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Abstract. In this paper, we develop a method to find the uncertain
consequent by fusing the uncertain antecedent and the uncertain impli-
cation rule. In particular with Dempster-Shafer theoretic models utilized
to capture the uncertainty intervals associated with the antecedent and
the rule itself, we derive bounds on the confidence interval associated
with the rule consequent. We derive inequalities for the belief and plau-
sibility values of the consequent and with least commitment choice they
become equations. We also demonstrate the consistency of our model
with probability and classical logic.

Keywords: Belief, Plausibility, Fusion, Implication rule, Antecedent,
Consequent, Uncertainty.

1 Introduction

Implication rules, which take the form “if A, then B” or, as is often expressed,
A =⇒ B, constitute the backbone of reasoning and inference engines. A large
volume of existing work addresses the extraction of such rules from databases
and their use in various application scenarios. However, most of these works
assume that the evidence/information at hand is “perfect”, which, in practice,
is far from the truth. Databases are rife with imperfect (e.g., ambiguous, vague,
or incomplete) entries rendering the rule antecedent A, the rule =⇒ itself, and
hence the rule consequent B to be imperfect. Even otherwise, one cannot expect
to get “perfect” rules when only finite databases are available for rule extraction.

Probabilistic and fuzzy models are perhaps the two most commonly used ap-
proaches to capture imperfect rules [4],[10]. This current work of ours is based on
Dempster-Shafer (DS) theory [12] which can capture a wider variety of imper-
fections, provide interval-based models of the underlying uncertainties, and can
be considered a generalization of probability mass functions (p.m.f.s). Several
previous works deal with DS theory (DST) based modeling of imperfect rules:
in [6],[7], DST fusion/combination strategies are employed to get results that
are most similar to ours, but general bounds and inequalities that we derive are
absent and the approach is different; in [2], emphasis is placed on satisfying the
material implications of propositional logic statements; [11] designs a complete
uncertain logic framework (imperfect rules being a special case) which is com-
patible with classical (perfect) logic [10]. We take a different view: we do not
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impose compatibility with classical logic in imperfect domains; rather, we expect
compatibility only when the domain is perfect, so that our model is very general
and all probability and classical logic are special cases.

We model our imperfect rules via DST Fagin-Halpern (FH) conditionals [5].
While the use of the Bayesian conditional has been criticized as a model of
probabilistic imperfect rules [9],[2], we demonstrate that the DST FH condition-
als can be used as an effective interval-based model of imperfect rules to fuse
with imperfect antecedent. Given the uncertainty intervals associated with the
rule antecedent and the rule itself, we derive explicit lower and upper bounds
for the uncertainty interval of the rule consequent. Then we explicitly show its
consistency with Bayesian inference and classical logic.

2 Preliminaries

Basic DST Notions. Let Θ = {θ1, · · · , θM} denote the Frame of Discern-
ment (FoD) which contains the discrete set of mutually exclusive and exhaustive
propositions. The power set 2Θ, i.e., the set containing all the possible subsets
of Θ, is 2Θ. For arbitrary A ⊆ Θ, A denotes those singletons that are not in A.

As usual, mΘ(·) : 2Θ 7→ [0, 1] is a basic belief assignment (BBA) or mass
assignment where

∑
A⊆ΘmΘ(A) = 1 and mΘ(∅) = 0. Propositions that receive

non-zero mass are the focal elements; the set of focal elements is the core FΘ.
The triplet E = {Θ,FΘ,mΘ} is the body of evidence (BoE).

Given a BoE, E ≡ {Θ,FΘ,mΘ}, the belief function BlΘ : 2Θ 7→ [0, 1]
is BlΘ(A) =

∑
B⊆AmΘ(B). The plausibility function PlΘ : 2Θ 7→ [0, 1] is

PlΘ(A) = 1−BlΘ(A). The uncertainty interval associated with A is
[BlΘ(A), P lΘ(A)].

Of the various notions of DST conditionals abound in the literature, the
Fagin-Halpern (FH) conditional [5] possesses several attractive properties and
offers a unique probabilistic interpretation and hence a natural transition to the
Bayesian conditional notion [5], [3], [14].

