
Abstract Planning for Reactive Robots

Saket Joshi, Paul Schermerhorn, Roni Khardon, Matthias Scheutz

Abstract— Hybrid reactive-deliberative architectures in
robotics combine reactive sub-policies for fast action execution
with goal sequencing and deliberation. The need for replanning,
however, presents a challenge for reactivity and hinders the
potential for guarantees about the plan quality. In this paper,
we argue that one can integrate abstract planning provided
by symbolic dynamic programming in first order logic into a
reactive robotic architecture, and that such an integration is in
fact natural and has advantages over traditional approaches.
In particular, it allows the integrated system to spend off-line
time planning for a policy, and then use the policy reactively
in open worlds, in situations with unexpected outcomes, and
even in new environments, all by simply reacting to a state
change executing a new action proposed by the policy. We
demonstrate the viability of the approach by integrating the
FODD-Planner with the robotic DIARC architecture showing
how an appropriate interface can be defined and that this
integration can yield robust goal-based action execution on
robots in open worlds.

I. INTRODUCTION

Research in reasoning and planning for high-level goals
has progressed largely independently of research in robotic
architectures. While stochastic and open-world extensions to
classical deterministic closed-world planning are currently
active areas of research in the planning community ([18],
[10]), the aim in robotics has always been to produce
systems that can perform robustly in noisy environments
not fully known in advance, thus handling both real-world
situated control and open world dynamics. Various reactive
architectures, in particular, have been proposed for mapping
perceptions to actions in a way that allows for real-time
action selection and execution (e.g., [15]). However, since
goals and actions are not explicitly represented in those
architectures (but rather, are implicit in their structures),
it is difficult to adapt reactive architectures to new tasks.
Hybrid reactive-deliberative architectures were proposed to
address these limitations, adding two important extensions
to reactive architectures: a task or navigation planner with
explicit goal and action representations as well as rules
connecting actions to goals, and a link between the deliber-
ative extension and the reactive execution engine, usually a
plan sequencer. The extensions, however, present significant
integration challenges, e.g., to allow for typically closed-
world planners to work in open-world environments while

S. Joshi is with the School of Electrical Engineering and Com-
puter Science, Oregon State University, Corvallis, OR 97331, USA
joshi@eecs.oregonstate.edu

P. Schermerhorn is with the Cognitive Science Program, Indiana Univer-
sity, Bloomington, IN 47406, USA pscherme@indiana.edu

R. Khardon and M. Scheutz are with the Department of
Computer Science, Tufts University, Medford, MA 02144, USA
{roni|mscheutz}@cs.tufts.edu

retaining the reactivity necessary for real-time plan execution
[16]. Given the real-time constraints it is usually difficult to
provide any guarantees on the quality of replanning.

In this paper, we propose a new integration of a stochastic
planner into a hybrid robotic architecture which overcomes
these two difficulties: (1) it provides a general policy for
action selection that fully preserves the reactivity of the
robotic architecture while being applicable in unknown
environments; and (2) it allows for guarantees about the
quality of the selected actions. Concretely, we show how
the FODD-PLANNER [8] can be integrated into the DIARC
robotic architecture [14] and solve tasks requiring high-level
goals demonstrated in two application domains: a search and
report task capturing a rescue operation [16] and a search
and manipulation task where various manipulation activities
related to rescue operations have to be performed [3].

In the first task, illustrated in Fig. 1, the robot starts at one
end of the hall and has to deliver a package to the rescue
team at the end. As an additional goal it is told to report
any injured people (represented by red boxes) that may be
in the rooms. The exact maps and location of rooms are not
known in advance, and it is not known which rooms have
injured people. Hence, these facts have to be sensed for, and
appropriate actions must be performed to achieve both goals.

In the second task, illustrated in Fig. 2, the agent is to
get all yellow blocks from green boxes and deliver them to
a pink box. There is at least one pink box, any number of
green boxes, and possibly other irrelevant objects (such as
the brown boxes in Fig. 2). The number and location of green
boxes, and which boxes contain yellow blocks, is unknown.
Again, these facts have to be sensed for, and appropriate
actions must be performed as the robot learns of them.

