
novelty negatively affects the agent’s ability to achieve its task. For instance, after visually identifying the supplier, the
agent might need to explore interactions with it to characterize the supplier’s potential impact on its goals. Different
accommodation strategies may be necessary depending on whether the supplier is beneficial or detrimental to the
agent’s goals and no accommodation is necessary if the supplier has no impact on them.

Designers of novelty-capable agents need, to some extent, anticipate novelties to bootstrap the agent to start up
with some ontology that allows it to carve up the world into different categories. However, the central motivation for
developing agent architectures and methods that detect, characterize, and accommodate novelty is that in open worlds,
designers are not able to anticipate all possible states that might constitute novelties for the agent.

Finally, since novelty is an agent-relative concept, an agent might find many novelties that are trivial or not task-
related. Furthermore, any given unknown element of the environment can represent a large number of novelties, as not
only is the element itself unknown, but so may its properties, its relations to other elements, etc. In this work, our agent
is task-oriented and so exhaustively searches for novelties for the sake of discovering them but only handles them when
necessary. This also blocks it from discovering many useless novelties (e.g., different arrangements of trees constituting
different spatial relationships). However, our architecture can, in principle, be used as an information-gathering agent
if the goal is to discover as many novelties as possible.

3. Theoretical Framework
We start with general definitions of a task environment with agents and objects in order to be able to formally

define what we mean by “novelty”: a relation between the agent and aspects of the environment (cp. to the definition
in Muhammad et al. (2021)). We then define different types of novelties based on how they impact an agent’s task
performance.
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3.1. The formal agent-environment framework
We consider a task environment  = ⟨𝐸, ⟩ to consist of a (not necessarily finite) set of environmental states

𝐸 and a set  of time-indexed maps 𝑡 ∶ 𝐸 ↦ 𝐸 for 𝑡 ∈ ℕ that defines the evolution of states, i.e., given a state
𝑒 ∈ 𝐸, 𝑡(𝑒) is the state of the environment  at time 𝑡. We can define a reachability relation (𝑥, 𝑦) iff ∃𝑡𝑡(𝑥) = 𝑦
indicating whether a state is reachable from another state, given the environmental dynamics. In other words, The
environment may contain any number of objects and agents as part of its state (e.g., placed in locations for spatially
extended environments) with agents differing from objects in that they have internal states and can cause state changes
through internal (computational) processes while objects are inert without internal states or internal processes.

We define an agent  = ⟨𝜁, 𝛯,, ⊢⟩ to be equipped with a set of sensors 𝜁 1 that allow it to perceive
the environment, a set of effectors 𝛯

2 that allow it to act upon the environment, a knowledge repository  =
(𝐾𝐵, 𝛩) (potentially empty) that can hold different representations, e.g., symbolic descriptions of𝐸 in some formal
language or “subsymbolic representations” like sensory or effector states. The knowledge base 𝐾𝐵𝐴 is symbolic and
stores knowledge explicitly in terms of facts and rules in a formal language. On the other hand, 𝛩 stores knowledge
about subsymbolic and neural representations in a distributed manner, such as in the weights of a neural network.
The agent also has an internal inference operator ⊢ that enables it to perform manipulations of its knowledge
representations, e.g., to perform different types of inference for different knowledge modalities in . For 𝐾𝐵,
we define ⊢ to represent a first-order prover that can derive new facts from the 𝐾𝐵, while for 𝛩 we define it to
represent a neural inference algorithm. In general, at a given time 𝑡, the agent’s sensors will generate agent-internal
representations 𝑋 of partially observed environment states in 𝐸 and the agent’s effectors 𝛯 at time 𝑡, given the
environmental state, will cause an update to the environmental state at time 𝑡 + 𝛿, thus implicitly defining a set of
“actions” 𝐴 that specify how the agent can affect the environment. Actions can be triggered by the agent through
its internal inference algorithms (the “agent function”). A note on notation: We will drop the agent subscript going
forward if it is clear from the context which agent we are referring to.

While the above definitions allow for a diverse array of agent models, we will consider cognitive agents for the
rest of the paper that can reason and plan using a first-order language (FOL)  while also representing aspects of the
environment subsymbolically (e.g., visually in images) and reasoning with those representations non-symbolically. The
agent has a set of 𝑛 − 𝑎𝑟𝑦 predicates 𝑃 (denoting relations or atoms) over a set of variables 𝑉 and constants 𝐶 (with
constants, for example, denoting objects or locations in the environment). An atom over the language  is represented
by 𝑝(𝑢1,… , 𝑢𝑛), 𝑢𝑖 ∈ 𝐶 ∪ 𝑉 and ¬𝑝(𝑢1,… , 𝑢𝑛) its negation. If 𝑢𝑖… 𝑢𝑛 ∈ 𝐶 , then 𝑝(𝑢1,… , 𝑢𝑛) is a grounded atom. 
can then be used to express knowledge about  such as facts, rules, and relations between states in 𝐸.

Agents can perform tasks in the environment using explicit task descriptions defined in a “planning domain”
represented as𝛴 = ⟨ ,⟩, where  is a (partial) description in  of states in𝐸 and  is a set of operators expressed in
, with preconditions 𝜓𝑜 and effects 𝜔𝑜, corresponding to (sequences of) actions the agent can perform. Each planning
domain operator in  is associated with a “lower-level action executor” 𝜒 ∈  defined as a triplet of functions ⟨𝛾, 𝜋, 𝛽⟩
over  . The functions 𝛾 and 𝛽 indicate which state descriptions in  are the acceptable start and end state descriptions
for the executor 𝜒 and the function 𝜋 ∶  ↦ 𝐴 is a policy indicating which actions are taken in each state. The state
description of a state 𝑠 ∈  includes information about all the objects 𝑂 and actors 𝛷 in the domain.

Figure 2 illustrates the distinction between state descriptions, environmental states, and subsymbolic state
observations. Symbolic state descriptions do not enjoy a one-to-one relation to environment states, as the agent may
not be omniscient. As a result, a particular state description may correspond to a set of possible environment states.
Similarly, subsymbolic state observations 𝑋 (e.g., images) also do not fully describe the environment state. The agent
uses planning operators 𝑜 ∈  to generate plans. The executor 𝜒𝑜 ∈  associated with 𝑜 executes actions that, in
accordance with the state transition relation , modify the environment state.

A planning task 𝑇 = ⟨𝛴, 𝑠0, 𝑠𝑔⟩ defines a set of initial state descriptions 𝑠0 and a set of goal state descriptions 𝑠𝑔using  in the planning domain 𝛴. The agent , using state descriptions 𝑠 ∈  , along with operators 𝑜 ∈ , can use
inference ⊢ to produce a plan  =

[

𝑜1,… , 𝑜∣|

] that solves the planning task 𝑇 , indicated by  ⊳ 𝑇 , if one exists and
the agent’s algorithm can find it. We consider that 𝑃 ⊳𝑇 if executing the actions (through executors) corresponding to
the operators in  in states consistent with descriptions in 𝑠0 will take the agent to states consistent with descriptions
in 𝑠𝑔 .

1We consider sensors to be maps from the set of environment states𝐸 and internal (sub)symbolic state representations to internal (sub)symbolic
state representations. This distinction allows for internal states that influence perception.

2We consider effectors to be maps from the internal (sub)symbolic states and environmental states to the internal (sub)symbolic states to
environmental states
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Figure 2: Overview of the Agent-Environment Interface. The agent represents the environment state symbolically in the
language . The agent does not have complete knowledge, so a state description can correspond to many true environment
states. It also observes the environment subsymbolically. The agent uses an operator 𝑜 of its planning domain to transition
in the environment to a new state via the executor 𝜒𝑜.

3.2. Novelties
Given an environment  , an agent , and a planning task 𝑇 , the agent needs to complete the task 𝑇 . However, it is

often the case that  does not have complete knowledge of  as there may be aspects of environment states in 𝐸 that
cannot be derived from the agent’s knowledge repository . As defined earlier, these elements constitute novelty for
. Specifically, a representation 𝜈 of an aspect of an environment state 𝐸 is a novelty for the agent  if  ⊬ 𝜈 where
the representation 𝜈 could be in  or a subsymbolic representation (e.g., an image). A set of novelty representations 3
is represented as  . The process of incorporating novelty representations  in the agent’s knowledge repository 
is denoted as 𝐾𝐵 ∪ for symbolic representations and 𝛩 ∪ for subsymbolic representations of novelties.

The existence of a set  for the agent  can have varying effects on its ability to solve a task 𝑇 and we will define
some novelty types accordingly:
Definition 1. [Prohibitive novelty] A novelty represented by 𝜈 is prohibitive (for agent  and task 𝑇 ) if for all plans
 , 𝐾𝐵 ⊢  , ⋫ 𝑇 , but ∃𝜈 ⊳ 𝑇 and 𝐾𝐵 ∪ {𝜈} ⊢ 𝜈 .

In other words, prohibitive novelties for the agent  are aspects of the environment that the agent needs to represent
and reason with to generate a successful plan.
Definition 2. [Obstructive novelty] A novelty represented by 𝜈 is obstructive (for agent  and task 𝑇 ) if it causes the
execution of an executor 𝜒 ∈  to fail.

Obstructive novelties for the agent  thus may or may not impact the agent’s task performance depending on
whether the agent included the operator associated with the failing executor in its plan. Especially in cases where no
other plan can be found, knowledge of the novelty might help the agent to either modify the failed executor or replace
it with a new working executor.
Definition 3. [Beneficial novelty] A novelty represented by 𝜈 is beneficial (for agent  and task 𝑇 ) if ∃𝜈 𝐾𝐵∪{𝜈} ⊢
 such that 𝜈 ⊳ 𝑇 and ∀ , 𝐾𝐵 ⊢  , ⊳ 𝑇 , |𝜈| < ||.

In other words, beneficial novelties for the agent  are novelties whose representations can help the agent solve
the planning task 𝑇 in fewer steps than its original plan  (alternatively, when action costs are defined for plans, such
novelties would result in lower-cost plans).

3Note that the agent’s symbolic or subsymbolic representational repertoire is a hard limit for the agent’s ability to capture novelties. We are not
considering “growing agents” here that might be able to extend their cognitive system’s representational formalism and capacity.
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Figure 3: High-level architecture diagram of the relevant components for novelty handling (highlighted in colored boxes)
and the information flow among them (see text for details).

Definition 4. [Nuisance novelty] A novelty represented by 𝜈 is a nuisance (for agent  and task 𝑇 ) if
∀𝜈 𝐾𝐵 ∪ {𝜈} ⊢ 𝜈 such that 𝜈 ⊳ 𝑇 , ∃ ⊳ 𝑇 ,𝐾𝐵 ⊢  and |𝜈| ≥ ||.

In other words, nuisance novelties for an agent  do not contribute to task performance nor do they obstruct it; they
may only cause higher performance costs (in terms of plan length, or plan costs if a notion of action cost is defined).

It should be clear from the above definitions that all the novelty types are agent-relative and thus depend on a
particular agent’s makeup, including sensors, effectors, knowledge representations, etc. Hence, what is a prohibitive
novelty for one agent, might be a nuisance novelty for another agent or no novelty for yet another one.

The goal for our agent design then is to handle novelties, i.e., when an agent  encounters a novelty represented
by 𝜈, it needs to assess how the novelty affects its task-solving ability (i.e., prohibitive, obstructive, beneficial,
nuisance) and experiment with the novelty to expand or correct its knowledge repository . In cases where the agent’s
goal is knowledge discovery, exploration strategies informed by the detected novelty can be employed to further
expand . In goal-oriented settings where task completion takes precedence, the potentially intractable number of
novelties motivates limiting exploration to cases where task completion is compromised, or when there are very strong
environmental cues (i.e. passive detection of novelty). In those cases, any additional knowledge incorporated into 
can then be used for inference to solve its task 𝑇 .

4. An Architectural Framework for Novelty Handling
We introduce the architectural framework (depicted in Fig. 3) for developing novelty-aware agents composed

of several components that, through their function and interactions, define the agent’s knowledge repository , its
inference algorithms ⊢, and operate its sensors 𝜁 and effectors 𝛯.

The agent has a DOMAIN INTERFACE component that mediates its interactions with the environment through the
sensors 𝜁 and effectors 𝛯 (this will typically be itself a set of components for different sensors and effectors but we
are not concerned with those architectural details in this work). Sensory information is organized into symbolic state
descriptions 𝑠 ∈  and passed on to other components for processing, including recognized actions of other actors
in the environment. Additionally, subsymbolic perceptions 𝑋 (e.g. images) acquired by the sensors are also made
available by the DOMAIN INTERFACE.4

The knowledge base 𝐾𝐵 ∈  stores facts using  about the environment as extracted from state description
obtained from the domain interface, as well as the operators  available to the agent. The GOAL MANAGER and
TASK PLANNER are the symbolic inference mechanisms of the architecture. The GOAL MANAGER detects novelty by

4Ideally, all symbolic information such as state descriptions and recognized actions by other agents would be obtained from a vision or perceptual
processing module, but because our focus is not on scene descriptions and action recognition from images, we allow the DOMAIN INTERFACE to
already provide these pre-processed percepts.
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comparing inferred expected state descriptions from rules and facts in 𝐾𝐵 to state descriptions obtained through the
DOMAIN INTERFACE. The TASK PLANNER generates plans for the agent to execute in the environment. The GOAL
MANAGER also detects novelty due to plan failure. Whenever novelty is detected, it is submitted to the 𝐾𝐵 for further
inference and exploration.

The subsymbolic knowledge repository 𝛩 ∈ , along with the VISION MODEL and AGENT MODEL components,
make up the neural inference algorithms of the agent. The VISION MODEL receives subsymbolic state descriptions (e.g.,
images) and detects out-of-distribution samples using statistical methods. The AGENT MODEL receives symbolic state
descriptions and, with statistical methods, monitors the behavior of other actors in the environment to detect when their
behavior is inconsistent with the agent’s expectations. When either component detects novelty, it sends a description
of the novelty to the 𝐾𝐵.