Definition 1 (FH Conditionals). For the BoE E = {Θ,FΘ,mΘ} and A ⊆ Θ
s.t. BlΘ(A) 6= 0, the conditional belief BlΘ(B/A) : 2Θ 7→ [0, 1] and conditional
plausibility PlΘ(B/A) : 2Θ 7→ [0, 1] of B given A are

BlΘ(B/A) =
BlΘ(A ∩B)

BlΘ(A ∩B) + PlΘ(A ∩B)
; PlΘ(B/A) =

PlΘ(A ∩B)

PlΘ(A ∩B) +BlΘ(A ∩B)
.

3 Implication Rule Model Assumption

We model the implication rule by FH conditionals. Consider the implication
rule A =⇒ B, where A denotes the antecedent, B denotes the consequent, and
=⇒ denotes the rule R. Without loss of generality we assume antecedent and
consequent are in same BoE. We consider the uncertainty of the rule R and it
is modeled as follows;

Bl(R) = Bl(B/A); Pl(R) = Pl(B/A) (1)
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Additionally if we have evidence on A =⇒ B, which we model by Bl(B/A) and
Pl(B/A), more finer results can be obtained for the consequent. Later with
results, it can be seen that these conditionals are a good way to model the
implication rules.

4 Fusion

The purpose of this paper is to find the uncertainty intervals of the consequent
given the uncertainty intervals of antecedent and the rule. For simplicity, we will
use the following notation:

Bl(A)=α1; Pl(A)=β1; Bl(B)=α2; Pl(B)=β2;

Bl(B/A)=αr; Pl(B/A)=βr; Bl(B/A)=αr; Pl(B/A)=βr, (2)

4.1 Results

We obtain following relations for belief and plausibility of the conse-
quent.
If knowledge of antecedent and knowledge of both A =⇒ B and A =⇒ B are
available, following lower and upper bounds can be obtained for the belief and
plausibility respectively.

α2 ≥ α1αr + (1− β1)αr. (3)

β2 ≤ α1βr + (1− β1)βr + (β1 − α1). (4)

We call them General Bounds.
Least Commitment (LC) Choice. The principle of minimum or least com-
mitment (LC) [13], [1] dictates that we are least committed and rely on available
evidence only, i.e., select the lower bound for α2 and the upper bound for β2.
The corresponding LC choice;

α2 = α1αr + (1− β1)αr. (5)

β2 = α1βr + (1− β1)βr + (β1 − α1). (6)

If knowledge of antecedent and knowledge of only A =⇒ B are available the
relations become;

α2 ≥ α1αr. (7)

β2 ≤ 1− α1(1− βr). (8)

We call them Relaxed Bounds. Since we are using only the implicationA =⇒ B,
these are the bounds for the imperfect implication. With the LC choice these
bounds become following equations.

α2 = α1αr. (9)
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β2 = 1− α1(1− βr). (10)

Uncertainty. The upper bound for the uncertainty of the General Bounds;

β2 − α2 ≤ (β1 − α1) + α1(βr − αr) + (1− β1)(βr − αr). (11)

The above term for the upper bound of the uncertainty has an interesting intu-
itive interpretation: the uncertainty interval of the consequent is bounded above
by the uncertainty of the antecedent plus the uncertainties of the rules A =⇒ B
and A =⇒ B weighted by their corresponding belief terms; Bl(A) = α1 and
Bl(A) = 1−β1. And it can be easily shown that this term, the upper bound for
the uncertainty, is always less than or equal to 1, which is correct and intuitive.
The lower bound for the uncertainty is 0 since by definition β2 ≥ α2. (Note that
we define α2 and β2 as belief functions and then find relations for them). And
also it is clear that the relations which were obtained for β2 are always greater
than or equal to the relations which were obtained for α2.

The inequalities can be written in one line;
0 ≤ α1αr ≤ α1αr + (1 − β1)αr ≤ α2 ≤ β2 ≤ α1βr + (1 − β1)βr + (β1 − α1) ≤
1 − α1(1 − βr) ≤ 1 and it is apparent that when more knowledge (The term
knowledge refers to the knowledge of belief and plausibility values.) is available
the bounded uncertainty interval of the consequent gets narrower. When there
is no knowledge of implication rules, the uncertainty interval of the consequent
is [0, 1], when knowledge of antecedent and A =⇒ B is available the interval
becomes [α1αr, 1 − α1(1 − βr)], when antecedent and both A =⇒ B, A =⇒ B
are available the interval becomes [α1αr+(1−β1)αr, α1βr+(1−β1)βr+(β1−α1)]
and the knowledge of consequent is available it is [α2, β2].