Novel contributions: First, we devise a novel formulation
of sensing actions that with some probability “bring about”
existence of objects and their properties. In this way, planners
can treat sensing actions as regular actions and seamlessly
integrate them into their policies, making the distinction
between open and closed worlds less severe.

Our second contribution comes from observing that com-
bining sensing actions with abstract planning can be used to
yield a reactive policy that is a solution to the open-world
planning problem. In particular, we propose using symbolic
dynamic programming (SDP) [2] and its implementation in
the FODD-PLANNER [8]. The SDP algorithm plans without
knowledge of the initial state or even number of objects in
the environment, so the abstract policy it calculates is valid in
any instance of the domain. Therefore, if the situated system
notices that the world state is not as expected (e.g., a new
door has been detected) it can simply present the new state



Fig. 1. Example test configurations for the search and report domain.

to the policy and get a new action for the same goal without
any additional reasoning. This cannot be done with a planner
that requires a grounded domain for planning.

Third, combining SDP with a formulation for sensing
actions puts some requirements on the robotic architecture. In
particular, the system must track and appropriately represent
a notion of state to be communicated to the policy (e.g.,
when executing a scan for objects the system must invent a
representation for the new objects identified and add them
to the state). Additionally, when given an abstract action
the system must interpret and execute it appropriately (e.g.,
moving to a location might require going through a door
and/or avoiding obstacles). We show how such an interface
can be defined by encapsulating robot actions using action
schemas as common in planning, using these to define
the predicates that are needed for state representation, and
updating these predicates using the robotic system.

Fourth, we demonstrate the integration in two robotic
domains as described above, discussing advantages and lim-
itations of our approach.

Finally, to apply the FODD-PLANNER in these domains
we have to support goals specified non-logically as a sum of
rewards per unknown potential objects. We show how this
can be approximated in a useful and flexible manner.

To summarize, our integrated architecture encapsulates
capabilities of the robotic system through action schemas,
handles open worlds using a formulation of probabilistic
sensing actions, defines an appropriate interface in order to
plan and achieve goals defined at the abstract level, and uses
the power of SDP to derive reactive policies for such tasks.

II. BACKGROUND

A Markov decision process (MDP) is a mathematical
model of the interaction between an agent and its environ-
ment [11]. A MDP over states S and actions A is given
by the transition distributions P (s′|s, a) and reward function
R(s, a). In this paper we assume for simplicity that the re-
ward is independent of a (i.e. R(s, a) = R(s)). The objective
of solving an MDP is to generate a policy that maximizes
the agent’s total, expected, discounted reward, for a discount
factor γ ≤ 1. The well known Bellman equation V (s)
= Maxa[R(s) + γΣs′P (s′|s, a)V (s′)] captures optimality,
and the value iteration algorithm (VI) treats the Bellman

Fig. 2. Example test configurations for the search and manipulate domain.

equation as an update rule and iteratively updates the value
of every state until convergence. Once the optimal value
function is known, a policy is generated by assigning to each
state the action that maximizes the expected value.

VI and other early algorithms require one to enumerate the
state space, which is clearly not possible in large problems.
As a result, work on factored and relational models aims to
obtain faster solutions by taking advantage of structure in the
domain. In particular, by employing compact representations
for R(s), P (s′|s, a) and V (s), this structure can be exploited
to back up the values of many states at the same time. These
batch backups obviate the need to enumerate the state space,
thereby giving rise to a more efficient VI algorithm.

Rich structure in many planning domains comes from the
observation that the world consists of objects and relations
among them. Taking advantage of such relational structure,
[2] developed the SDP algorithm that was later elaborated
in several formalisms and systems [9], [5], [13], [17]. One
of the important ideas in SDP was to represent stochastic
actions as deterministic alternatives under nature’s control.
This helps separate regression over deterministic action
alternatives from the probabilities of action effects. This
simplification leads to the following compact implementation
of one iteration of the VI algorithm:

1) Regression: The n step-to-go value function Vn is
regressed over every deterministic variant Aj(~x) of
every action A(~x) to produce Regr(Vn, Aj(~x)).

2) Add Action Variants: Generate the Q-function QA(~x)
Vn

= R⊕ [γ⊗⊕j(prob(Aj(~x))⊗Regr(Vn, Aj(~x)))] for
each action A(~x).