The NOVELTY EXPLORATION component is comprised of symbolic novelty exploration algorithms, as well as a
reinforcement learner that can learn policies to form new executors if necessary. It accepts a description of the novelty
and symbolic state from the 𝐾𝐵. It returns sub-goals to the GOAL MANAGER that aim to explore the environment or
specifications of operators that can be used to aid in solving task 𝑇 . The operation of these components is described
in detail in subsequent sections.
4.1. Symbolic inference

Symbolic inference is performed by the GOAL MANAGER and TASK PLANNER on facts and rules from the 𝐾𝐵 to
solve task 𝑇 and to detect novelties  .
4.1.1. Knowledge Base

The knowledge base𝐾𝐵 ∈  stores facts about symbolic state descriptions  using the language . It is populated
with facts and rules defined a priori and through interaction with the environment. This may include objects, actors,
functions, symbolic state representations, and a semantic type hierarchy used to describe planning tasks.

During execution, other components in the architecture may assert, retract or query facts in 𝐾𝐵 to detect novelty,
create plans, or store new knowledge. The 𝐾𝐵 is part of the knowledge repository  against which novelties are
detected. As a result, when information about a detected and explored novelty is asserted into 𝐾𝐵, subsequent
encounters with it will no longer be novel for the agent. This is not limited to novelties detected using symbolic
inference, as novelties detected with neural inference are also eventually expressed in  and stored in 𝐾𝐵.
4.1.2. Task Planner

The TASK PLANNER is one of the two symbolic inference mechanisms utilizing the 𝐾𝐵. Once a desired goal state
description 𝑠𝑔 is received from the GOAL MANAGER, the TASK PLANNER retreives a planning domain definition 𝛴
(operators, predicates, etc.) and an initial state description 𝑠0 from the 𝐾𝐵 to form a planning task 𝑇 and searches for
a plan  ⊳ 𝑇 . Whether a plan is found or not, along with the plan itself, is then submitted to the GOAL MANAGER for
further inference and execution.
4.1.3. Goal Manager

The GOAL MANAGER is responsible for managing the agent’s top-level goal(s), which can consist of multiple
concurrent goals, and is responsible for detecting novelties in symbolic state descriptions. The component submits goals
to the TASK PLANNER and performs inference on state descriptions, a process during which novelties of different types
may arise due to planning failure, execution failure, or unexpected aspects of state descriptions. The general principle
for detecting novelty with symbolic inference is predicting next environment states and comparing predictions with
observed states. Once a novelty is detected, the GOAL MANAGER produces a description of it and asserts it to the𝐾𝐵.
Depending on the novelty, the produced description contains information about the environment state, the aspects of
it that are novel as well as any operators that may exhibit unexpected behavior. Depending on the novelty type, the
NOVELTY EXPLORATION component (see Section 4.3) may be invoked. The GOAL MANAGER is also the primary
component communicating with the DOMAIN INTERFACE.
Prohibitive novelty. Prohibitive novelties are most often encountered due to the failure of the TASK PLANNER. For
a given goal, the GOAL MANAGER consults the TASK PLANNER for a plan  to execute. If the TASK PLANNER fails to
find a plan for a particular goal, assuming that the goal is achievable based on the agent’s knowledge, then the failure
may be due to an prohibitive novelty.
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Obstructive novelty. Obstructive novelty is most likely encountered due to plan execution failure. Once a plan
sequence has been generated, the GOAL MANAGER enters an execution phase where it verifies that each operator’s
preconditions are met. In this inference task, the DOMAIN INTERFACE is consulted to verify that the preconditions𝜓𝑜 of
an operator 𝑜 ∈  hold in the current symbolic description of the environment state. If inference on prior states indicates
that all of the operator’s preconditions𝜓𝑜 should be met, but they are not in the current state, this constitutes a novelty. If
all preconditions are met, the executor𝜒𝑜 of the operator is sent to and executed by the DOMAIN INTERFACE component.
The agent may receive feedback through the DOMAIN INTERFACE component indicating the success or failure of
the executor. In case of failure when success was anticipated, this again constitutes novelty. Additionally, obstructive
novelty may occur even when an executor succeeds, if its effects are not consistent with the agent’s expectations.
Beneficial and nuisance novelty. Success in the task does not eliminate the possibility of novelty. The GOAL
MANAGER may still encounter beneficial or nuisance novelties during its inference of the expected state of the world.
If the inferred state does not match the observed state of the world solicited from the DOMAIN INTERFACE, then that
still constitutes a novelty, regardless of its effect on the task. Otherwise, plan execution continues until all operators in
the plan have been executed.

In all cases where novelty is detected, a symbolic description of it is asserted to 𝐾𝐵 and sent to the NOVELTY
EXPLORATION component, which utilizes different exploration policies depending on the way novelty is encountered.
Novelty descriptions involve information about the aspects of the environment state that are novel such as novel objects
and unexpected or missing operator effects. If the agent’s goal is knowledge discovery, GOAL MANAGER can also
enumerate sub-goals for the agent to achieve to test for novelty in different environment states or to further explore
previously detected novelty. However, in goal oriented environments such extensive exploration is limited to novelties
that prevent task completion.
4.2. Neural inference

The architecture’s neural inference components are used to detect novelty in the subsymbolic state representations
𝑋 as well as in statistical relationships between elements of the state descriptions  .

The knowledge repository𝛩 ∈  stores the agent’s knowledge of these modalities in the form of machine learning
model parameters. The first component for neural inference is VISION MODEL, which implements a visual novelty
detector based on images from the DOMAIN INTERFACE. The second component of neural inference is an AGENT
MODEL that models the behavior of other actors in the world to detect deviations from their known behaviors. If either
module detects model deviations with sufficient confidence, a symbolic representation of the hypothesized novelty is
submitted to the knowledge base for further inference and exploration. A general design principle for neural novelty
detectors is an emphasis on caution: Given the distributional nature of neural models, we set conservative thresholds for
novelty detections to minimize false positives. This is especially important when the agent’s priority is task completion,
as false positive detections can result in superfluous exploration that may hinder task performance.
4.2.1. Vision Model

The VISION MODEL is responsible for detecting visual novelty. At every step, the DOMAIN INTERFACE provides
a 2-dimensional color image of the agent’s current view of the world. The VISION MODEL’s task is to determine
whether each new input image represents a plausible view of the known standard environment, or a different “novel”
distribution. Some authors refer to similar problems as anomaly detection or out-of-distribution detection (Ruff,
Kauffmann, Vandermeulen, Montavon, Samek, Kloft, Dietterich and Müller, 2021). Visual novelties could include
new object types, new agent appearances, or new backgrounds. Scene composition properties could also change (sizes,
frequencies, relative locations, etc.).

To solve the detection problem, our VISION MODEL takes a deep autoencoder approach, following Abati, Porrello,
Calderara and Cucchiara (2019). Deep autoencoders are often applied to visual novelty detection for their ability to
learn effective representations of data through self-supervision (Pang, Shen, Cao and Hengel, 2022). The model consists
of two component neural networks: an encoder e𝜙 with weights 𝜙 that maps image 𝑋 to a code vector 𝑧 ∈ ℝ𝐶 , and a
decoder d𝜙′ with weights 𝜙′ that maps code vector 𝑧 back to an image𝑋. After a model is suitably trained (see below),
given a new image 𝑋̃, the model assesses possible novelty via reconstruction error: 𝑟(𝑋̃;𝜙, 𝜙′) = ||𝑋̃−𝑑𝜙′ (𝑒𝜙(𝑋̃))||2,
which measures Euclidean distance between the input and its reconstruction. Intuitively, a well-trained model should
have low reconstruction error for images that represent the normal environment used for training, while images
containing novelty will yield higher error. The effectiveness of this novelty detection method is determined by the
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separability of the normal and novel reconstruction error distributions (Richter and Roy, 2017). The VISION MODEL
can pass the reconstruction error signal directly to the Symbolic Inference. Naturally, we can also apply a threshold 𝜏
to produce binary detection decisions, where “novelty” is called if 𝑟(𝑋̃) > 𝜏 and “normal” otherwise. The value of 𝜏
can be selected on a validation set containing labeled examples of normal and novel data to maximize a performance
metric of interest.

The VISION MODEL can be trained in advance on a dataset of images depicting the “normal” environment.
Given 𝑁 training images, we seek encoder and decoder weights 𝜙, 𝜙′ that minimize the total reconstruction error:
∑

𝑛 𝑟(𝑋𝑛;𝜙, 𝜙′). This can be solved via stochastic gradient descent (Abati et al., 2019), and the optimal weights 𝜙, 𝜙′

stored within 𝛩 for later processing.
If the VISION MODEL detects abnormal images, it generates a description  that is sent to 𝐾𝐵. The description

includes an identifier that allows the 𝐾𝐵 to associate a visually-detected novelty with the state description of the
environment state in which it was observed. Since no additional information is extracted, it is difficult to accommodate
novelties that are detected only visually.
4.2.2. Agent Model

The AGENT MODEL is a crucial part of the architecture when operating in multi-agent environments. It uses neural
inference over symbolic state descriptions and is responsible for maintaining knowledge about other actors. The aim
of the AGENT MODEL is to evaluate whether facts about other agents contained in symbolic state descriptions are
consistent with its knowledge of those agents’ behavior. One major factor we consider here is the types (e.g. supplier
or pogoist from the example in Section 2) of other agents.
Behavioral modeling with behavioral cloning. The main approach of the AGENT MODEL is to model other agents’
behaviors via behavioral cloning (BC) 5.

Suppose other actors 𝛷 identified in the state descriptions  have actor-types in a set 𝑄, also provided in the state
description. For each type 𝑞 ∈ 𝑄, the AGENT MODEL learns the policy 𝜋(𝑎|𝑠, 𝑞) of an agent of type 𝑞. It is implemented
with a neural network nn𝜃(𝑠, 𝑞), which outputs the probability of actions in the action space 𝐴𝑞 of the agent of type 𝑞.
Here the input (𝑠, 𝑞) is represented as a feature vector. If necessary, other representations such as graphs and text can
also be consumed by neural networks. If complete knowledge of another actor’s state is not known, then a pseudo-state
𝑠′ can be inferred using knowledge in . Then the model becomes nn𝜃(𝑠′, 𝑞) and the action likelihood can be estimated.
The model is trained via supervised learning using the true actions each actor took at that state (described in symbolic
representations). The resulting model parameters 𝜃 are stored in 𝛩 and used to evaluate action likelihoods during
execution. The exact architecture, hyper-parameters, training procedure and feature representation is also application
dependent and is discussed in the experiment section.
Unlikely action detection. During operation, the AGENT MODEL uses the learned neural network to monitor an
actor’s behaviors and detect unlikely actions. Our agent may encounter actors that deviate from their actor-type’s
policy. Such an event is inconsistent with the agent’s  in the sense that the actors exhibit behavior that is unlikely
under the actor policies encoded in 𝛩. Such novelty can be detected by evaluating the likelihood of observed actions
using nn𝜃 . Focusing on a single actor of type 𝑞 ∈ 𝑄 and its action 𝑎 ∈ 𝐴𝑞 from a symbolic state description 𝑠 ∈  , the
likelihood under the learned model is computed by 𝑙 = nn𝜃(𝑠, 𝑞). Then, 𝑙 is compared to previously encountered values
to decide if 𝑎 deviates from the known distribution. For instance, if nn𝜃 is trained offline with a dataset of trajectories
from the environment, then a portion of the dataset can be used for validation to set a threshold below which actions
are considered inconsistent with the model for that actor type.
Actor type classification. Using the model nn𝜃 , the AGENT MODEL can also classify actors into the known actor
types 𝑄. During operation, a voting scheme over the 𝑄 known actor types is used to classify actors into types using
their action likelihoods. The voting-based actor type classifier is described in algorithm 1.

The predicted types can be compared with the types extracted from the symbolic description to determine if some
actors deviate from their actor types.

5Behavioral cloning(Bain and Sammut, 1995; Daftry, Bagnell and Hebert, 2016; Argall, Chernova, Veloso and Browning, 2009) is an offline
reinforcement learning technique that learns policies from a dataset of actor trajectories. That dataset can be collected from repeated interactions
with the environment and the policies are learned using supervised learning.
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Algorithm 1 Voting-based Actor Classification
1: Inputs:
2: 𝐷 = {(𝑠𝑖, 𝑎𝑖)|𝑖 = 1..𝑀} ⊳ state and actions observations
3: nn𝜃 ⊳ Learned actor policies
4: 𝑄 ⊳ Set of known actor types
5: procedure:
6: 𝐯 ← 0, 𝐯 ∈ ℕ|𝑄|

0 ⊳ Vote vector
7: while not empty(D) do
8: (𝑠, 𝑎) ← 𝐷.𝑝𝑜𝑝()
9: 𝑏← 𝑎𝑟𝑔𝑚𝑎𝑥𝑞∈𝑄 [nn𝜃(𝑠, 𝑞)]𝑎 ⊳ Vote for actor-type 𝑏

10: 𝑣𝑏 ← 𝑣𝑏 + 1
11: end while
12: return 𝑞 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝐯) ⊳ Plurality Vote

If the the AGENT MODEL detects novelties due to unexpected actor behavior, it can provide feedback to the rest of
the architecture for accommodation. It produces a symbolic description 𝜈 that includes the state description in which
novelty was detected, any unlikely actions detected for each actor in the environment and an indicator of the inferred
agent-types using the vote-based classifier, if they deviate from those expected. The novelty description is submitted
to the 𝐾𝐵 and used for accommodation if necessary.
4.3. Novelty Exploration Component

The NOVELTY EXPLORATION component receives symbolic descriptions of novelties from the GOAL MANAGER
and is responsible for generating exploration strategies depending on the type of novelty encountered. These include
heuristic search strategies on the symbolic descriptions of states (and on failed operators) as well as knowledge-guided
reinforcement learning-based exploration to learn new executors for existing failed operators.
Knowledge discovery. If the NOVELTY EXPLORATION component receives a novelty description before the agent
attempts to generate a plan, then the type of the novelty (i.e. how it may impact its ability to solve the task) has not
yet been determined. In that case, a cursory knowledge discovery routine is utilized to gather information about the
encountered novelty. The exploration strategy is dependent on the symbolic description of the novelty and can involve
exploratory subgoals and operators related to the novelty 6. To avoid taking too much time away from the agent’s
task, this routine is only given a limited time to run before the agent moves on and begins to plan for its main goal. If
additional information about the novelty is gathered from knowledge discovery, it is appended to the symbolic novelty
descriptions and, if the task is interrupted later on, this information can be used during failure recovery (as described
in the next section) or knowledge discovery can resume with any exploration strategies of the novelty that it previously
did not have time for.