4.2 Proofs

Without loss of generality we assumed that A and B are in same BoE. Therefore;

Bl(B) = Bl(B ∩A) +Bl(B ∩A) +
∑

∅6=P⊆(B∩A)

∅6=Q⊆(B∩A)

m(P ∪Q). (12)

Bl(B) ≥ Bl(B ∩A) +Bl(B ∩A), (13)

We know that [8] Bl(A) ≤ Bl(B ∩A) + Pl(B ∩A). This, together with the FH
conditionals (where Bl(A) 6= 0) can then be used to write

Bl(A)Bl(B/A) ≤ Bl(B ∩A). (14)

This inequality holds true for Bl(A) = 0 as well. Substitute A for A in (14):

Bl(A)Bl(B/A) ≤ Bl(B ∩A). (15)

Use (13), (14) and (15), and use the fact that Bl(A) = 1− Pl(A) with notation
(2) to get (3);

α2 ≥ α1αr + (1− β1)αr.
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Substitute B for B in (13),(14), and (15) to get,

Bl(B) ≥ Bl(A)Bl(B/A) +Bl(A)Bl(B/A). (16)

Use the facts; Bl(B) = 1 − Pl(B), Bl(B/A) = 1 − Pl(B/A) and Bl(B/A) =
1− Pl(B/A) with notation (2) to get (4);

β2 ≤ α1βr + (1− β1)βr + (β1 − α1).

If the knowledge of A =⇒ B is unavailable, we relax the rule by assuming total
uncertainty which is [αr, βr] = [0, 1] in (3) and (4) to get (7) and (8);

α2 ≥ α1αr.

β2 ≤ 1− α1(1− βr).

5 Consistency with Probability and Classical Logic

5.1 Consistency with Probability

For p.m.f.s, we have (a) Pr(B) = Pr(B ∩A) +Pr(B ∩A), which corresponds to
(12), except that the additional summation term vanishes and the inequality (13)
reduces to an equality; and (b) Pr(B∩A) = Pr(A)Pr(B|A), which corresponds
to (14), except that the inequality reduces to an equality. Therefore, instead of
the bounds for α2 and β2, we get equalities identical to the LC choice.

α2 = α1αr + (1− β1)αr; β2 = α1βr + (1− β1)βr + (β1 − α1). (17)

When the belief and plausibility are equal for each proposition, DST models
reduce to p.m.f.s. The belief and plausibility (which are now identical) of each
proposition then yield the probability of that same proposition. Suppose the
antecedent and the rules A =⇒ B and A =⇒ B are probabilistic, i.e.,

α1 = β1 = Pr(A); αr = βr = Pr(B/A); αr = βr = Pr(B/A). (18)

Substitute in (17) to get α2 = β2 = α1αr + (1− α1)αr. This corresponds to
Pr(B) = Pr(A)Pr(B|A) + Pr(A)Pr(B|A).

5.2 Consistency with Classical Logic

Note that α1 = β1 = 1 and α1 = β1 = 0 imply the occurrence or non-occurrence
of proposition A with 100% confidence. Though FH conditionals are not defined
when α1 = β1 = 0 [5] we have shown that our relations are valid even α1 = β1 =
0, further if we take a limiting argument and let α1 = β1 tend to 0 in the limit and
the result will be same as if we substitute 0 for both α1 and β1 in the equations.
We associate the two cases α1 = β1 = 1 and α1 = β1 = 0 with the logical
‘Truth’ and logical ‘False’ in classical logic. For example, with α1 = β1 = {0, 1}
and α2 = β2 = {0, 1}, Table 1 shows the truth table of A =⇒ B. To see the
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Table 1. Truth Table for A =⇒ B in Classical Logic

α1 = β1 α2 = β2 A =⇒ B

0 0 1
0 1 1
1 0 0
1 1 1

consistency with classical logic, we now use α1 = β1 = {0, 1}, αr = βr = {0, 1},
and αr = βr = {0, 1} with (5) and (6) (Note that (3) and (4) become (5) and
(6) in classical logic case as in probabilistic case). See Table 2. The results for
α2 = β2 in Table 2 can be expressed as (A∧ (A =⇒ B))∨ (¬A∧ (¬A =⇒ B)) =
(A ∧ (¬A ∨B)) ∨ (¬A ∧ (A ∨B)) = B.