3) Object Maximization: Maximize over the action pa-
rameters of QA(~x)

Vn
to produce QA

Vn
for each action

A(~x), thus obtaining the value achievable by the best
ground instantiation of A(~x).

4) Maximize over Actions: Generate the n+1 step-to-go
value function Vn+1 = maxAQ

A
Vn

.
In this algorithm all intermediate constructs are captured us-



at(L) 

in(B,L) 

pink(B) 

holding(b) 

delivered(b)90 

100 0

delivered(b) 

100 0 

(a) (b) 

Fig. 3. FODD representations of (a) Reward function for the search and
manipulate domain. (b) Corresponding 1-step-to-go value function generated
by the FODD-PLANNER

ing some compact representation. The FODD-PLANNER is
an SDP system that employs First Order Decision Diagrams
(FODD) [17] to represent R(s), P (s′ | s, a) and V (s) and to
perform all the calculations. We next give a brief overview
of FODDs, and their use to solve SDP.

FODDs provide a graph-based representation for real-
valued functions over structured domains. Thus a FODD can
be used to represent a mapping from states in a planning
problem to values. FODDs generalize the successful alge-
braic decision diagrams [1] to first order logic so as to handle
objects and relations among them. Space constraints preclude
a complete exposition of FODDs; instead we illustrate the
main ideas using examples.

A FODD is a labeled directed acyclic graph. Each non-leaf
node has exactly 2 outgoing edges. Left going edges repre-
sent the true branches and right going edges represent the
false branches. Non-leaf nodes are labeled by relational
atoms and leaves have non-negative numeric values.

Two examples of FODDs are given in Fig. 3. Con-
sider a state in the search and manipulation task where
the agent is holding block b in location l1 with a
pink box bx1 in it. Such a state can be expressed as
[at(l1), in(bx1, l1), pink(bx1), holding(b)]. To evaluate the
FODD in Fig. 3(b) on this state, we must identify every path
in the FODD that matches (is satisfiable in) the state. Then
the final function output is obtained by maximizing over the
set of leaves reached by these paths. In this example, the only
paths that match the state are the ones reaching the leaves
90 and 0. Thus our final output is max{90, 0} = 90.

To implement the SDP algorithm, FODDs must support
operations such as adding and multiplying functions rep-
resented by diagrams, and goal regression by diagrams;
these have been provided by [17]. However, these operations
introduce redundant structure in the resultant FODD and
removal of these redundancies is essential for practical im-
plementations. In this paper we use FODD-PLANNER with
model checking reductions [6] to remove such structure. This
requires a set of “focus states” in addition to the description
of the domain when planning.

Returning to the SDP algorithm, Fig. 3(a) shows a rep-
resentation of R(s) for a simple ground goal in the search
and manipulate domain. A reward of 100 is obtained when

a specific block b is delivered. Fig. 3(b) represents the cor-
responding 1-step-to-go value function produced by FODD-
PLANNER after one iteration. The value of the state where
the block b has been delivered is 100, whereas the value of
a state where the agent is holding b in a location with a pink
box in it, is 90. In this description the box B and location L
are quantified and the value function is valid in any instance
of the domain. This simple example already demonstrates
that an existentially quantified policy can be developed using
SDP and that it is applicable in any instance of the domain.
This is what we mean by abstract planning.

III. SENSING ACTIONS AND SDP
Closed world planners including SDP require complete

knowledge of the state. We propose the following simple
encoding to handle unknown facts through probabilistic ac-
tions (encoded here in a simple STRIPS-like representation,
but using FODDs in our system):

operator lookfor(Box,Loc),
preconds([at(Loc), not_searched(Loc),

room(Loc), potential-object(Box,Loc)])
outcome(0.5, addList([searched(Loc)]),

delList([]))
outcome(0.25, addList([blue(Box),

in(Box,Loc),searched(Loc)]),
delList([]))

outcome(0.25, addList([red(Box),
in(Box,Loc),searched(Loc)]),

delList([]))

In this formalization, taken from the search and report
task described above, when a room has not been searched
it has a potential object (which may not actually exist) that
is discovered when looked for. Thus the robot can lookfor
objects unless it has already searched that location before.
When it does, it might find nothing (50% of the time), or
find a blue box (uninjured person, 25% of the time) or find a
red box (injured person, 25% of the time). The probabilities
can be set appropriately with prior expectation about the
frequency of red boxes/injured people; otherwise we can
set it arbitrarily using an “uninformative prior”. With such
an action, the goal of reporting red boxes becomes just a
standard goal and the planner can plan directly for it.