For instance, if a novel actor is encountered (see example in Section 2), the NOVELTY EXPLORATION component
would submit subgoals to the GOAL MANAGER involving interactions with the novel actor. These subgoals are
generated using the agent’s type hierarchy: known operators applicable to known actors are used on the novel actor.
Such interactions may reveal additional information about the novelty and aid in failure recovery depending on the
novelty type.
4.3.1. Failure recovery

The FAILURE RECOVERY component is responsible for deploying recovery strategies for novelty accommodation
and is invoked when novelty causes a planning or execution failure 7. Depending on the novelty description it receives,
it employs various recovery strategies to address the particular failure.

Figure 4 (Left) illustrates the agent’s recovery policies for different failure cases attributed to novelty. Special
attention is paid when novelty is attributed to the effect failure of an operator. Figure 4 (Right) shows in detail the
strategies employed when an operator’s known effects are inconsistent with the state description after its execution.

6For example, the operators can be selected using the agent’s type hierarchy: If the novelty is a previously unknown property of a known object,
then operators applicable to that object may be attempted. Similarly, if the novelty involves novel actors, appropriate operators may be invoked.

7It should be noted that the word failure is used to describe a failure in the agent’s knowledge and inference to describe the environment, not
necessarily a failure in the task.
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Depending on the severity of the failure, the agent employs different recovery strategies. If the state description is
consistent with only a subset of the operator’s effects (partial effect failure), then the 𝐾𝐵 is updated with the new
effects, and the agent attempts to replan. If instead, none of the operator’s effects are observed (total effect failure),
the agent attempts to discover new operators that may assist it in solving the task. This process involves hypothesizing
new preconditions, a heuristic search over known operators to uncover unknown effects, and a reinforcement-learning-
based exploration methodology that learns new executors for failed operators. These strategies may be executed in the
order presented, or may be applied to novelties at any order depending on the domain implementation and novelty
descriptions. Overall the failure recovery policies are general and flexible, as each may be involved in recovery from
multiple novelty types and they can be composed to recover from complex failures.

The rest of this section discusses the use of these recovery policies in the context of the novelty types described in
Section 3.
Recovery from prohibitive novelty. If the TASK PLANNER fails to produce a plan, then the NOVELTY EXPLORATION
component follows its plan failure policy that employs knowledge discovery. It generates and executes sub-goals to
acquire additional information about plan failure. The generated exploration subgoals attempt to prioritize operators
that explore currently unobserved environment states to update (if necessary) the agent’s prior knowledge about those
states. If knowledge discovery fails to produce a plan, the NOVELTY EXPLORATION component utilizes the EXECUTOR
LEARNER to discover states from which the agent can produce successful plans to solve the task.

Following the gridworld example from Section 2, consider a scenario in which the crafting table, an object essential
to task completion, is not present in the symbolic state description. In that case, the agent fails to plan and needs to
explore the environment to find alternate solutions for task completion. For instance, the agent may investigate ways to
acquire a crafting table, such as, opening the safe, visiting other rooms or by interacting with other actors. The agent
can then attempt to replan if a way to acquire a crafting table is discovered.
Recovery from obstructive novelty. The two conditions associated with obstructive novelty are handled using
different exploration strategies.

Precondition failure. As discussed previously, novelty due to unmet preconditions indicates that the agent’s
knowledge of the environment state is inaccurate. Therefore, the recovery strategy updates the agent’s 𝐾𝐵 with the
accurate state description obtained through the DOMAIN INTERFACE. It then prompts the task planner to re-plan.

For instance, a novel actor in the environment may interfere with the agent’s resource gathering by stealing resources
before the agent can collect them but after forming a plan to do so. As a result, the preconditions for that operator no
longer hold true (e.g., resources are no longer available). In this scenario, the agent should update its 𝐾𝐵 with the
accurate state description and attempt to re-plan.

Partial Effect failure. If all the preconditions of an operator are met, the operator is executed, and the operator’s
effects are compared against the symbolic state description. If a subset of the effects are inconsistent, the GOAL
MANAGER infers that the effect specification of the operator may be inaccurate. The FAILURE RECOVERY component
then proceeds with recovery strategies as shown in Fig. 4 (right).

The failed effects recovery procedure attempts to repair an operator 𝑜 ∈  with unexpected effects 𝜔. The agent
applies strategy 1 in Figure 4 (right), which first updates the operator description in the 𝐾𝐵 to be consistent with its
observed effects and then attempts to re-plan.

Total effect failure. If instead there are no observed effects after executing the executor of an operator, the operator
itself can be said to have failed. The NOVELTY EXPLORATION component has a series of strategies to repair the failed
operator. The first strategy is the same as used for the partial effect failure: the agent updates the operator to reflect that
no effects occur and replans. Another strategy (labeled as Strategy 2 in Figure 4 (right)) involves repeated attempts
to execute the operator to account for instances of circumstantial failure. More substantial novelty exploration occurs
when the agent utilizes the OPERATOR DISCOVERY component, which employs knowledge-guided search strategies
to discover new operators to solve the task. The OPERATOR DISCOVERY component is discussed in detail in Section
4.3.2.

An example of total effect failure occurs in a more complex variant of the supplier novelty scenario discussed in
Section 2, where the supplier offers to trade the agent a pogostick in return for all the usual ingredients that the agent
would use to craft the pogostick. When the agent initially uses Knowledge Discovery to investigate the new actor in the
world, it will interact with the supplier, receive the trade offer, and incorporate the trade operator into its knowledge
base. Since this method of obtaining a pogostick is as efficient as simply crafting one (the agent needs to gather all the
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Figure 4: Diagrammatic representation of the agent’s recovery policies. (Left) The recovery policies initiated under different
failure conditions. (Right) Outline of specific strategies of the failed operator policy (concerning the failed effects of the
operator). Different recovery policies are initiated depending on how novelty is encountered, and individual strategies may
apply to multiple novelty types.

ingredients either way), the agent may ignore the supplier and continue with its usual plan of crafting the pogostick. If
the crafting operator fails when the agent attempts to craft, the novelty is determined as obstructive. When the agent
attempts to re-plan as part of the Failed Effects recovery policy, it will use the knowledge gained from interacting with
the supplier earlier to create a new plan to obtain the pogostick via the supplier.
Recovery from beneficial and nuisance novelties. Novelty due to unexpected operator effects is not necessarily
obstructive. If there are different effects than expected, rather than no effects at all, it may be that the novel effects are
irrelevant or even beneficial for task completion.

Partial effect failure. As discussed in the recovery for obstructive novelties, when an operator’s effects are
inconsistent with the world state, one of the agent’s accommodation strategies is to modify the operator’s description in
𝐾𝐵 to be accurate with respect to the environment state descriptions. As a result, when the agent replans, the planner
will automatically take advantage of beneficial novelties if they allow a shorter plan to be created. Similarly, the planner
will automatically not involve nuisance novelties in plans.

The agent may encounter a beneficial novelty in a scenario in which the supplier(referring to the example discussed
in Section 2), upon interaction, directly provides the agent with the pogostick at no cost. During Knowledge Discovery,
the agent may interact with the new actor and immediately encounter an Effect Failure when it observes the unexpected
effect of receiving a pogostick. This results in a new operator being created, which the agent can in the future use to
acquire a pogostick very quickly.
4.3.2. Operator Discovery

In cases when prohibitive or obstructive novelties are attributed to operator failure, the agent needs to discover new
operators that may allow it to solve the task.
Precondition discovery. The first strategy to discover new operators involves precondition exploration. For a given
failed operator 𝑜 ∈  with preconditions 𝜓𝑜, a new operator 𝑜′ is constructed with the same effects and executor as
𝑜 but with a new set of preconditions. The new preconditions 𝜓𝑜′ are constructed using a priority-based order 8 of all
possible preconditions encountered in . The preconditions are added to 𝜓𝑜′ one by one, and goals are submitted to

8The Preconditions can be ordered in many ways. For instance, they can be ordered by their frequency in known operators or using domain-
specific heuristics. The specific implementation details for our agent instantiation in the evaluation environment can be found in the appendix.
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Algorithm 2 Executor learner (𝑇 , , 𝜔𝑜, 𝑠𝑓 ) → 𝑥𝑛𝑒𝑤
1: Inputs:
2: 𝑇 = ⟨𝛴, 𝑠0, 𝑠𝑔⟩ ⊳ Symbolic Planning Task
3:  ⊳ Plan  = {𝑜1, 𝑜2, ..., 𝑜||

}
4: 𝑁𝑒𝑝𝑠 ⊳ Number of episodes
5: 𝜂, 𝜔𝑜, 𝑠̃𝑓
6: Procedure:
7: 𝛾(𝑠): initiation indicator ⊳ computed from 𝑠𝑓
8: 𝛽(𝑠): termination indicator ⊳ computed from 𝜔𝑜
9: Construct MDP  = ⟨̃ , ̃, 𝑅, 𝛾⟩ using 𝑇

10: for 𝑁𝑒𝑝𝑠 episodes do
11: 𝜋new

𝑜 ←Train( ,𝑇 ,𝛽) ⊳ Train in 
12: if success(𝜋𝑜𝜇 , 𝑇 ) > 𝜂 then
13: 𝜒new←⟨𝛾, 𝜋𝑜𝜇 , 𝛽⟩ return 𝜒new
14: end if
15: end for
16: return failure

the GOAL MANAGER to satisfy them and attempt the new operator 𝑜′. If the operator succeeds, the broken operator 𝑜
is replaced with this new operator 𝑜𝑖 and added to 𝐾𝐵.

In the earlier gridworld example, consider a scenario where trees cannot be broken into logs without the agent
holding a tool, even though the agent’s prior experience suggests it is possible. In this scenario, precondition discovery
will consider a new precondition of holding a tool before breaking a tree, as the agent knows that holding a tool is a
precondition for breaking other resources in the environment.
Operator variations If the precondition discovery fails to produce a working operator, the agent actively searches for
known operators with unknown effects. This process is guided by the agent’s type hierarchy and has two phases. In the
first phase, the agent attempts (compatible) operators with the same parameters as the failed one. For example, if the
operator for breaking a tree is no longer working, the agent will attempt other operators that accept trees as a parameter
to test if any of these operators also yield unexpected effects. In the second phase, the agent prioritizes operators that
act on different parameters of the same type as the failed operator. In a situation where trees come in different types,
if the break operator failed on a birch tree, the agent may attempt to interact with an oak tree, as it belongs to the
same type as the birch, to see if the operator failure is consistent across tree types. If any operator produces unexpected
effects, a new operator 𝑜′ is added to 𝐾𝐵 with those effects noted, and the agent re-plans.

If both precondition discovery and operator variations fail to produce an operator that enables a successful plan,
then the agent attempts to learn a new executor for the failed operator using knowledge-guided reinforcement learning.
4.3.3. Knowledge-guided executor learner

Due to the exponentially large search space of precondition discovery and operator variations, the agent cannot
exhaustively search that space. After expending some effort in those directions to no avail, a more intelligent search
strategy is employed to create a new executor for the failed operator. That way, the agent can discover ways to achieve
a desired effect that would assist it in solving the task.

The executor learning component employs reinforcement learning 9 (Sutton and Barto, 2018), with a reward
function encoding the failed operator’s desired effects. A new operator is then created with preconditions derived from
the state description where the failure occurred and effects identical to the failed operator. The learned policy is used
as the new operator’s executor, and the agent can use it to reach a state from which it can plan and complete the
task. The algorithm used, called RAPid-learn Goel, Shukla, Sarathy, Scheutz and Sinapov (2022), uses knowledge-
guided exploration informed by the novelty. The component receives symbolic state descriptions 𝑠 ∈  and novelty
descriptions  from the goal manager and temporarily guides the agent’s behavior to explore the environment.

9In RL, an agent interacts with its environment to achieve a goal specified by a reward function 𝑅. These problems are characterized using
an episodic Markov decision process (MDP)  = ⟨̃ , 𝐴̃, 𝑅, 𝜄⟩, where ̃ is a set of subsymbolic states, 𝐴̃ is a set of actions, a reward function 𝑅
translates state-action pairings to scalar rewards. The agent aims to learn a policy 𝜋𝜇(𝑎̃|𝑠̃) (parameterized by 𝜇), maximizing its discounted return
𝐺𝑡 =

∑𝐾
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘+1 until the end of the episode at timestep 𝐾 .
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Figure 5: Snapshot of the evaluation environments. Left: Novelgridworlds, Right: Polycraft.