Table 2. When we have both A =⇒ B and A =⇒ B for the Classical Logic Case
obtained from (5) and (6)

α1=β1 αr=βr αr=βr α2 β2 α2=β2

0 0 0 0 0 =⇒ 0
0 0 1 1 1 =⇒ 1
0 1 0 0 0 =⇒ 0
0 1 1 1 1 =⇒ 1
1 0 0 0 0 =⇒ 0
1 0 1 0 0 =⇒ 0
1 1 0 1 1 =⇒ 1
1 1 1 1 1 =⇒ 1

Now consider the implication case; (9) and (10). (Note that (7) and (8) become
(9) and (10) in classical logic case).

Table 3. When we have only A =⇒ B for the Classical Logic Case obtained from (9)
and (10)

α2 6= β2 in general
α1 = β1 αr = βr α2 β2 α2 β2

0 0 0 1 =⇒ 0 1
0 1 0 1 =⇒ 0 1
1 0 0 0 =⇒ 0 0
1 1 1 1 =⇒ 1 1
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Let us compare the entries of Table 3 (obtained from (9) and (10)) and Table 1
(truth table for A =⇒ B in classical logic). (a) Antecedent is true: See lines 3-4
where both tables show identical behavior. (b) Antecedent is false: See lines 1-2
where the tables behave differently. (b.1) When rule is true: the consequent can
take 0 or 1 in both tables. Note that the information in lines 1-2 of Table 1 are
captured in line 2 of Table 3 which explains when antecedent is false though
implication rule is true the consequent can be true or false. (b.2) When rule is
false: this is not in Table 1 whereas line 1 of Table 3 not only allows this, but
it also allows the consequent to take either 0 or 1 value which explains when
antecedent is false and the implication rule is false the consequent can be true
or false.

From these tables it is clear that the relations we developed are consistent
with classical logic as well as they better explain the classical logic behaviour of
implication rules than conventional implication truth table.

6 Illustrative Example

As an illustrative simple example, consider red and black balls, and 3 urns A,
B, and C: urn A has 3 red, 5 black, plus 2 additional balls; urn B has 5 red, 2
black, plus 3 additional balls; and urn C has 3 red, 5 black, plus 2 additional
balls. The additional balls could be any combination of red and black balls.

First we select urn A and randomly take out a ball (first trial). If we get a
red ball (RB), we select urn B; otherwise, if we get a black ball (BB), we select
urn C. Then we take out a ball from the selected urn (second trial). What are
the belief and plausibility values of getting a RB in the second trial?

In the DST framework, let [α1, β1], [αr, βr], and [α2, β2] denote the belief and
plausibility values corresponding to getting a RB in the first trial, getting a RB
in the second trial given that the first trial yields a RB, and getting a RB in
the second trial, respectively. Therefore, [α1, β1] = [0.3, 0.5], [α1, β1] = [0.5, 0.7],
[αr, βr] = [0.5, 0.8], [αr, βr] = [0.3, 0.5], and [α2, β2] = [0.36, 0.65] (computed by
accounting for all the possibilities).

Let us now see what our results yield: the general bounds yield 0.30 ≤ α2 ≤
β2 ≤ 0.69; the relaxed bounds yield 0.15 ≤ α2 ≤ β2 ≤ 0.94. Both these contain
[α2, β2] = [0.36, 0.65]. Also note that the general bounds are much tighter than
the relaxed bounds (which ignore the information in [αr, βr]).

7 Conclusion

We have derived mathematical relations to belief and plausibility values of a
consequent when the belief and plausibility values of corresponding antecedent
and implication rule are given, by modelling the implication rule with DST FH
conditionals. The results and their consistency with probability and classical
logic demonstrate the reasonability of modelling the uncertain implication rules
by DST FH conditionals.
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Further the results are more general and flexible than the previous works since
the derivations are not imposed by any probabilistic or classical logic relations
which are special cases of this model.
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