However, this operation on its own will not avoid the
need for replanning with a standard closed world planner.
When no rooms are known, the only plan is to go to the
end of the hall and deliver the package. Thus, when a room
is discovered, replanning is necessary. Here, the use of SDP
is crucial, as SDP plans without knowledge of the initial
world configuration; in this domain that means planning
without knowledge of the explicit map to be traversed, that is,
planning for all possible maps. Thus the SDP policy will be
optimal for any map and any location on that map. As a result
when a new room is discovered, we only need to update the
state and use the reactive policy to select the action for that
state. In this way the combination of SDP with the encoding
of sensing actions through probabilistic operators provides a
significant qualitative advantage over traditional approaches.

Considering the search and manipulate task, the agent
must first search for green boxes and then peek inside the



discovered boxes to check if they contain blocks. In this
case we have two sensing actions. The first discovers (with
some probability) boxes that exist in the same room as the
robot, and the second peeks into the box and discovers (with
some probability) a block inside the box. As above, using
this formulation, the objects and their properties come into
existence as a result of the sensing actions.

This technique can be used for the off-line planning por-
tion that produces the policy. On the other hand the execution
routine using the policy must add “potential objects” to the
state description before action selection. This can be done
mechanically in the planner’s action selection routine.

IV. ADDITIVE GOALS: APPROXIMATION AND
FLEXIBILITY

The SDP approach [2] was formulated with the intention
of handling logically defined goals. However, as noted by
many authors (e.g., [4]), rewards in structured worlds often
have an additive structure. In our domains the agent obtains a
constant reward per person reported in the search and report
domain or per block delivered in the search and manipulate
domain. While extensions to handle these types of rewards
have been developed ([12], [7]), efficient algorithms and
implementations do not exist. We therefore use a heuristic
approximation to handle additive rewards. Our approach
naturally follows from previous applications of SDP ([13],
[8]), where the value obtained for a conjunctive goal is
approximated by the sum of values obtained for individual
atoms. Here we approximate the value of an action for an
additive goal by the sum of values provided by each of
the individual ground goals. Space constraints preclude a
detailed explanation, but as a short example, consider an
additive reward, say

∑
loc reported(loc) from the search and

report domain. The 1-step-to-go value function produced by
the algorithm of [7] has the form ∃box

∑
loc[in(box, loc) ∧

¬reported(loc) ∧ . . .] in which the corresponding action
parameters (the box in this example) must be quantified
outside the sum. Our approximation effectively swaps the
aggregators and produces a value function of the form∑

loc ∃box[in(box, loc) ∧ ¬reported(loc) ∧ . . .]. Therefore,
our approximation can be seen to be an optimistic (and im-
possible) interpretation where action parameters are selected
for each location separately. Despite the obvious potential
problems, this approach has been shown to work well in a
number of problems involving conjunctive goals and, as we
show here, it can be used for additive goals as well.

The practical implication of this approximation is that
we use SDP to plan to achieve generic forms of individual
ground atoms, where each atom is handled separately. Once
we have the separate policies for each generic atom, we can
perform on-line execution by approximating the true value
using the formula above where each atom is appropriately
substituted by its generic form.

As a result, our system has an added level of flexibility,
because we can use a different discount factor (in the MDP
sense) for each goal atom. In this way, we can also handle
prioritization of sub-goals, by using a smaller value for the

discount factor γ on urgent goals. If this is done then the
loss in value from one step delay for the urgent goal is larger
than the loss in value for the other goals and therefore actions
that push the former will be preferred. This can sometimes be
useful to compensate for the approximation. We demonstrate
this ability in our experiments.