Policy learning for failed executors. The procedure for learning a new executor is described in Algorithm 2.
Consider a plan  which fails during the execution of an executor 𝜒𝑜 ∈  of an operator 𝑜. Assuming prior
accommodation strategies failed, the learner is invoked to learn a new policy 𝜋𝑜𝜇 parameterized by 𝜇 to replace the
policy of the executor 𝜒𝑜. First, two indicator functions 𝛾, 𝛽 are defined over symbolic descriptions  to indicate
whether a given state 𝑠 is an acceptable initial or final state for the policy (Algorithm 2 lines 7 and 8). Then, an MDP
 can be defined with a reward function 𝑅 (Line 9) that provides a positive reward when the agent reaches states that
satisfy the effects 𝜔𝑜 of the failed operator 𝑜, and from which a successful executable plan to the goal state exists 10.
The policy is represented with a neural network that accepts 𝑠̃ ∈ ̃ , which is a domain-dependent representation of
the symbolic state description 𝑠 11. The policy 𝜋𝑜𝜇 is trained by repeated interaction with the environment through
reinforcement learning until it achieves a predefined success rate (line 12).
Knowledge-guided exploration of novelties. An important feature of the executor learner is its knowledge-guided
exploration strategy. Using a description of novelties  , the exploration strategy of the RL learner is biased towards
states and actions that are related to the novelty 12. For instance, if the presence of a novel object is detected in the
environment, the RL learner may be encouraged to explore actions on that object. The knowledge-guided exploration
improves the efficiency of exploration and makes the plan recovery process easier. Once a new policy 𝜋𝑜𝜇 for the
executor 𝜒𝑜 is learned, the resulting operator is stored in the 𝐾𝐵. The parameters of the policy 𝜇 are stored in  and
retrieved when 𝜒𝑜 is executed.

5. Comprehensive Evaluation
We conducted comprehensive evaluation experiments of the proposed novelty-aware architecture framework

discussed in Section 3, evaluating core components of the framework as well as integrated agents. The details of the
agent implementation, the simulation setup, and the hardware used for the evaluations can be found in the Appendix.

We start with a description of the two evaluation simulations followed by an overview of the experimental
methodology and the evaluation results. Overall, evaluations were performed in multiple trials where the agent had to
perform the crafting task in different random environmental settings (with different numbers of objects, etc.) divided
into two phases: an initial “pre-novelty” phase (i.e., a varying initial number of trials with only known entities and
dynamics) and a “post-novelty” phase (i.e., a set of trials where something novel to the agent was introduced in all
trials). The agent’s knowledge repository  was initialized with the information required to not only solve the task, but
anticipate the outcome of every interaction in “pre-novelty” environments. The agent needed to modify and augment
its knowledge for most “post-novelty” environments to be able to solve the task.

10Each time the agent satisfies the effects of the failed operator, the task planner is called to produce and execute a plan to reach the goal state.
If the plan is executed successfully, a positive reward is given.

11𝑠̃ can take any form depending on the domain in question, such as a vector, graph, text, etc.
12Further details on knowledge-guided exploration are available in the original publication of RAPid-Learn (Goel et al., 2022)
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Category Description Example

Object A new entity in the environment that does not have
goal-oriented behavior.

A new block type ’fence’ is added that obstructs
access to trees

Attribute Changes to the properties of previously-known entities
in the environment.

A new tree variant ’birch’ is added that can not
produce rubber with a tree tap

Representation Changes to how previously-known entities are speci-
fied in sensory percepts.

Item names are partially scrambled

Actor A new entity in the environment that does have goal-
oriented behavior.

A new entity ’thief’ is added that steals items from
your inventory

Action A new goal-oriented behavior of a previously-known
environmental agent.

The Pogoist agent now trades items instead of the
Traders)

Relation A new static property of the relationships between
multiple entities.

Traders now spawn in different areas of the arena)

Interaction A new dynamic property of behaviors or actions that
impacts multiple entities.

Traders are now ’busy’ sometimes when the player
interacts with them

Environment A new element of an open-world space that may
impact the entire task space and is independent of
a specific entity.

The new element ’wind’ is present in various regions
of the arena and alters player movement

Goal A new objective of goal-oriented behavior for an
environmental actor.

The Pogoist changes the resources it is seeking

Event A new state change or series of state changes that
are not each the result of volitional action by an
agent/actor.

Trees rot and regrow over time

Table 1
Descriptions of the novelties categories with examples used for the comprehensive evaluation in Polycraft.

5.1. Evaluation Setting
We used the Polycraft World domain (Goss, Steininger, Narayanan, Olivença, Sun, Qiu, Amato, Voit, Voit and

Kildebeck, 2023) as a partially observable, multi-agent environment for the agent evaluations. Polycraft World is a
“Minecraft mod” consisting of a multi-agent (cooperative and adversarial) turn-taking grid-world game where an agent
competes with actors for resources to perform various crafting tasks. To accomplish a task like crafting a pogostick,
an agent must explore the environment to perform a series of sub-tasks that involve collecting and crafting the needed
materials for constructing a pogostick. Sub-tasks include:

• mining trees, diamond, and platinum,
• trading with trader actors,
• crafting intermediate objects, including a tree tap,
• placing tree tap on a tree and collecting rubber from it,
• collecting a key from a chest,
• opening a door and navigating to another room to find a safe,
• unlocking a safe and collecting items from it,
• crafting a pogostick.
The agent can execute movement commands (turn, walk, and teleport), interaction commands (select-item, use,

break-block, craft, collect, place, delete, trade, and interact), and sensing commands to make observations of the world
state, including the direction the agent is facing, inventory items, and locations of every object and actor in the room
occupied by the agent.

For the particular Polycraft World domain used here (shown in Fig. 5 right), each trial instantiates the environment
with a random configuration that includes two to three rooms of varying sizes, one rival pogostick building actor
(“pogoist”), two trader actors, and resources in the environment (e.g., trees, platinum blocks, diamond ore, a safe
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containing diamonds, a crafting table, and a chest containing a key). The rival pogoist actor is competing for resources,
whereas the trader actors, when interacted with, offer recipes for possible trades (e.g., 18 diamonds for one platinum
block) and will trade with the agent if it has the requisite materials.

The agent starts each trial with an iron-axe in its inventory, which must be equipped to mine diamond ore and
platinum blocks, and only perceives information within the room it is currently in.

We used ten broad categories of novelties as shown in Table 1 13. In total, evaluations include 288 novelties from
the 10 categories, of which 216 were known during the development of the agent. Each novelty scenario is associated
with three novelty tournaments, and each tournament is composed of 50 task instances (i.e., episodes) where the first
5-20 episodes (a random number 𝑛 is selected between 5 to 20) do not contain novelty (i.e., pre-novelty phase) and
the subsequent 30-45 episodes (i.e., post-novelty phase) contain the novelty being evaluated. In addition to the novelty
tournaments, three no-novelty tournaments are included in the evaluation, each consisting of 50 unique no-novelty task
episodes. In each tournament, the agent receives a positive reward for completing the task (e.g., obtaining a pogostick),
and every action the agent takes has an associated negative cost. A cumulative score for the agent’s performance is
calculated by subtracting the negative cost assigned per action from the positive reward assigned for completing the
task. The agent is awarded a score of zero in the episodes where it fails to achieve the task. The episode in which the
agent reported novelty was also recorded. For comparison, the evaluation team used a non-novelty aware fast-forward
planner agent otherwise unrelated to the evaluated agent to generate standard performance scores for the pogostick
task. The non-novelty aware control agent achieved scores within 15% of the evaluated agent scores on pre-novelty
episodes and had significantly decreased performance in post-novelty episodes.
Metrics for tournament-based evaluations. To evaluate our agent in tournament-based evaluations in the Polycraft
domain, we define metrics to measure its novelty detection and novelty accommodation performance. The metrics are
defined as follows:

• False Negatives (𝐹𝑁𝐶𝐷𝑇 ): How many episodes on average after novelty has been introduced, does the agent
fail to report novelty? A perfect score of 0 is obtained if novelty is reported in the first post-novelty episode.

• Correctly Detected Trials (CDT%): Boolean for each trial. True for every trial where the agent i) reports novelty
after novelty has been introduced and ii) does not report novelty before novelty is introduced.

• False Positives (FP%): Boolean for each trial. True for every trial where the agent reports novelty before novelty
is introduced.

• Novelty Reaction Performance (NRP%): Average post-novelty task score for the agent divided by the average
pre-novelty task score of the non-novelty aware control agent.

• Goal Achieved (GA%): Percentage of post-novelty tasks in each tournament where the agent achieved the goal.
We also use a previously developed “openAI gym” environment called Novelgridworlds (Goel, Tatiya, Scheutz

and Sinapov, 2021) for component evaluations (shown in Figure 5 left). Specifically, we implemented the same
pogostick task in Novelgridworlds and developed several novelties for algorithm prototyping, internal evaluations, and
showcasing important characteristics of our cognitive architecture. The need for a separate evaluation platform was
due to the need for a tight development loop between designing novelties the agent could not handle and, subsequently,
improving the agent’s algorithms to master them (which was not possible in Polycraft). More importantly, many
novelties designed by the evaluation team in Polycraft were purposely concealed and not accessible to the architecture
development team in an effort to avoid any subconscious biases being introduced into the algorithm developments.
Additional standard metrics are used for component-wise evaluations.
5.2. Component-wise Evaluation

A component-wise evaluation is performed for various components of the architecture to comprehensively evaluate
important aspects of the architecture. The VISION MODEL is evaluated on its ability to detect novelties in images of the
Polycraft environment in a two-stage evaluation. The AGENT MODEL is evaluated in Polycraft shared novelties that

13This categorization should not be confused with the novelty types described in Section 3. Moreover, this categorization is not necessarily
exclusive as the novelties may generally belong to one or more of these categories. Nevertheless, to better motivate the discussion for novelty
handling capabilities of an agent, we categorize them.
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Evaluation TPR TNR PPV

Known Set (TPR 95%) 95.0 31.3 88.7

Known Set (PPV 95%) 66.5 80.6 95.0

Unknown Set (PPV 95%) 84.9 70.5 85.1

Table 2
Visual novelty detection results on the known-novelty test set (from NovelCraft) and the unknown-novelty test set (content
unknown to us during model development). We report performance at different thresholding choices selected on the known
set. Mismatch between the novelties depicted in the evaluations results in the model yielding a lower than expected precision
(PPV) on the unknown set while maintaining reasonable true positive rate (TPR).

involve actors with changed behavior. The EXECUTOR LEARNER is also evaluated separately in the NovelGridworlds
environment to evaluate its efficiency in recovering from execution failures.
5.2.1. Vision Model Evaluation
Vision model training. We train our vision models on a custom open-access dataset called NovelCraft (Feeney,
Schneider, Lymperopoulos, Liu, Scheutz and Hughes, 2022), which contains over 10,000 256×256 pixel RGB images
from our agent’s perspective as it solves the pogostick building challenge within the Polycraft world. Rather than apply
encoder and decoder to the entire image, we instead process patches of size 32×32 pixels. Patch-based autoencoders are
faster and easier to train and maintain, while being at least as accurate as whole-image models in our tests (Feeney et al.,
2022). For encoder and decoder, we use the specific network architectures in Abati et al. (2019), with latent code size
of 100. Hyperparameter search for architectural choices, learning rates, etc. was informed by NovelCraft’s separately
available validation set of images. Further details on training and implementation are available in the appendix and in
Feeney et al. (2022).
Two-Round evaluation. Given our trained model, two distinct rounds of evaluation were then performed. First, an
initial known-novelty evaluation was performed on the test set of the NovelCraft dataset (Feeney et al., 2022). While
this is a predefined split whose images and novelties are distinct from the training set, the possible novelties in this test
set were known to our team during model design, so we call this a “known-novelty” evaluation. There are 21 normal
episodes and 440 novel episodes, where new novel object types, such as JukeBox or TNT, are inserted into the Polycraft
environment. In total, 51 different object type novelties are used (for a full listing, see Appendix A of (Feeney et al.,
2022)).

Next, an additional unknown-novelty evaluation was conducted using a set of Polycraft novelties designed by an
external team. We had no prior knowledge of these novelties during model development, which makes for a more robust
assessment. This evaluation grouped 50 episodes into tournaments, with a set of normal episodes followed by a set of
novel episodes depicting the same novelty. The transition from normal episodes to novel episodes occurs randomly, but
there are 15 normal episodes on average. Tournaments for 9 different visual novelties were conducted with an additional
tournament composed of 50 normal episodes. Three tournaments were randomly generated for each setting, resulting
in 30 tournaments and 1,500 episodes total. In both evaluations, the model observes all of the episode’s image patches
then outputs a single real-valued novelty score for the whole episode. This novelty score is the model’s prediction of
the likelihood of a novelty appearing anywhere in the episode. For simplicity, the model computes a per-patch novelty
score for each image patch in the episode using the reconstruction error signal from the deep autoencoder, then reports
the maximum score over all frames. Figure 6 showcases an example of its operation. Future work could pursue more
sophisticated aggregation strategies across frames.
Evaluation criteria. The model is evaluated on the true positive rate (TPR, aka recall), the true negative rate (TNR),
and the positive predictive value (PPV, aka precision) of the per-episode visual novelty detector. Given the count of
true and false positives (TP and FP) as well as true and false negatives (TN and FN) the metrics are defined as:

TPR = TP
TP + FN , TNR = TN

TN + FP , PPV = TP
TP + FP
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ReconstructionPatch representation of Reconstruction Error

Figure 6: Input and output example from the patch-based autoencoder of the agent’s VISION MODEL. The image 𝑋
obtained through the DOMAIN INTERFACE (left) is segmented into patches and reconstructed by the autoencoder (middle).
The reconstruction error (right) is used as a signal to detect novelties, with higher values (lighter) indicating regions more
likely to contain unknown visual elements.

Evaluating these rates at chosen operating thresholds is more informative than area-under-the-curve metrics when
making binary judgments of normal or novel (Feeney et al., 2022). The known-novelty evaluation examines two
possible ways to select a threshold. First, the novelty score threshold is chosen to achieve 95% TPR on the NovelCraft
test set to examine performance when avoiding false negatives matters most. Second, the novelty score threshold is
chosen to achieve 95% PPV to examine when avoiding false positives matters most. The unknown-novelty evaluation
uses the latter threshold to prioritize preventing false positives on the unseen set of novelties.
Results. Tab. 2 quantifies the visual novelty detection performance. The known-novelty evaluations show that
enforcing a TPR of 95% maintains a good PPV but results in a low TNR. A much better performance in terms of
TNR is achieved by enforcing 95% PPV while the TPR decreases in this regime. Reusing the same 95% PPV threshold
in the unknown-novelty evaluation performs well despite having a 85.1% PPV. The TPR is increased by 14.4 percentage
points with only a 10.1 percentage point decrease in TNR.

The results show that focusing on high TPR values comes at the cost of a low TNR - although many novel episodes
are detected as novel, comparably many normal episodes are considered to be novel too. By emphasizing high PPV,
the performance in terms of TNR is significantly improved while a similar TPR is maintained. Compared to the high
TPR regime, less normal episodes are reported as novel but some of the novel episodes are missed.

The threshold for the high PPV regime in the unknown-novelty evaluations is the same as in the known-novelty
evaluation. However, PPV and TNR are decreased while TPR is increased. This suggests that novelties in the unknown-
novelty evaluation are easier to detect than object novelties and that the unknown-novelty evaluation includes more
normal episodes depicting the normal environment in a way that was not present to a great extent in the validation set.
Discussion. The results demonstrate some of the challenges when applying visual novelty detection methods for
automated binary novelty decisions - a threshold must be chosen based on available validation data. There is a tradeoff
between prioritizing avoiding false negatives and avoiding false positives and a threshold might need to be chosen
specifically for the given task (Feeney et al., 2022). Furthermore one must keep in mind that results achieved on the
validation set might differ from the expected performance on a test set if the sets deviate “too much” from another.
Detecting novelties in Polycraft is a challenging problem - novel episodes hardly ever show the novelty in a focused,
large and central manner. A novel input image shows a complex scene in which the novelty might be depicted on only
a very small fraction of the scene’s content while large image regions are occupied by normal objects, agents and
textures. The novelty can be far in the back of a scene or partially occluded. However, for open-world applications, the
detection of novelties in these scene-based scenarios is crucial.

In future work, novelty descriptions produced by the VISION MODEL could further inform novelty exploration
strategies to verify suspected novelty. For instance, potential novelties, identified by increased pixel-level image recon-
struction errors, could be examined in more detail by including localization information in the novelty descriptions
which the agent could use to better focus exploration efforts.
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Tournament-wide Episodic

Metric Value Metric Value

CDT% 64.71% F1 0.728

𝐹𝑁𝐶𝐷𝑇 0.36 Precision 0.997

FP% 2.94 Recall 0.573

Table 3
Tournament-wide (left) and episodic (right) AGENT MODEL evaluations using only detections from the AGENT MODEL on
actor-related novelties.

5.2.2. Agent Model Evaluation
Using the novelties shared in the Polycraft environment, the AGENT MODEL’s detection capabilities of actor-

related novelties are evaluated. From the total of 36 novelties shared, 7 are selected that involve known actors that
exhibit altered behavior. These novelties originate from the Actions and Goals 14 categories. Each environment is
associated with 9 tournaments and the novelties are spread over 3 sub-variants, yielding a total of 63 test tournaments.
Each tournament is run for 30 games, yielding a roughly equal split between pre- and post-novelty episodes in each
tournament.
Evaluation criteria. The novelty detection performance of the AGENT MODEL alone is evaluated using both the
tournament-wide detection metrics on the episode-level standard anomaly detection metrics. Further analysis reveals
strengths and weaknesses of the agent model which are discussed using two examples of novelty from the Polycraft
environment.
Model training. The AGENT MODEL is trained and validated on trajectories generated by randomly repositioning
objects in the initial states of the 100 no-novelty environment configurations provided in the Polycraft repository. In
total, 1000 trajectories are generated and 80% of the trajectory steps are used for training and the remaining 20% for
validation and threshold calculation. AGENT MODEL is evaluated by running the architecture on the novel environment
configurations and recording only the novelties detected by the AGENT MODEL. Additional implementation details are
available in the appendix.
Tournament-wide results. Table 3 (left) quantifies the novelty detection performance of the AGENT MODEL in
tournament-wide metrics. The AGENT MODEL is able to correctly identify novel trials in the majority of the novelties. It
is consistent in its detections, only producing a small number of false negatives in correctly detected trials. Additionally,
its tournament false positive rate is low, which makes it a viable addition to the symbolic novelty detection system which
tends to produce very few false positives.
Episode-level results. Table 3 (right) shows the episodic evaluation of the AGENT MODEL detector. As suggested
by the tournament-wide evaluation, the agent has strong performance and is generally cautious, producing a very small
number of false positives as evident from its high precision score. However, its weaker recall indicates that there are
many episodes where the AGENT MODEL fails to detect novelty. As indicated by the prior analysis those cases seem to
be concentrated in environments where interaction is required for the novelty to be made apparent. This suggests that
the architecture would benefit from tighter integration of its AGENT MODEL and its planner and knowledge base.
Discussion. A more thorough investigation of the results reveals that the AGENT MODEL exhibits high variability
across different novelties, with nearly perfect detection performance in some novel environments and worse perfor-
mance in others. One way to distinguish which novelties the AGENT MODEL can reliably detect is whether the behavior
change of actors is dependent on interaction with the agent. Novelties that arise from a change in actor behavior
independent from the agent’s actions are consistently detected by the AGENT MODEL, whereas novelties that require
interactions to manifest are more difficult to detect.

14The actors category typically involves actors of novel types, detection of which is handled with symbolic inference as they are included in the
symbolic state descriptions
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Novelty\Agent Base GA% Base+EXECUTOR LEARNER GA%

This is just random... 2.0 21.0

Convince me. 0.00 59.0
Sapling can’t grow here! 5.0 10.0
Show me your card first. 0.00 21.0

Table 4
Component-wise evaluation results comparing the GA% of the Base agent and the Base+EXECUTOR LEARNER agent on
the four novelty scenarios evaluated in Novelgridworlds.

One example of a novelty type in Polycraft that the AGENT MODEL consistently detects, involves a pogoist-type
actor altering its resource-gathering strategy. This change is detected by the AGENT MODEL as a set of actions that
are very unlikely under the learned policy for that agent type. As a result, the AGENT MODEL detects the novelty and
produces a description indicating which performed actions are highly unlikely. In this example, the AGENT MODEL
reports that the unlikely action taken by the actor involves collecting the "diamond" resource, which is essential to task
completion. As a result, the GOAL MANAGER generates subgoals to gather that resource with high priority, to ensure
the agent can continue to solve the task.

A failure case for the AGENT MODEL in Polycraft is a variant of a novelty that gives the pogoist-type actor the
ability to trade resources with our agent much like the no-novelty behavior of the "Trader"-type agents. One variant of
the novelty involves the actor changing its policy and acting exactly like the no-novelty "Trader" actors. That change
is quickly detected by the AGENT MODEL as a set of unlikely actions. Additionally, using the actor type classifier,
the AGENT MODEL infers that the pogoist actor is acting like a trader. That novelty can be submitted to the 𝐾𝐵
and accommodation strategies can be applied. However, a different variant of this novelty involves the actor acting
as expected most of the time, unless the agent interacts with it. In that case, it is available for trading as before. This
novelty is not detectable without attempting to interact with the actor, and therefore, the AGENT MODEL never detects
this variant of the novelty.
5.2.3. Executor Learner evaluations

To showcase the effectiveness of the EXECUTOR LEARNER component, we evaluate it on four novelty scenarios.
The evaluations were performed using a similar experimental setup described in Section 5.3.1 with a pre and post-
novelty scenario. We inject novelties into the environment and measure the task performance capability of the agents.
Specifically, we compare the performance of the Base+EXECUTOR LEARNER with the Base agent, in which the
Base agent consists of the symbolic inference components, and the Base+EXECUTOR LEARNER consists of the
symbolic inference and the EXECUTOR LEARNER. The rationale is to showcase the usefulness of an rl-based learner
to accommodate novelties, especially when extensive symbolic inference strategies (described in Section 4.3.1) fail to
accommodate it. We further describe the experimental setup and evaluation criteria and discuss the results.

We design the novelty scenario for the internal evaluation in the Novelgridworlds environment as it gives us more
flexibility to implement specific scenarios we want to analyze. These novelties are designed to showcase the benefits
of using a reinforcement-learning-based learner15 - in particular stochasticity, dynamic behavior, spatial and temporal
relations. A description of all novelty scenarios used for this evaluation are available in the appendix.
Evaluation metrics. Both agent configurations (Base and Base+EXECUTOR LEARNER) were evaluated on the above
four novelty categories. Each novelty tournament comprised 50 episodes. Each episode was limited to a maximum of
600 time steps or 15 minutes. We record the percentage of times each agent successfully achieved the goal, i.e., crafting
a pogostick (The GA% metric described earlier in the text). Each novelty tournament was run for 10 independent
trials, and the GA% was averaged across these 10 independent trials. It should be noted that the EXECUTOR LEARNER
performed online exploration and learning during the evaluations and was randomly initialized for each run. For the

15The implemented novelties cannot be solved by another module in the architecture alone. We ensure that the EXECUTOR LEARNER is needed
to accommodate these novelty scenarios. It is unknown whether any of these or similar novelties were included in the Systemic evaluation.
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scope of this work, we do not evaluate the robustness of the policy in this evaluation 16. We showcase the results in
table 4.
Discussion. The results of the component-wise analysis (Table 4) show that the Base+EXECUTOR LEARNER
agent performs better overall than the Base agent in accommodating to novelties. Adding an EXECUTOR LEARNER
component to the base architecture helps the agent to be more adaptive and learn policies that the symbolic explorer
cannot find. The Base+EXECUTOR LEARNER is better at capturing complex dynamics where the Base agent alone
completely fails in the novelty scenarios described above. We detail each novelty scenario to understand how the
EXECUTOR LEARNER aids learning to accommodate the novelties.
5.3. Systemic Evaluation

Systemic evaluations were performed across the entire Polycraft novelty set to showcase the integrated capabilities
of the agent. We evaluate three novelty-aware agent configurations in all 864 novelty tournaments17 and three pre-
novelty tournaments. These evaluations utilize a novelty firewall, where novelties outside the shared set of novelty
tournaments were concealed from the algorithm and architecture team and evaluated by a separate evaluation team.
5.3.1. Evaluation methodology

The systemic evaluation focuses on the measurement of novelty detection and accommodation performance across
all novelty categories using different configurations of the agent architecture. Three evaluations are presented on
different configurations of the agent architecture.
Base agent. The first agent configuration we evaluated includes the first-order inference components and the novelty
exploration component except the EXECUTOR LEARNER. This configuration aims to evaluate the agent’s performance
using only symbolic reasoning, without any learning-based components.
Base agent+AGENT MODEL. The second configuration we evaluate augments the base agent with the AGENT
MODEL, which aims to improve the agent’s novelty detection performance, especially in actor-related novelties.
Base agent+EXECUTOR LEARNER. The third configuration we evaluate augments the base agent with the
EXECUTOR LEARNER, which aims to improve the agent’s ability to recover from execution failures unresolved by
OPERATOR DISCOVERY. It should be noted that the EXECUTOR LEARNER in this agent is used only after all other
exploration strategies fail to accommodate novelty within a preset time-limit.
Base agent + AGENT MODEL + EXECUTOR LEARNER We also evaluate the combined version of all the
models with the base agent to demonstrate the capability of our architecture in terms of novelty detection and novelty
accommodation.
Vision agent We include a vision-only agent to demonstrate the challenge of performing novelty detection through
only visual perception. In this configuration, the default version of the Base agent is used, but no novelties discovered
through symbolic inference are reported. However, since all accommodation strategies rely on detailed symbolic
descriptions of novelty that the vision model cannot produce, we only evaluate the vision agent on novelty detection
using the 𝐹𝑁𝐶𝐷𝑇 , CDT%, and FP% metrics.
Evaluation Criteria. The evaluation of the integrated agent is performed using the tournament-wide metrics defined
earlier. Specifically, we evaluate the novelty detection performance of the agent using CDT%, FP%, and 𝐹𝑁𝐶𝐷𝑇 ,
and the novelty accommodations performance using NRP% and GA%. Overall results are computed by averaging
all tournaments. Additionally, per-category results are obtained by averaging tournaments within the same category.
Due to the high computational cost of the systemic evaluations, we only run a single set of experiments per agent
configuration.
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Agent 𝐅𝐍𝐂𝐃𝐓 CDT% FP% NRP% GA%

Base 0.69 83.3 3.2 73.5 64.4

Base+AGENT MODEL 0.58 86.1 6.1 72.4 64.0

Base+EXECUTOR LEARNER 0.76 84.7 2.3 74.2 66.6

Base + AGENT MODEL + EXECUTOR LEARNER 0.39 88.7 1.6 68.1 61.9

VISION MODEL 3.44 56.6 34.1 – –

Table 5
Overall results comparing the five configurations of the agents in the systemic evaluation.

Metric 𝐅𝐍𝐂𝐃𝐓 CDT% FP% NRP% GA%

Objects 0.00 95.9 1.6 95.8 82.9

Attributes 0.51 86.7 3.5 63.2 58.5

Representations 0.18 85.0 2.8 74.8 66.7

Actors 0.00 92.3 7.7 63.3 52.6

Actions 3.76 61.1 0.0 103.0 94.4

Relations 0.00 96.3 3.7 70.7 48.4

Interactions 0.06 64.2 1.9 71.7 65.4

Environments 0.10 92.2 4.4 44.2 41.1

Goals 3.21 70.0 4.4 99.1 81.2

Events 1.12 77.3 2.3 51.0 48.8

Table 6
Detailed systemic evaluation of Base agent on all the novelty categories.

5.3.2. Results & discussion
Table 5 quantifies the novelty handling performance of each of the five agent variants in the Polycraft environment.

The base +AGENT MODEL and base +AGENT MODEL + EXECUTOR LEARNER agents outperform the other variants in
𝐹𝑁𝐶𝐷𝑇 and CDT%, which indicates increased novelty detection capability but with higher variation in performance,
which is attributed to the AGENT MODEL being the only learning based novelty-detection component in those systems.
The base+EXECUTOR LEARNER agent performs best in NRP% and GA%, which indicates the agent with an rl-based
learner has better novelty accommodation capability. While the VISION MODEL demonstrates potential to improve
the novelty detection capabilities of the agent, its evaluations suggest that further effort is required to bring the false
positive rate to a level that would not be detrimental to the agent’s performance in the pogostick task in Polycraft.