V. INTEGRATION

The FODD-PLANNER was integrated into the DIARC
robot architecture, which uses the Java-based Agent Devel-
opment Environment (ADE) [14] as a framework for imple-
menting architectural components (e.g., perceptual process-
ing, navigation, action planning and natural language pro-
cessing). Such an integration presents challenges at multiple
levels. The most obvious challenge is syntactic integration,
establishing the mechanics of information exchange (i.e.,
programming API, synchronization of potentially different
cycle times, etc.). However, of greater interest is the se-
mantic integration of the two systems. Because the robot
architecture and planner represent the world at different
levels, understanding how each represents the world (i.e.,
entities, characteristics, locations, etc.) is key to successful
information exchange. In this section we illustrate how both
challenges are met by defining the interface syntactically
using logical constructs, in a way that is robust despite
mismatches in the semantics of these predicates.

Syntactic integration: Interaction between FODD-
PLANNER and DIARC is via a new ADE component created
to perform the mapping between DIARC representations and
FODD-PLANNER representations. State updates and goal
requests received from the robot architecture are submitted
to the planner process and actions returned from policy
consultation are routed back to the goal manager by the
ADE planner component. Communication between archi-
tectural components using predicates is well-established in
ADE [14], so at the syntactic level, the interface is straight-
forward once the vocabulary is established. The search and
report task was captured using five deterministic actions and
one sensing action: movehall from one location to another,
enter a room, exit a room, report a red box, deliver at a
certain location, and the sensing action lookfor as described
above. Two goals, reported (for injured people) and delivered
(for package to destination) are needed. The search and
manipulation domain was modeled using three deterministic
actions and two sensing actions: move from one location
to another, get a block from a box, deliver a block into a
pink box, and the probabilistic sensing actions lookat that
potentially discovers a green box in a location, and peek that
potentially discovers a block in a box. This domain has only
one goal, delivered, requiring that a block be delivered into
the pink box.

Updates are sent to the planner when actions complete or
when new world states are sensed. Action-generated state
updates are simply the action’s postconditions, depending
on the outcome. Perceptual updates can come from “back-
ground” sensing processes or from explicitly scheduled sens-
ing actions. Background sensing is performed via the goal



manager’s attend mechanism, which allows domain-specific
monitors (e.g., “attend DOORS” watches for doorways when
traversing a hall) to be instantiated that continually query
perceptual resources. Although implicit background sensing
removes the need to schedule sensing actions, limited compu-
tational resources make explicit sensing more practical when
detection events are sporadic but predictable. Regardless of
the source, when a state change is detected, the goal manager
updates the planner’s state and the policy is consulted. Action
descriptions generated by the planner are returned as DIARC
script objects that can be executed directly.

Semantic integration: Ideally, the ADE and FODD-
PLANNER representations would match up perfectly. How-
ever, in reality several mismatches exist between the two
systems’ interpretations of predicates and actions. First, as
described above, the planner must invent “potential objects”
with temporary names to enable planning over entities that
may or may not exist. The robot, however, adds to its state
objects that are actually detected, and the names it generates
correspond with actual entities. Hence, arguments to sensing
actions are treated as search types and unknown names
are ignored. Similarly, the semantics of sensing actions are
not always perfectly aligned. Obviously, the robot does not
implement the planner’s probabilistic schema for sensing
actions—actual sensing is performed. This can lead to un-
expected outcomes from the perspective of the model. For
example, when asked to lookfor a red box, the robot might
detect two or more. Likewise, in the second task, the planner
tacitly assumes that the robot searches for a single green
box in a specific location, when in fact the robot scans the
room and returns all visible green boxes. Despite mismatched
expectations, the policy can be applied without problems in
both cases.

Mismatches can also be found in the interpretation of
syntactically identical predicates. The robot architecture does
not distinguish between entities in the environment and
their locations, so any object can be treated as a location.
On the other hand, the planner expects to be informed of
the locations of objects presented in state updates (e.g.,
in(box1,loc1)). In this case the solution is simple; an entity
can be specified as its own location (in(box1,box1)) and
the planner can use the entity name in both roles without
adverse effects. However, these examples demonstrate how
subtle interpretation differences can arise when interfacing
robotic architectures and planners. The crux of designing
a successful interface is to provide a qualitative correspon-
dence guaranteeing robust behavior despite this mismatch.