It should be noted the NRP metric may disadvantage reinforcement-learning agents as it punishes extended
exploration in the environment 18. The EXECUTOR LEARNER achieves a measurable improvement over the other two
configurations in NRP% despite this, indicating a positive influence on novelty accommodation. A detailed analysis
of the evaluation reveals that the EXECUTOR LEARNER improves the exploration capability of the agent in various
novelty categories. Table 10 showcases examples of the accommodation strategies learned by EXECUTOR LEARNER
in some novelty categories. We discuss these examples in detail in Section 5.3.3.

Table 6 details the systemic evaluation results of the base agent configuration by novelty category. The base agent
performs strongly in novelty handling, though it is weaker than the other configurations.

16For thorough evaluation details and results on the robustness of policies learned with this algorithm please refer to our original publication of
the algorithm used RAPid-Learn (Goel et al., 2022)

17288 novelties with 3 tournaments each.
18Extended exploration accumulates negative scores because the agent executes many actions in the environment. Therefore, reinforcement

learners, which tend to require prolonged exploration to learn policies, are disadvantaged by this metric as possible gains in task completion
performance can be masked.

Goel, Lymperopoulos et.al.: Preprint submitted to Elsevier Page 22 of 35



Novelty Handling Cognitive Architecture

Metric 𝐅𝐍𝐂𝐃𝐓 CDT% FP% NRP% GA%

Objects 0.00 88.9 8.7 91.5 82.3

Attributes 0.65 85.4 6.9 66.3 59.0

Representations 0.65 84.3 4.6 73.3 66.1

Actors 0 96.3 3.7 56.9 49.6

Actions 1.23 74.1 7.4 99.5 94.6

Relations 0.00 90.7 9.3 66.0 47.0

Interactions 0.24 68.5 3.7 68.2 62.6

Environments 0.48 95.5 4.5 42.7 40.9

Goals 0.13 95.6 4.4 104 82.7

Events 2.44 77.3 5.7 49.0 47.5

Table 7
Detailed systemic evaluation of Base+AGENT MODEL agent on all the novelty categories.

Regarding novelty detection performance, the base agent seems to be weakest on the action, interaction, and goal
novelties, receiving CDT% scores of 61.1, 64.2, and 70, respectively. Action and goal novelties also show high𝐹𝑁𝐶𝐷𝑇 ,
which indicates that the base agent is not very consistent in detecting those novelties.

Table 7 details the systemic evaluation results of the Base+AGENT MODEL configuration by novelty category. The
Base+AGENT MODEL performs best in CDT% and 𝐹𝑁𝐶𝐷𝑇 out of the three configurations but has the highest FP%.
In the three pre-novelty trials ran, the agent model produced false positives in two out of three tournaments in a total
of 3 out of 150 episodes. This per-episode false positive rate is consistent with our component-wise evaluation results
and indicates that even a comparatively low false positive rate of about 2-3% can be magnified in tournament-wide
evaluations. The additional false positives also explain the slight NRP% and GA% decrease, as they may force the
agent to explore unnecessarily. It should be noted that the agent configurations that include AGENT MODEL exhibit
higher variation in detection performance, particularly in false positive rate, than the agent configurations that only
use symbolic inference. This is due to small random effects in the environment (e.g. where broken objects fall to the
ground) that may trigger false positive detections from the neural models. Still, both configurations of the agent with
AGENT MODEL overall outperform the other agents in novelty detection.

The Base+AGENT MODEL configuration performs especially well in novelty detection of action and goal novelties,
increasing CDT% by 13% and 25.6%, respectively. It also significantly decreases𝐹𝑁𝐶𝐷𝑇 , decreasing the average time-
to-detection to 0-2 episodes for both categories. A smaller improvement is also seen in CDT% for the interactions and
environments novelty categories. This indicates that the AGENT MODEL is able to supplement the base agent’s novelty
detection capability in actor-related novelties in which modeling of actor behavior is required.

A surprising result is that the combined base+AGENT MODEL +EXECUTOR LEARNER agent performs worse than
the other agents in the novelty accommodation metrics NRP% and GA%. Table 9 indicates that this is consistent across
novelty categories and not concentrated on one. We attribute this to unforeseen interactions between the additional
components in that configuration: When the EXECUTOR LEARNER explores the environment, this may induce changes
to the environment that in turn may cause changes in the behavior of other agents. As a result, the AGENT MODEL may
detect novelty, which in turn may lead the agent to further explore the detected novelties, hurting its task performance.
5.3.3. Examples

Several cases are identified from the systemic evaluations conducted on the Polycraft environment to demonstrate
the architecture’s strengths and weaknesses in novelty handling. Below is a detailed walk-through of how the
architecture reacted to each novelty scenario. Additional examples are available in the appendix.
Must break tree tap to get rubber. Within this novelty scenario, the operator to collect rubber from a tree tap does
not work. The agent must now break the tree tap to obtain rubber. This novelty belongs to the Attribute category. The
base agent sometimes succeeds at solving this novelty and sometimes fails. These two cases are outlined below.
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Metric 𝐅𝐍𝐂𝐃𝐓 CDT% FP% NRP% GA%

Objects 0.00 95.2 2.4 92.5 82.0

Attributes 0.48 88.1 2.8 62.9 61.2

Representations 0.64 86.0 3.7 75.9 68.6

Actors 0.00 98.1 1.9 64.4 54.5

Actions 4.86 64.8 1.9 101.8 96.5

Relations 0.00 98.1 1.9 70.2 49.3

Interactions 0.06 64.8 1.9 71.3 64.6

Environments 0.09 94.4 2.2 42.2 40.5

Goals 2.82 67.8 1.1 106.5 86.5

Events 1.23 80.7 2.3 55.8 56.7

Table 8
Detailed systemic evaluation of Base+EXECUTOR LEARNER agent on all the novelty categories.

Explanation. The agent attempts to collect rubber from a tree tap, but the operator fails with total effect failure,
prompting the NOVELTY EXPLORATION component to enter a failed operator effects recovery policy. The failed
operator is represented in the agent’s knowledge base as the operator collect(tree tap,tree) where (tree) is the tree that
the tree tap is placed onto. Our current implementation of the failed operator effects policy only utilizes the Operator
Variation strategy on operators with a single parameter, which means that the strategy is not executed in this case.
As discussed in the appendix, this is due to the large search space resulting from considering operators with multiple
parameters. As a result, the operator variation break(tree tap, tree) is never attempted, and ultimately the agent is unable
to solve the task via any other strategies, opting to give up.

The agent is successful in the rare occasion in which the rival pogoist actor breaks the tree holding the tree tap after
the agent has placed the tree tap on the tree, but before the agent has executed the ”collect” operator. When the GOAL
MANAGER attempts to execute the ”collect” operator, a precondition fails: nextTo(tree tap, tree), which represents the
spatial relation of the tree tap to the tree. This condition fails because the tree has been chopped down. As a result,
the agent utilizes the precondition failure strategy, in which the agent updates its knowledge base with the accurate
state and replans. In the plan generated by the agent, it first breaks the tree tap to obtain the tree tap item and takes it
to another tree. Upon breaking the tree tap, it enters the effects failure recovery policy when that action unexpectedly
places rubber in the agent’s inventory. The agent updates its representation of the operator to include acquiring rubber
as an effect. Thus, the agent succeeds in accommodating the novelty due to the actions of the rival pogoist.19

Pogoist prioritizes diamond. The rival pogoist actor changes strategy to prioritize mining diamond ore, which
means the agent will be unable to mine any if it does not also prioritize diamond. This is categorized as a Goals
novelty.

Explanation. Without the agent model added to the base architecture, our agent is able to solve this novelty
relatively well because the Task Planner prioritizes mining diamond ore. This is coincidental and not due to any
intentional value placed on mining diamond ore over any other action in the plan, so our base agent’s success in this
novelty is an interesting example of successful performance without explicit accommodation. Moreover, the symbolic
inference does not even detect this as a novelty.

However, with the AGENT MODEL added on to the base architecture, our agent can successfully detect and
intentionally accommodate the novelty. Each type of actor in the world (including pogoist) is linked to a model of
behavior that is trained on non-novel trials, as described in Section9.1. The pogoist breaking diamond ore so early
in the episode is differentiated from the model of expected behavior, and therefore, the AGENT MODEL reports it
as an unlikely action from the pogoist. The agent considers the ‘unlikely’ action to be a novelty and records this in
its knowledge base. At the beginning of the next episode, the agent spends a little time investigating any recorded

19A narrated video of our agent encountering this novelty can be viewed at the following link: https://www.youtube.com/watch?v=
ILgFudhi6i8
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Metric 𝐅𝐍𝐂𝐃𝐓 CDT% FP% NRP% GA%

Objects 0.00 95.2 1.6 92.5 80.1

Attributes 0.95 91 1.4 63.0 57.6

Representations 0.13 85.2 0.9 74.7 66.7

Actors 0 98.1 1.9 53.5 47.8

Actions 1.93 77.8 0.0 91.6 86.8

Relations 0.00 96.3 3.7 46.8 39.8

Interactions 0.06 66.0 1.9 72.9 64.7

Environments 0.10 93.3 3.3 32.2 39.9

Goals 0.21 98.9 1.1 101.2 82.1

Events 0.78 77.5 0.0 40.6 41.5

Table 9
Detailed systemic evaluation of Base + AGENT MODEL + EXECUTOR LEARNER agent on all the novelty categories.

Category Description Adaptation

Attribute Chest objects contain valuable task items accessible
with break or collect.

EXECUTOR LEARNER learns to break and collect from
multiple chests on the ground to get the necessary
items.

Attribute Birch tree types fail to produce rubber. EXECUTOR LEARNER learns to remove objects that
result in operator failure.

Action Traders plant new trees around themselves. EXECUTOR LEARNER learns to handle actions from
Actors that previously didn’t perform certain actions.

Concealed Concealed EXECUTOR LEARNER performed better on some con-
cealed novelties.

Table 10
Description of some novelties in which the Base+EXECUTOR LEARNER agent performs better than the base agent on the
systemic evaluation conducted on Polycraft.

novelty descriptions in Knowledge Discovery, including this action, which it does by copying the action and mining
the diamond. Thus novelty is detected, and the agent performs well by obtaining the ore early. 20

Cannot collect rubber from birch trees. A new species of birch tree, belonging to a new subtype of the tree object,
is introduced to the environment alongside the known oak trees. Rubber cannot be collected from the birch trees, only
the oak trees. This is categorized as an Attribute novelty.

Explanation. The base agent performs fairly inconsistently in this novelty, entirely dependent on whether the
planner decides to collect the rubber from an oak or a birch on any given trial, since the inability to collect rubber from
birch trees is unknown to the agent. When it tries to collect from a birch tree and fails, the agent attempts to repair the
operator using the total effects failure policy. The failed operator is collectFrom(tree tap,birch tree), and the operator
that would provide success is collectFrom(tree tap,oak tree). But as mentioned earlier, our current implementation of
the Total Effects Failure policy only utilizes the operator variation strategy on operators with a single parameter to
avoid search space explosion, leading the agent to give up after trying other unsuccessful policies.

However, the agent utilizing the EXECUTOR LEARNER manages to overcome this implementation compromise in
our architecture. Rather than giving up, when the agent utilizes the EXECUTOR LEARNER, to learn a surprising new
policy to accommodate this novelty. It prevents the failure from happening again by breaking all the birch trees in
the environment and replanning. This forces the symbolic task planner to collect rubber from oak trees for the rest of
the trial because it doesn’t have the option to collect it from anywhere else. This unexpected accommodation strategy
showcases the flexibility of the EXECUTOR LEARNER in integrating with the implementation of the TASK PLANNER.

20A narrated video of our agent encountering this novelty can be viewed at the following link: https://www.youtube.com/watch?v=
EZOgBy9cDc4
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The learner’s reward function encourages reaching states from which the agent can plan, which may yield different
recovery policies based on the characteristics of a particular implementation of the architecture.

6. Related Works
Open-world novelty detection and accommodation is an emerging direction in AI. Some researchers have already

attempted to address unprecedented experiences in the world, a process that often begins with the detection of novelty.
One way to detect anomalies is to use statistical techniques to detect visual novelties or anomalies in time-series data
(Lymperopoulos, Li and Liu). In particular, convolutional neural networks (CNNs) trained as classifiers on normal
classes can have their probabilistic outputs repurposed to compute a novelty score for new images (Liang, Li and
Srikant, 2018; Lakshminarayanan, Pritzel and Blundell, 2017; Lee and Kang, 2022). For example, a method named
NDCC (Cheng and Vasconcelos, 2021) first trains a classifier, then computes a novelty score for a new image by
computing the distance between that image and the closest normal class’s centroid in the learned feature space. Other
variants of neural network techniques for visual novelty detection include autoencoder-based approaches (Abati et al.,
2019; Kingma and Welling, 2014), Generative Adversarial Networks (GANs, Goodfellow, Pouget-Abadie, Mirza, Xu,
Warde-Farley, Ozair, Courville and Bengio, 2014), and adversarial autoencoders based on GANs (Schlegl, Seeböck,
Waldstein, Langs and Schmidt-Erfurth, 2019). However, these techniques alone only allow the detection of anomalies.

To make better inferences about new visual events, some researchers have proposed cognitive architectures. These
architectures are able to identify and locate unknown activities in video data in an open world, such as OW-TAL
(Zhang, Zhang and Shi, 2023b). Others are also able to analyze and generate explanations and theories, as well as
revise and update beliefs (Wanyana, 2021). Alternatively, attempts are made not only to recognize new experiences
but also to acquire additional knowledge about them. The CoTTA cognitive architecture (Wang, Fink, Van Gool and
Dai, 2022) explores relationships between topics and structural elements to capture similarities and provide a better
semantic representation for retrieval. Li, Dou, Keil and Principe (2022) present a cognitive architecture to understand
visual scenes from a very sparse "tabula rasa" knowledge of the world, and learning to automatically extract relevant
information from the world using only unsupervised and RL techniques. These cognitive architectures are able to
extract new visual representations from the world, but they do not give the agent any capabilities to understand how to
plan and act when it encounters changes in the world.

Various aspects of planning and acting in non-stationary environments have been studied before (e.g. planning in
the open world, see Talamadupula, Benton, Kambhampati, Schermerhorn and Scheutz, 2010), sometimes under the
umbrella term ”lifelong learning” and often using variants of deep reinforcement learning (Khetarpal, Riemer and amd
Doina Precup, 2020). However, re-planning approaches can not recover from obstructive novelties. Proposed solutions
for continuous (Abel, Jinnai, Guo, Konidaris and Littman, 2018; Lecarpentier, Abel, Asadi, Jinnai, Rachelson and
Littman, 2020) and non-stationary (Cheung, Simchi-Levi and Zhu, 2020) learning are often plagued by catastrophic
forgetting and difficulties in dealing with abrupt changes in the task environment, which can completely block the
learner’s ability to adapt and lead to permanent task failure.

Some work in the field of continual learning has shown performance stability despite repeated exposure to
novelties (Kirkpatrick, Pascanu, Rabinowitz, Veness, Desjardins, Rusu, Milan, Quan, Ramalho, Grabska-Barwinska,
Hassabis, Clopath, Kumaran and Hadsell, 2017). In reality, however, continual learning is neither designed to recognize
novelties nor to adapt to a growing domain and would fail in the open world. Lifelong learning methods with adaptive
capabilities such as Meta Experience Replay (Riemer, Cases, Ajemian, Liu, Rish, Tu and Tesauro, 2019) or powerplay
(Schmidhuber, 2013), require task traces from previous experiences for retraining to prevent forgetting. This is often
unrealistic (e.g., with the limited computational and memory capacity available to autonomous embodied systems such
as robots) and sometimes not feasible (because of the time it takes to relearn the system).

Some classical approaches to open-world inference are also relevant to novelty-capable agents. Methods based on
Adaptive Resonance Theory (Zhang, Jiang and Xu, 2023a; da Silva, Elnabarawy and Wunsch II, 2019), non-monotonic
logic (McDermott and Doyle, 1980; Eiter and Šimkus, 2015) and growing neural gas networks (Marsland, Shapiro
and Nehmzow, 2002; Masuyama, Amako, Yamada, Nojima and Ishibuchi, 2022) may form learning and reasoning
components of larger novelty-capable agents.

Several recent hybrid planning and learning approaches have shown how to take advantage of high-level planning
representations and reasoning methods while utilizing low-level policy-based learning approaches like RL (Steccanella
and Jonsson, 2022; Karia and Srivastava, 2022; Kokel, Manoharan, Natarajan, Ravindran and Tadepalli, 2021; Jin, Ma,
Jin, Zhuo, Chen and Yu, 2021). Guan, Sreedharan and Kambhampati (2022) learn a metacontroller over the learned
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skills by using the provided operators to acquire skills to access a variety of terminal states (also called landmark states).
However, these approaches do not consider open-world settings. Recent work on dynamic environment accommodation
is typically limited in several ways. Agents may receive dense rewards (Bing, Lerch, Huang and Knoll, 2022), or have
extra symbolic knowledge about a change when it appears (Bryce, Benton and Boldt, 2016; Gehring, Asai, Chitnis,
Silver, Kaelbling, Sohrabi and Katz, 2022; Icarte, Klassen, Valenzano and McIlraith, 2020).

Other efforts assume agents may face gradual changes (Nayyar, Verma and Srivastava, 2022; Piotrowski and
Mohan, 2020) or plan-level novelties only (Yang, Lyu, Liu and Gustafson, 2018). On the other hand, Sarathy,
Kasenberg, Goel, Sinapov and Scheutz (2021) used RL to accommodate changes caused by the introduction of
novelties. By adapting existing and/or learned executors for plan operators, they enabled the agent to find a successful
path to the goal after novelty injection (Goel et al., 2022; Lorang, Goel, Zips, Sinapov and Scheutz, 2022).

Some cognitive architectures explore learning to deal with changes in the world. FANS-RL (Feng, Huang, Zhang
and Magliacane, 2022) improves reinforcement learning efficiency and stability in dynamic environments. However,
FANS-RL is designed to respond to changes in environment dynamics such as motor malfunctions or changing goals
in the form changing reward functions, rather than sudden and novel changes (such as prohibitive novelties) that may
include new objects, properties, and relations. Muhammad et al. (2021) propose an architecture capable of handling
abrupt novelties where detection, symbolic characterization, and reasoning are required. Nevertheless, their work may
encounter impasses when the available understanding of the environment is insufficient for adapting to changes (such as
obstructive novelties). The architecture we propose detects changes in the world either through new visual information
or through comparing expected models of the world and adapts accordingly to keep performing despite these changes
being novel, abrupt, uninformed, and of diverse forms. Our architecture includes a complete strategy for exploring the
environment when a change is detected, abstracting information about it, and learning to adapt to it.

Recent advancements in the development of fault-tolerant systems have significantly contributed to domains such as
network systems (Li, Yuan, Mohapatra and Chuah, 2007), sensor networks (Yemeni, Wang, Ismael, Hawbani and Chen,
2021; Xin, Zhou, Jiang, Tang, Yang and Zhou, 2023), unmanned aerial vehicles (UAVs) (Hsiao, Wan, Jia, Ghosal,
Mahmoud, Raychowdhury, Brooks, Wei and Reddi, 2023), and spacecraft (Codetta-Raiteri and Portinale, 2014). These
methods, however, are largely domain-specific, which highlights the need for more versatile architectures. Our approach
introduces a suite of methods and algorithms designed with a focus on universality, enabling their adaptation for open-
world novelty handling in diverse systems.

7. Limitations and Future Work
The comprehensive multi-stage evaluations demonstrated that the proposed components and their embedding in

a fully functional cognitive agent architecture are able to detect and accommodate a large variety novelties even
without prior foreknowledge of what novelties to expect. Of course, this is only a start and the proposed methods
and components can and must be extended to cover a broader set of novelties in more open-world environments. We
will briefly address some of the limitations and directions for future work.
Subsymbolic modalities and the extraction of symbolic information. While the proposed architecture included
visual novelty detection methods based on images, we did not use visual processing for localizing novelties or
generating environmental state descriptions. Visual processing could also be used to model the actions of other agents
over time. A more faithful evaluation, closer to the real world, could require agents to use only perception-based
processing and ignore any pre-processed symbolic descriptions. Moreover, since other modalities like sound might
be important for real-world tasks, our present architecture would have to be augmented to handle those perceptual
components, utilizing similar techniques to those employed for visual novelty detection (e.g., to extract symbolic
descriptions from audio such as new words or speech elements). Finally, given the relatively high false positive rates
observed in our visual detector evaluations, developing improved methods that better control false positive rates could
make real-world applications possible.
Novelty handling limitations. The agent architecture cannot handle conceptual novelties and novel ontological
categories. In addition, there are some novelties that our agent cannot detect due to implementation limitations, even
though they could, in principle, be detected and handled by our architecture. Such novelties include higher-order
novelties (i.e., novelties in properties of properties or properties of relations, etc.) as well as elements of the world
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that the agent cannot sense (i.e., sound). Finally, in non-episodic environments with irreversible actions, the executor
learner may, during exploration, eliminate every possible solution path.
Other types of environments. While the environments we used for evaluations can get fairly complex, the employed
tasks were reasonably simple and did not involve drastic changes to the environment. Moreover, discrete abstractions
in terms of space and time were also simplifications that allowed us to focus on the core problems of novelty handling.
Ultimately real-world agents will have to deal with the continuity of real-time and real-space tasks. However, note that
our theoretical framework is not limited to discrete states and thus still applies to a wide range of real-world problems
that can be addressed by a system that at the core operates on discrete symbolic representations that abstract over
continuous dimensions. To cope with continuous states, we can use various components to discretize space and time.
For simple cases, we can directly discretize continuous variables produced by the Domain Interface. For complex cases,
the Domain Interface can pass in continuous information and have it discretized by a learning model subcomponent
within the Neural Inference module.
Evaluation of agent performance. There is an intrinsic tension in our system evaluations between the the implicit
goal to find novelties and the explicit goal to perform the pogostick task. Some of the failures to find novelties are
thus due to the agent’s pursuit of its explicit goal, which always takes precedence over finding novelties. Generally,
the agent will only explore novelties that directly affect it while solving the task; its investigation of novel entities in
the environment as discussed at in Section 4.3 is limited to in order to allow the agent to abandon novelty exploration
in favor of its explicit goal of task-solving. This raises the question of how novelty detection should be evaluated in
general: should it be part of another task (as in our case), or should there be a separate goal in which the agent might
be rewarded specifically for novelty detection? In the latter case, the agent could then explicitly trade off the novelty
detection task with the primary task. Of course, novelty detection and characterization could be also made the only
task, but this approach seems quickly infeasible and pointless in environments with too many objects to investigate.
Interpretability There is an important final point to be highlighted about evaluations of novelty detection and
accommodation: it is one thing to measure the extent to which an agent can handle prohibitive novelties or obstructive,
because the agent cannot accomplish the task without “getting around” them, but whether the agent detected them (if
it does not explicitly indicate detection), or whether it incorporated the novelty into its knowledge base in a way that
matches our expectations, is another question. The latter case requires the agent to use our ontology and conceptual
system, or at least one that we understand, but there is no guarantee that the way the agent recorded the novelty in its
own internal representations will match with such a system. While symbolic representations are at least introspectible
and new symbols can be traced back to how they originated in the agent, the subsymbolic components might not
be amenable to those kinds of human introspection. It is possible that “explainability mechanisms” (developed for
neural networks) might be able to address this problem, at least to some extent, but likely additional mechanisms and
representations will be needed to understand what the agent has learned and how it characterized its new knowledge.

8. Conclusion
The aim of this paper was to present a novel cognitive architecture framework for handling novelties in open

worlds. The proposed framework for embodied agents (with sensors and effectors) consists of both symbolic and
subsymbolic components that together synergistically uses logical and statistical inferences for detecting novelties as
well as offline and online machine-learning techniques for accommodating novelties. Extensive multi-stage evaluations
of an architecture instance of the framework performing a crafting task in a Minecraft-inspired simulation environment
demonstrated that the proposed methods can usually detect, to some extent characterize, and often accommodate several
types of novelties, such as novel objects or novel agents.

These encouraging results point the way for future developments. Possible improvements could include the
addition of other subsymbolic input modalities like sound or tactile sensors, extended symbolic inference and novelty
exploration mechanisms that use planners to plan experiments for discovery instead of fixed strategies, and yet better
ways for quickly experimenting with objects and actions in the environment to discover solutions to unforeseen and
unexpected problems. The overall lesson is that more emphasis needs to be placed on problem-solving and solution
discovery during task performance compared to pre-training and initial knowledge engineering. Only when we have
solved the problem of how to effectively determine what to try in the interest of finding novelties that enable solutions
to the task at hand will our artificial agents have made the full transition from closed to open worlds.
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9. Appendix
9.1. Agent implementation

The proposed novelty detection and accommodation capabilities and were evaluated in two different environments,
described here. For all evaluations, we created a Polycraft Interface Component (however, it works identically with
novelgridworlds). Upon any Sense action taken by the agent, this component parses Polycraft’s sensory information
from a JSON format into the first-order logic predicate form used by the rest of the architecture.

The KBis implemented as a set of facts and rules in Prolog. Prolog is queried every time the truth value of a
fact is needed, such as when preconditions and postconditions of an action is being checked. The set of Prolog facts
is translated to PDDL to be inserted into a problem file. Actions are written in our Action Script Language, ASL,
which is also translated into PDDL as a planning domain. Our Symbolic Planner can be configured to use any PDDL
planner, and for this work we’re using an off-the-shelf planner, the fast-forward planning system Metric-FF. During
planning, the PDDL domain and problem files are dynamically generated by scraping information from KBI and the
action database. The action database contains the set of all actions that can be executed by the agent, and is stored
in the GOAL MANAGER component. When populating the PDDL domain, we filter for actions that have at least one
known effect, so they can be utilized by the planner.
Time spent exploring. The amount of time that the agent may wish to spend on any one exploration strategy
mentioned in Section 4.3 is domain-specific. In our implementation with Polycraft, because our agent is being evaluated
on whether it can achieve success before a time-out, certain phases of exploration are restricted to a set time limit, such
as the Knowledge Discovery phase. This phase occurs before the agent even generates a plan to achieve the main task
goal, so it is important that the agent does not waste time exploring a novelty such that it does not have enough time left
over to actually solve the task. The search space of Operator Discovery strategies (other than reinforcement learning,
which we allow to keep exploring until Polycraft times out due to it being the final strategy employed when all other
strategies have failed) is intentionally cut down in order to limit exploration time as well. Precondition Discovery, for
example, only focuses on adding variations of the holding(self,X) predicate, for all X where X is a novel object in the
environment, as this predicate represents a prominent state aspect in Polycraft. While this has the advantage of ensuring
the agent does not spend too much time on any one exploration strategy, it also creates large blind spots for the agent’s
novelty solving abilities (again, reinforcement learning is utilized as a last resort to fill some of these gaps in the base
agent’s abilities, the success of which is discussed in Section 5.3.2).
Operator failure strategy selection. Choosing which strategies to follow in the Total Effect Failure policy, and how
those strategies were executed, was implemented based on the specific operator that failed. For example, Strategy 1
(update operator and replan) is not attempted when a movement operator fails, as movement is an extremely essential
part of task-solving in Polycraft and deleting its expected effects could entirely destroy the agent’s ability to move
anywhere. Instead, we consider the more likely explanation that the agent’s knowledge base is inaccurate and the agent
believes its path is clear when it is not, which is an error addressed by Strategy 2 (repeat the action). Similarly, Strategies
3 and 4 are excluded for failed operators that have more than one parameter (and thus a larger state space to explore) out
of a reluctance to spend excessive time symbolically exploring a novelty instead of simply trying to find an alternative
plan that avoids the novelty. These heuristics are not necessarily applicable to all other tasks or domains, but we find
they are effective in Polycraft.