VI. EVALUATION

Our approach uses off-line planning time to provide an
abstract policy applicable in any world instance and usable
in a reactive manner in open worlds. Previous approaches
are either nonreactive, require replanning or (for ground
MDP solvers) require prior knowledge of problem size and
structure. Therefore, one cannot perform a direct compar-
ison to previous work. Instead our evaluation focuses on
demonstrating properties of our system: real-time response

Fig. 4. The robot performing the search and report task.

and robustness of the policy across multiple scenarios in both
simulated and robotic platforms. For both domains we used
the FODD-PLANNER system using three approximations:
model checking reductions, non-standardizing apart, and the
additive goal decomposition described above [6]. We used
off-line planning to produce a policy and then employed the
policy in the integrated architecture, both on a physical robot
and in simulation in the ADE simulator.

Search and report task: For this domain we used off-line
planning to derive policies for the reported and delivered
goals separately. We used edge-removal model-checking
reductions using a hand constructed example set that traces
an agent’s actions in a small hypothetical environment. The
policy was generated by running 9 iterations of VI for each
goal. The total off-line planning time for the two goals (on
a 1.86 GHz Intel Core 2 Duo CPU with 2Gb RAM) was
approximately 4 hours.

This domain was previously studied with a focus on
temporal aspects using the forward state space planner Sapa
Replan [16]. Although the goals of the current paper are
different, we have explored methods for manipulating the
order in which goals are pursued. For example, we can
use the flexibility of planning for each goal separately to
prioritize one goal over the other. The idea is to use a
small γ on a high priority goal and a large γ (almost
1) on other goals, which results in a one step delay for
the high-priority goal being more costly than a long delay
of the other goal. This mechanism can also be used to
compensate for inaccuracies in the policy that are caused
by the approximation. The values for γ were chosen by
performing a parameter search with respect to a suite of
test problems. For the scenario of [16] our results show that
using γ = 0.999 for the delivered goal and γ = 0.45 for
the reported goal, the agent will search all rooms on its way
to the delivery location (at the end of the hallway). Setting
γ = 0.45 for both goals, the agent first makes the delivery
and then goes back to search rooms for injured people.

To investigate robustness and real-time response we gen-
erated 10 different problem instances with different maps
including the number of accessible rooms and boxes and



their locations. The performance measures of interest are task
success and planner response time. The integrated architec-
ture was tested in the ADE simulator and on a physical robot.
The simulation tests ran on a dual quad-core 2.33 GHz Xeon
E5345 workstation with 64 Gb of RAM. The robot tests used
a Videre robot equipped with a Hokuyo laser range finder,
a USB camera and a quad-core 2.53 GHz Core 2 Extreme
laptop with 4 Gb RAM (see Fig. 4). We ran the simulated
system multiple times in all 10 scenarios and the physical
robot multiple times in the real-world environment.

In terms of task completion the policy had 100% success;
all goals are achieved as expected across all attempts in
simulation and physical system. In terms of response time
the evaluation shows that policy queries are efficient: the
average response time (for any particular run) for goal
submission, including all overhead writing and reading pipes
and processing the planner’s response, was about 80 msec
for the simulation and about 90 msec for the robot runs.

Search and manipulation task: For this domain we used
off-line planning for the single goal delivered. We used
node-removal and edge-removal model-checking reductions
using an example set constructed automatically using random
walks [6] to produce 112 examples. The policy was generated
by running 7 iterations of VI. This domain is simple enough
that 7 iterations should include all the information needed
for optimal behavior. The total off-line planning time (on
a 2.8 GHz Intel Core 2 Quad CPU with 8Gb RAM) was
32 minutes. The integrated architecture evaluations used
only the ADE simulator because the robot did not have
any manipulation capabilities. The ADE Simulator, which
includes a physics engine for realistic navigation, was ex-
tended by a simple object manipulation mechanism. Here,
too, we generated 10 scenarios that differ in the location
and number of boxes and in existence of blocks within the
boxes. The results demonstrate 100% success in terms of
goal achievement, although the policy is sub-optimal due
to the additive goal decomposition. The run-time for policy
evaluation (including all inter-process communication and
associated processing) averaged 90 msec.

VII. LIMITATIONS OF OUR APPROACH

Our work demonstrated that one can successfully integrate
open world planning with a reactive robot architecture.
However, defining the right interface for a given task can
be non-trivial due to both engineering and semantic issues
as discussed above. In addition, algorithmic aspects are still a
limiting factor. For example, in our evaluation we limited the
number of iterations in VI to avoid unreasonable planning
time. Similarly our test scenarios use moderate size instances
and larger instances will require longer time for action
selection which is an NP-Hard problem. These semantic,
engineering, and algorithmic problems offer important chal-
lenges for future work.

VIII. CONCLUSION

We demonstrated that two very different technologies,
a reactive real-time robotic architecture and a high-level

abstract planning system, can be integrated in a novel way
through a formulation using sensing actions. This integration
yields robust, real-time, goal-based execution of policies
generated off-line on robots in open worlds. Our results
show that developing planning and reasoning independently
from robotics is viable and that results from the two re-
search areas can be usefully integrated using appropriate
carefully-designed architectural mechanisms. We believe that
the proposed integration is important for developing robust
intelligent systems and is therefore a fruitful direction for
further work.

IX. ACKNOWLEDGMENTS

This work was partly supported by NSF grant IIS
0964457. Saket Joshi was additionally supported by a Com-
puting Innovation Postdoctoral Fellowship. Some of the ex-
periments reported in this paper were performed on the Tufts
Linux Research Cluster supported by Tufts UIT Research
Computing. This work was also supported in part by ONR
MURI grant #N00014-07-1-1049 to the fourth author.

REFERENCES

[1] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In
IEEE /ACM ICCAD, pages 188–191, 1993.

[2] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming
for first-order MDPs. In Proc. of IJCAI, pages 690–700, 2001.

[3] K. Eberhard, H. Nicholson, S. Kübler, S. Gundersen, and M. Scheutz.
The Indiana cooperative remote search task (CReST) corpus. In Proc.
of LREC, 2010.

[4] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing
plans to new environments in relational MDPs. In Proc. of IJCAI,
2003.

[5] S. Hölldobler, E. Karabaev, and O. Skvortsova. FluCaP: a heuristic
search planner for first-order MDPs. JAIR, 27:419–439, 2006.

[6] S. Joshi, K. Kersting, and R. Khardon. Self-taught decision theoretic
planning with first order decision diagrams. In Proc. of ICAPS, pages
89–96, 2010.

[7] S. Joshi, K. Kersting, and R. Khardon. Decision theoretic planning
with generalized first order decision diagrams. AIJ, 175:2198–2222,
2011.

[8] S. Joshi and R. Khardon. Probabilistic relational planning with first
order decision diagrams. JAIR, pages 231–266, 2011.

[9] K. Kersting, M. Van Otterlo, and L. De Raedt. Bellman goes relational.
In Proc. of ICML, 2004.

[10] N. Onder, G. Whelan, and L. Li. Engineering a conformant proba-
bilistic planner. JAIR, 25:1–15, 2006.

[11] M. L. Puterman. Markov decision processes: Discrete stochastic
dynamic programming. Wiley, 1994.

[12] S. Sanner and C. Boutilier. Approximate solution techniques for
factored first-order MDPs. In Proc. of ICAPS, pages 288–295, 2007.

[13] S. Sanner and C. Boutilier. Practical solution techniques for first order
MDPs. AIJ, 173:748–788, 2009.

[14] Paul Schermerhorn and Matthias Scheutz. Using logic to handle
conflicts between system, component, and infrastructure goals in
complex robotic architectures. In Proc. of ICRA, 2010.

[15] Matthias Scheutz and Virgil Andronache. Architectural mechanisms
for dynamic changes of behavior selection strategies in behavior-based
systems. IEEE Transactions of System, Man, and Cybernetics Part B,
34(6):2377–2395, 2004.

[16] Kartik Talamadupula, J. Benton, Paul Schermerhorn, Rao Kambham-
pati, and Matthias Scheutz. Integrating a closed world planner with
an open world robot: A case study. In Proc. of AAAI, July 2010.

[17] C. Wang, S. Joshi, and R. Khardon. First order decision diagrams for
relational MDPs. JAIR, 31:431–472, 2008.

[18] H. Younes, M. Littman, D. Weissman, and J. Asmuth. The first
probabilistic track of the international planning competition. JAIR,
24:851–887, 2005.