The initial ontology provided to the agent is accessible on this link: https://tufts.box.com/s/
pab7xze409uhe5n9461m7x8dz0dn9xg9

9.1.1. AGENT MODEL implementation details
State representation. From the Polycraft symbolic state descriptions obtained through DOMAIN INTERFACE, a set of
inputs 𝑠′𝑐 = (𝐱𝑐 ,𝑀) are derived for the neural networks of the AGENT MODEL for each actor 𝜄 in the state description.
The vector 𝐱𝜄 ∈ ℝ𝑑 is a vectorized representation of the actor’s internal states such as its inventory, inferred by tracking
its actions throughout a trajectory. The matrix 𝑀 ∈ {0, 1}40×40×𝑑2 is a representation of the map of the environment,
as a 40x40 square is sufficient to hold every configuration of the pre-novelty polycraft map. The third dimension of𝑀
with size 𝑑2 ∈ ℕ stores a binary indicator indicating which known environment entity is present in each position.

As mentioned in the text, unlikely actions are detected using a threshold calculated over a validation set of state-
action pairs from pre-novelty environments.
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Figure 7: Architecture diagram of the neural network underlying the agent model. The map of the environment is
summarized into a vector and concatenated with state and action-history information. The network outputs probabilities
for each action. ⊕ represents concatenation

Model architecture. Each neural network in the implementation of AGENT MODEL for the Polycraft domain is
composed of 3 convolutional layers with filter size (3,3) and stride 1, and 4 multilayer perceptrons with 1 hidden layer.
All layers have a hidden dimension of 64. All layers except the output layer use ReLU activations. The architecture is
illustrated in figure 7 and summarized as follows:

𝐻𝑀 = 𝐶𝑁𝑁𝑀 (𝑚𝑙𝑝𝑀 (𝑀))
𝐡𝑀 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐻𝑀 )
𝐡𝑥 = 𝑚𝑙𝑝𝑥(𝐱)
𝐲̂ = 𝑚𝑙𝑝([𝐡𝑀 ,𝐡𝑥]).

The output vector 𝐲̂ represents logits that compute probabilities for each action using a softmax layer.
Additional training details. The agent model neural networks are trained for a total of 100 epochs with early stopping
based on the validation loss, with a patience value of 5. They are trained using the Adam optimizer with a learning rate
of 0.001. Class weights are utilized during training to ensure the model does not overfit the most common actions taken
by other actors (such as navigation commands). Weights are computed based on the frequency of classes (actions) in
the dataset so that all classes (actions) are weighed equally.
9.1.2. VISION MODEL implementation details
Image preprocessing. Before splitting into patches, input images are cropped to remove the “Minecraft item bar" by
removing the bottom 22 pixel rows of the images. For training, patches of size 32 × 32 pixels are sampled randomly from
the cropped images and normalized between 0 and 1. Additionally, we add Gaussian noise with a standard deviation
of 1

40 is added to the input data.
Training settings. Hyperparameter tuning of the latent representation dimension takes place over the values 50, 100,
and 200 and batch sizes 32, 64, and 128. The selected value for the representation dimension is 100 and the batch size
is set to 128. Training takes place over 8000 with a learning rate of 0.001 with the Adam optimizer and default Pytorch
values for other parameters (0 weight decay and (𝛽1, 𝛽2) = (0.9, 0.999)). Additional details on the architecture and
training settings are available in Feeney et al. (2022).
9.2. EXECUTOR LEARNER implementation details

The EXECUTOR LEARNER uses one neural network for each operator. Each neural network has 1 hidden layer with
128 neurons. Table 11 summarizes all hyperparameters for the RAPid-learn (Goel et al., 2022) algorithm.
9.3. Non-novelty aware agent

The non-novelty aware agent is a simple PDDL-based planning agent. The domain and problem files as well
as the code used to integrate it with the Polycraft domain are available here: https://tufts.box.com/s/
qeypcyn6xyq60vvm6l0adqu647ltttgw

9.4. Simulation setup and hardware details
All systemic evaluations are run on the LoneStar6 HPC in Texas Advanced Computing Center. Simulation details

for the Polycraft domain are available in (Goss et al., 2023). Training for neural models took place on a server with 4
NVIDIA RTX 2080Ti GPUs, and an Intel(R) Core(TM) i9-9940X processor with 130 GB of memory
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Hyperparameter Value

𝜖max 0.3

𝜖min 0.05

𝜌max 0.35

𝜌min 0.05

𝜆 decay − log(0.01)
50

decay rate 0.99

network weight update rate 1

positive reinforcement 1000

negative reinforcement -100

step cost -1

number of episodes checked for convergence 100

number of dones checked for convergence 20

Table 11
Hyperparameters of EXECUTOR LEARNER for reinforcement learning.

9.5. Executor learner novelty handling discussion
In this section, we provide a detailed discussion of some novelty scenarios in the internal evaluation of the

EXECUTOR LEARNER agent.
In the This is just random novelty, we showcase that the agent with an EXECUTOR LEARNER can learn to adapt

to stochasticity in the environment. Table 4 shows that the EXECUTOR LEARNER learner configuration successfully
solves the task in 20% of the cases, whereas the symbolic explorer solves it in a mere 2%.

In Convince me novelty, we observe that the EXECUTOR LEARNER aids the agent in learning to accommodate a
beneficial novelty. Table 4 shows that in this novelty, the base agent’s symbolic explorer fails to solve the task, while
the EXECUTOR LEARNER helps solve the task almost 60% of the time.

In the Sapling can’t grow here! novelty, we observe that the EXECUTOR LEARNER helps accommodate about 10%
of the time. The goal of this novelty was to showcase the learning of spatial aspects of the learner. However, we could
not observe the expected performance due to implementation limitations. The EXECUTOR LEARNER has access to the
same higher-level operators as the base agent. However, to learn the spatial aspects of this novelty, the agent should
have access to the lower-level navigation actions to learn a successful policy to solve the task.

In the show me your card first novelty, we demonstrate that the RL agent can learn a sequence of operators
to accommodate the novelties. The search space of sequences of operators is intractable for the other exploration
strategies, as they would have to explicitly enumerate all combinations of operators of different lengths. Instead, the
RL-based learner has a more flexible knowledge representation in the form of neural network parameters, which allows
it to generalize the knowledge it gains to unexplored states. That, combined with its knowledge-guided exploration
strategy, makes it more efficient in searching over the sequences of operators. From the results in Table 4, the agent
configuration that uses the EXECUTOR LEARNER successfully solves the task 20% of the time, while the symbolic
explorer can never accommodate it.
9.6. Additional evaluation data

In this section, we include additional results from our systemic evaluations. Tables 12 and 13 break down
the performance of the 4 accommodation-capable agent configurations between known and unknown novelties. It
is important to note that the agent configurations including the AGENT MODEL component perform better on the
unknown set. This is because the novelties related to other agents were not balanced across the two sets, making the
unknown set contain proportionally more such novelties. The agent model was able to detect those novelties often and
as such the performance on that set is higher.
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Agent 𝐅𝐍𝐂𝐃𝐓 CDT% FP% NRP% GA%

Base 0.41 83.8 3.0 76.4 67.7

Base+AGENT MODEL 0.43 84.6 6.70 75.4 67.0

Base+EXECUTOR LEARNER 0.57 85.9 2.5 76.5 69.0

Base + AGENT MODEL + EXECUTOR LEARNER 0.42 88.1 1.7 72.6 65.0

Table 12
Results comparing configurations of the agents in the systemic evaluation of known novelties.

Agent 𝐅𝐍𝐂𝐃𝐓 CDT% FP% NRP% GA%

Base 1.34 79.9 3.7 64.8 57.1

Base+AGENT MODEL 0.91 89.5 4.9 65.5 57.2

Base+EXECUTOR LEARNER 1.23 81.00 1.9 68.2 61.3

Base + AGENT MODEL + EXECUTOR LEARNER 0.33 89.6 1.5 58.1 54.7

Table 13
Results comparing configurations of the agents in the systemic evaluation of unknown novelties.

The dataset imbalance originates in the development cycle of the agent. The agent was developed in three phases,
with each phase focusing on different categories of novelties. In each phase, a small number of novelties from each
category were known, and the rest were unknown. At the end of each phase, the unknown novelties for that phase
were revealed. In the paper, we present the final version of the system, in which unknown novelties from the first two
phases are revealed and the third are hidden. Therefore, the set of unknown novelties consists of novelties from phase
3 categories, which are Environments, Goals and Events.
9.7. Additional Examples
New item needed to craft pogostick. This novelty scenario belongs to the object category. In this scenario, a new
unknown item (gold) is required in the crafting recipe to craft a pogostick. The agent must now learn to associate the
recipe ingredient “gold” with a previously unknown resource block that now exists in the world. It must mine that
block to acquire the gold and then use it to craft a pogostick.

Explanation. Before executing the pogostick goal, the agent detects the presence of the gold in the environment as
a novelty through the GOAL MANAGER’s initial comparison of the agent’s knowledge base to the current state of the
world. Before the GOAL MANAGER attempts to achieve the pogostick goal, the NOVELTY EXPLORATION component
enters Knowledge Discovery and generates subgoals that involve the novel object. The GOAL MANAGER executes these
subgoals. One of these subgoals, break(gold), results in the effect of gold being deposited into the agent’s inventory,
which the GOAL MANAGER observes through the DOMAIN INTERFACE. The Exploration component creates a new
operator for break(gold) that reflects this effect and stores it in the agent’s knowledge repository. The agent can then
plan to accomplish the requirements of the novel crafting recipe (having gold in its inventory) by mining more gold
and successfully completing the task. A narrated video of our agent encountering this novelty can be viewed at the
following link: https://www.youtube.com/watch?v=7X6EUkYcHSc
New supplier actor. A previously unknown actor (the supplier) appears in the world (note that this is similar to the
example illustrated in Section 2). The supplier offers a pogostick if the agent performs the interact action on it. In this
variant, the pogostick can no longer be crafted, leaving the supplier as the only means of acquiring it. This scenario
is categorized as an Agent novelty and constitutes a beneficial novelty for our agent, as acquiring a pogostick can be
achieved with a shorter plan than usual.

Explanation. Before executing the pogostick goal, the agent detects the presence of the supplier in the environment
in the GOAL MANAGER’s initial comparison of the agent’s knowledge base to the actual state of the world. Before
the GOAL MANAGER attempts to achieve the pogostick goal, the NOVELTY EXPLORATION component enters
Knowledge Discovery and generates subgoals that involve the novel entity, including interacting with the supplier.
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When this happens, and the supplier deposits the pogostick into the agent’s inventory, this is observed through the
DOMAIN INTERFACE, the GOAL MANAGER notes the discrepancy between the expected effect and the observed
effect, and prompts the Exploration component to enter failed effect recovery. The Exploration component creates
a new operator for interactWith(supplier) that reflects this effect and stores the new operator in the agent’s knowledge
repository. In subsequent games, the agent can plan to obtain the pogostick immediately, using the knowledge of
this beneficial novelty. A narrated video of our agent encountering this novelty can be viewed at the following link:
https://www.youtube.com/watch?v=06B6pHMakFs

Traders spawn in side rooms. The traders do not appear in the main room that the agent starts in as in pre-novelty.
They appear in a side room, which means their existence is not initially known to the agent. This is categorized as a
Relations novelty.

Explanation. The agent needs to interact with the traders to get the available trades and later use the trades to solve
the task. Without the knowledge of the trades, the agent cannot solve the task. Therefore, upon discovering the absence
of traders in the main room, the agent cannot find a successful plan and encounters this novelty as prohibitive novelty.

The NOVELTY EXPLORATION component executes the recovery policy for prohibitive novelties, which executes
operators to explore the unobserved parts of the environment. One of these operators is exploreRooms(), in which
the agent enters all the side rooms and observes what is inside them, including the trader actors. Upon knowing their
location, the agent interacts with the traders to receive information about their trade offers, generating new trade
operators to represent them. From here, the agent resumes normal operation after replanning with the new operators
and successfully solves the task.

A narrated video of our agent encountering this novelty can be viewed here here
https://www.youtube.com/watch?v=gwxdPXZiYsE
Different items in chests. In this novelty scenario, the ingredients to craft the pogostick are scattered throughout the
environment inside various identical chests, and these ingredients are not obtainable otherwise. This is categorized as
Object novelty.

Explanation. The base agent often fails to solve this problem because it does not distinguish between chests and
assumes that opening each chest yields the same contents. Initially, this novelty prohibits the agent from being able
to plan to craft a pogostick, which prompts the Planning Failure recovery policy. During this policy, the agent will
open a chest as an exploratory action to discover what lies inside it. When opening a chest and finding unexpected
contents, such as rubber, the agent enters the Partial Effects Failure recovery policy and creates a new operator to
reflect that opening a chest yields rubber. From this point, however, the agent still fails to plan because it needs more
of the ingredients hidden in the chests but assumes that all chests only contain rubber. It eventually will give up after
failing to accommodate the novelty.

However, the base+EXECUTOR LEARNER agent is successful at accommodating this novelty. Instead of giving up,
the agent begins exploring using reinforcement learning. The Executor Learner places a higher priority on executing
novel operators during reinforcement learning exploration, and because the agent has already created a novel operator
due to the Partial Effects Failure policy, this operator is attempted often. This eventually results in the agent collecting
ingredients from all the chests and being able to replan to solve the task. This is an interesting example of the EXECUTOR
LEARNER overcoming unforeseen limitations of the symbolic reasoner implementation: The agent assumes all chests
in the environment are interchangeable, which leads to this failure. However, the EXECUTOR LEARNER has much
more flexibility in its knowledge representations and is, therefore, able to discover an executor that accommodates the
novelty.
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https://www.youtube.com/watch?v=06B6pHMakFs
here

